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Lattice-Based Robust Distributed Source Coding
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Abstract— The problem of robust distributed source coding
for three correlated sources is studied in this work. A lattice-
based scheme is proposed and the analysis of its performance is
provided in the high resolution regime. Special attention is paid
to the degenerate case where the three sources are Gaussian and
identical. In this case, our scheme is shown to achieve within an
asymptotic gap of 0.069 bits in terms of rate per description from
the information-theoretic limit of quadratic symmetric Gaussian
multiple description coding with central and individual decoders,
when the side distortion and the ratio between the central and
side distortions both approach 0.

Index Terms— Correlated sources, distributed source coding,
lattice quantization, asymptotic performance analysis, high
resolution, multiple description coding.

I. INTRODUCTION

IN DISTRIBUTED source coding (DSC), two or more
correlated sources are encoded separately and transmitted to

a common decoder. The fundamental information-theoretical
limits are characterized in [1] for the lossless case, and in [2]
for the lossy case assuming that all sources but one are directly
available at the decoder. The general version of the lossy DSC
problem was first treated by Berger [3] and Tung [4]. However,
in spite of significant efforts over the past few decades,
the conclusive solution has been determined only for certain
particular cases [5]–[10]. An important variant of the DSC
problem is known as the CEO (short for Chief Executive Offi-
cer) problem [11]. Oohama [12] and Prabhakaran et al. [13]
have characterized completely the rate-distortion region for the
CEO problem in the quadratic Gaussian case.

In the robust DSC (RDSC) problem, the channels con-
necting some of the encoders with the fusion center may
break down. The robust version was addressed in the CEO
scenario by Ishwar et al. [14] and Chen and Berger [15].
The development of practical schemes for RDSC was tackled
in [16]–[18], but only locally optimal solutions were proposed.
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In this work, we present a structured lattice-based coding
scheme for the RDSC problem in the case of three correlated
sources with a central decoder and three individual decoders
(Figure 1). Note that lattices have been used in the previ-
ous works on the DSC problem [19]–[22]. A key technique
employed in lossy DSC problems is quantization followed by
binning. For this, Zamir et al. [19] proposed the use of nested
lattice codes, i.e., a pair of nested lattices, where the fine
lattice is utilized for quantization and the coarse lattice for
binning. This idea was largely adopted by the other works
as well. In addition, Krithivasan and Pradhan [21] considered
the variant of the lossy DSC problem where a linear function
of K Gaussian correlated sources is to be reconstructed at
the decoder. They use nested lattice codes with correlated
binning, i.e., where the different sources may use different fine
lattices, but the coarse lattice has to be common. Most of the
aforementioned works resort to dithered lattice quantization
and analyze the system performance as the dimension of
the lattices approaches ∞. One exception is the work of
Servetto [20], which addresses the design of lattice-based
schemes for the Wyner-Ziv problem1 and performs the analysis
as the rate approaches ∞ and the correlation between sources
approaches 1.

The particular case of the RDSC problem where all sources
are identical is known as the multiple description (MD)
problem [23]–[31]. Lattices have been very popular in the
design of MD schemes [32]–[41], [41]–[43]. Most of the afore-
mentioned schemes ([32], [33], [35], [36], [38], [40]–[42]),
referred to as MDLVQs (short for MD lattice vector quan-
tizers), also rely on a pair of nested lattices and use as the
key mechanism the index assignment, which is an injective
mapping from the fine lattice to L-tuples of points from the
coarse lattice, where L is the number of desired descriptions.
More specifically, the source sequence is first quantized to
the closest lattice point λc in the fine lattice. This quantizer
is referred to as the central quantizer and the fine lattice is
called the central lattice. The output of the central quantizer
further undergoes the index assignment, generating the L-tuple
(α1(λc), · · · , αL(λc)) of points in the coarse lattice. For each
1 ≤ l ≤ L, αl(λc) represents the lth description and is used for
reconstruction at the lth side decoder. The central decoder is
able to recover λc and outputs it as the reconstruction. In these
works, the asymptotic performance as the rate approaches ∞
for fixed lattice dimension is analyzed.

1The Wyner-Ziv problem refers to the lossy source coding problem with
side information available only at the decoder.
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To the best of our knowledge, the lattice-based design
for the RDSC problem was only addressed in our previous
work [44] for the case of two correlated sources. The per-
formance analysis of the scheme is derived for fixed lattice
dimension n in a high resolution regime. For the case where
the two sources are identical (which corresponds to the MD
framework), the analysis reveals that the proposed scheme can
achieve the information-theoretic limit of quadratic symmetric
MD coding, when the side distortion and the ratio between
the central and side distortions both go to 0, while n → ∞.
In [44], a variant of the random coding scheme that Chen
and Berger [15] proposed for the robust CEO problem was
considered for comparison and it was proved that the sum-
rate of the Chen-Berger scheme with Gaussian codes is 0.5 bits
larger than the sum-rate of the lattice-based coding scheme in
the same asymptotic regime.

The scheme in [44] employs three nested lattices Λs ⊂
Λin ⊂ Λc. For i = 1, 2, encoder i quantizes the source
sequence to the closest point λc,i in Λc, and λc,i is further
quantized to the closest point λi in Λin. Next, a mapping
βi : Λin → Λs is applied and βi(λi) is sent to the decoder.
The point βi(λi) in the coarsest lattice will be used for
reconstruction at the side decoder i. Encoder i also transmits
some additional information, via Slepian-Wolf coding,2 to be
used at the central decoder to jointly refine the reconstructions
of the two source sequences. Part of this supplementary
information is λc,i − λi, which can be interpreted as a bin
index. Thus, the lattice Λin can be regarded as the counterpart
of the coarse lattice used for binning in the previous works
on lattice-based lossy DSC. It should be noted that in the
aforementioned works, the decoder is able to recover the finely
quantized points with high probability as the dimension n
of the lattice approaches ∞. Since [44] is concerned with
fixed lattice dimension, some more information is transmitted
to enhance the performance at the central decoder. A novel
idea introduced in [44] is to use the knowledge about the
closeness of the input sequences to infer at each encoder
some information about the other sequence. Specifically, each
encoder operates under the assumption that the two sequences
are within some distance r0. Then, if λc,i is too close to the
boundary of the Voronoi region of the lattice Λin, encoder
i concludes that the other sequence could be in a different
Voronoi region and sends some supplementary information
to help at the central decoder. In this way, when the input
sequences are indeed within the distance r0 from each other,
the central decoder will output λc,1 and λc,2 as reconstructions.
Otherwise, the reconstructions will have essentially the same
quality as at the side decoders. Thus, the probability that the
input sequences are not within the distance r0 influences the
system performance.

The mappings βi proposed in [44] are inspired by the
concept of index assignment employed in MDLVQ. However,
the requirements that the mappings βi need to satisfy are
more difficult to meet in the scenario of non-identical sources.

2Slepian-Wolf coding refers to optimal distributed lossless compression of
correlated sources.

For this reason and in order to facilitate the analysis of system
performance, linear mappings are used.

In this work we propose a lattice-based scheme for the
RDSC problem in the case of three correlated sources. The
proposed scheme can be regarded as an extension of the
framework of [44], but it is not a trivial one. One major
challenge when transitioning from two to three sources is the
design of the mappings βi, i = 1, 2, 3. To make the relevant
analysis tractable, it is important to ensure the linearity of
these mappings. This turns out to be much more complicated
than in the case of two sources because the constraints the
mappings need to satisfy are more complex. We tackle this
design problem3 by introducing an additional lattice Λf such
that Λs ⊂ Λf ⊂ Λin. Moreover, the fact that the mappings βi

are more complex than in the case of two sources is a reason
for added complexity at the encoder and at the central decoder.
Specifically, there are more situations where the encoders need
to transmit additional information for the purpose of helping
the central decoder make the correct decision. This also leads
to more cases to be addressed at the central decoder. It is
worth emphasizing that, because of this additional complexity,
some aspects in the proofs of the theoretical results have to be
handled differently than in [44]. We provide the performance
analysis of the proposed scheme under the high resolution
assumption. In the degenerate case where the three sources
are identical and Gaussian, our scheme is compared with the
MDLVQ of [35] in the asymptotic regime where both the side
distortion and the ratio between the central and side distortions
approach 0. The asymptotic analysis shows that our scheme
has only a small rate loss of 0.069 bits per description in
comparison with the MDLVQ of [35], when n → ∞. In view
of the fact (pointed out in [41]) that the MDLVQ of [35]
achieves the information-theoretical limit of the quadratic
symmetric Gaussian MDC problem with individual and central
decoders (derived in [25]) in the aforementioned asymptotic
regime as n → ∞, we conclude that our scheme can achieve
within an asymptotic gap of 0.069 bits4 from the fundamental
limit in terms of rate per description.

Finally, we point out that [45] is a shortened conference
version of this work, which does not include the proofs of the
theoretical results.

The rest of this paper is divided into five sections.
In Section II, the notations and definitions used throughout
this work are introduced. Section III presents the main result,
i.e., the asymptotic analysis of the performance of the pro-
posed RDSC scheme. In Section IV, the comparison with
the MDLVQ scheme of [35] is performed when the three
sources are identical and Gaussian. Section V presents in
detail the operation of the proposed scheme. Lastly, Section VI
concludes the paper.

II. DEFINITIONS AND NOTATIONS

Consider three sources (X1, X2, X3) with joint probability
density function (pdf) fX1X2X3 . They generate a jointly i.i.d.
random process (X1i, X2i, X3i)i∈N

. The marginal density

3See Remark 3 for more insights regarding our design.
4A possible explanation for this gap is provided in Remark 4.
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Fig. 1. Robust distributed source coding for three correlated sources.

function of each Xj will be denoted by fXj , j = 1, 2, 3.
We aim to construct a robust distributed source coding system
as depicted in Figure 1. The system is comprised of three
encoders and four decoders. Encoder i has source Xi as
its input, i = 1, 2, 3. Side decoder i receives the message
transmitted by encoder i, i = 1, 2, 3. The central decoder
receives the messages from all three encoders. The squared
error is used as the distortion measure.

The following definitions will be used throughout the
work. Let Y be a discrete random variable with values
in the alphabet Y and with probability mass function pY .
If
∑

y∈Y pY (y) log2 pY (y) is finite, then the entropy of Y is
defined as H(Y ) � −

∑
y∈Y pY (y) log2 pY (y). If Xn ∈ R

n

is a continuous random vector with pdf fXn , and the quantity∫
Rn fXn(xn) log2 fXn(xn)dxn is finite, then the differential

entropy of Xn is h(Xn) � −
∫

Rn fXn(xn) log2 fXn(xn)dxn.
We will use the notation �xn� for the Euclidian norm of

the row vector xn ∈ R
n. 0 denotes the all-zero vector in R

n.
For any set A ⊆ R

n, any a ∈ R, and any xn ∈ R
n, let

xn + A � {xn + yn|yn ∈ A} and aA � {ayn|yn ∈ A}. For
any measurable set A ⊆ R

n, let ν(A) denote its volume, i.e.,
ν(A) �

∫
A dxn. Further, let Br � {xn ∈ R

n|�xn� < r}.
An n-dimensional lattice Λ ⊂ R

n is defined as follows

Λ � {λ ∈ R
n|λ = zn ·G, zn ∈ Z

n},

where G is a non-singular n-by-n matrix with elements in R.
Each lattice Λ has an associated quantizer QΛ(·) which maps
each xn ∈ R

n to its closest lattice point, i.e.,

QΛ(xn) � argmin
λ∈Λ

�xn − λ�. (1)

For each λ ∈ Λ, the set of all points which are assigned by
QΛ to λ forms the Voronoi cell (or region) VΛ(λ) of λ in Λ.
The ties in (1) are broken in a systematic manner so that the
following holds

VΛ(λ) = λ + VΛ(0), ∀λ ∈ Λ.

For any A ⊆ R
n, let A be the closure of A, i.e., the union of

A and its boundary. Then one has

VΛ(λ) = {xn ∈ R
n|�xn−λ� ≤ �xn−λ′� for every λ′ ∈ Λ}.

It is important to emphasize that, in view of our definition
of the Voronoi region, which agrees with [46], not every
point on the boundary of VΛ(λ) belongs to VΛ(λ), therefore

VΛ(λ) 
= VΛ(λ). Two disjoint subsets of R
n are said to be

adjacent if the intersection of their closures is not empty.
Additionally, define for any xn ∈ R

n,

xn mod Λ � xn − QΛ(xn).

A fundamental cell of the lattice Λ is a bounded set C0 such
that the sets λ + C0, for all λ ∈ Λ, form a partition of R

n.
We will denote by νΛ the volume of a fundamental cell of the
lattice Λ. Notice that νΛ = ν(VΛ(0)).

An important notion related to quantization is the normal-
ized second moment of a measurable set A ⊆ R

n, which is
defined as

G(A) �
∫
A �xn�2dxn

nν(A)
2
n +1

.

It is obvious that the normalized second moment is not
changed under the scaling operation. We will use the notation
GΛ for the normalized second moment of the lattice Λ, which
is defined as

GΛ � G(VΛ(0)).

For any set A ⊂ R
n, denote r̄(A) � supxn∈A �xn�. The

value r̄Λ � r̄(VΛ(0)) is called the covering radius of the
lattice Λ. The inscribed radius of the lattice Λ, denoted by rΛ,
is the radius of the largest open ball centered at 0 and included
in VΛ(0).

Lattices (Λ1, Λ2) are called nested if Λ2 ⊂ Λ1, which means
that Λ2 is a sublattice of Λ1. The term fine lattice is used for
Λ1, while Λ2 is referred to as the coarse lattice. The index of
Λ2 with respect to Λ1 is N(Λ2 : Λ1) � νΛ2

νΛ1
.

For any λ1 ∈ Λ1, the set λ1 + Λ2 is said to be a coset
of Λ2 relative to Λ1. A set F ⊂ Λ1 is called a set of coset
representatives of Λ2 relative to Λ1 if the following equalities
are satisfied

Λ1 = ∪λ1∈F (λ1 + Λ2), (λ1 + Λ2) ∩ (λ′
1 + Λ2) = ∅
for all λ1 
= λ′

1 ∈ F .

From the above relations it follows that every point λ ∈ Λ1

can be expressed in a unique manner as λ = λ1 + λ2 where
λ1 ∈ F and λ2 ∈ Λ2. As proved in [46], if C0 is a fundamental
cell of Λ2, then C0∩Λ1 is a set of coset representatives of Λ2

relative to Λ1. Furthermore, we denote VΛ2:Λ1 � VΛ2 (0)∩Λ1

and CΛ2:Λ1 � ∪λ1∈VΛ2:Λ1
VΛ1 (λ1).

Given a quantizer Q on R
n and a random vector Xn ∈ R

n,
let D(Q, Xn) denote the expected distortion per sample, i.e.,
D(Q, Xn) � 1

nE
[
� Q(Xn) − Xn �2

]
.

III. MAIN RESULTS

As we have already mentioned, the main contribution of
this work is the design of a lattice-based RDSC scheme for the
case of three correlated sources. This section presents the main
results regarding the performance analysis of the proposed
scheme, while the detailed description of the scheme will be
treated in Section V.

In the sequel, we assume that each of the three sources
has a continuous and bounded pdf with finite variance and
differential entropy. Without loss of generality we also assume
that each marginal pdf has mean 0.
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A lattice robust distributed source code (LRDSC) of
dimension n is specified by a positive value r0 and four
n-dimensional nested lattices Λs ⊂ Λf ⊂ Λin ⊂ Λc ⊂ R

n.
We will denote the LRDSC as L(n,r0) = (Λs, Λf , Λin, Λc).
The central lattice Λc will be used at the central decoder for
the reconstruction of each source, while the side lattice Λs

is used to reconstruct the sources at the side decoders. The
lattices Λin and Λf are auxiliary lattices used in the operation
of the scheme. The intermediate lattice Λin is constructed such
that the following condition

r0 + 2r̄c ≤ rin (2)

is satisfied, where rin is the inscribed radius of Λin, and r̄c

is the covering radius of Λc. The lattice Λf is defined as
Λf = c0Λin, while Λs = 3c0Λf , where c0 is a positive integer.
It follows that Λs = 3c2

0Λin. The lattice Λs/3 � 1
3Λs is called

the fractional lattice. It is utilized during the operation of the
proposed scheme. Notice that Λs ⊂ Λs/3 ⊂ Λf .

For i = 1, 2, 3, encoder i maps the source sequence xn
i to

the nearest point λc,i in the central lattice, which is further
mapped to the nearest point λi in Λin. A mapping βi : Λin →
Λs is next applied and βi(λi) is transmitted. βi(λi) will be
used as the reconstruction at the side decoder i. In addi-
tion, encoder i transmits some supplementary information to
be used at the central decoder to refine the reconstruction.
The LRDSC scheme is designed such that, when the input
sequences xn

1 , xn
2 , xn

3 are at distance at most r0 from each
other, the central decoder is able to output the central lattice
points λc,1, λc,2, λc,3 as reconstructions of the three sources,
respectively. If the aforementioned condition is violated, i.e., at
least two of the input sequences are at a distance larger than
r0, the quality of the reconstruction achieved at the central
decoder is essentially the same as at the corresponding side
decoder. Therefore, the following quantity plays an important
role in the analysis of the performance of the proposed scheme

PX1X2X3(r0) � P[Xn
1 − Xn

2 /∈ Br0 or

Xn
2 − Xn

3 /∈ Br0 or Xn
1 − Xn

3 /∈ Br0]. (3)

As it will be apparent shortly, the value r0 controls the trade-
off between the rate at the encoders and the fidelity of the
reconstruction obtained at the central decoder.

In order to assess the performance of the LRDSC L(n,r0),
we assume that m sequences xn

i are input into each encoder
i, one at a time. The corresponding m outputs will be further
compressed losslessly. The rates and distortions of the LRDSC
L(n,r0) are defined in the limit of m going to ∞. The rate of
encoder i, i = 1, 2, 3, is denoted by Ri(L(n,r0)). For each
i = 1, 2, 3, the reconstruction distortion of source Xi at the
side decoder i, referred to as side distortion, is denoted by
ds,i(L(n,r0)), while the reconstruction distortion at the central
decoder is dc,i(L(n,r0)) and is referred to as central distortion.

Finally, we denote ds(L(n,r0)) �
�3

i=1 ds,i(L(n,r0))

3 .
For simplifying the lattice-related notation, we will utilize

in the rest of the manuscript only the subscripts c, in, f , s/3,
s, instead of Λc, Λin, Λf , Λs/3, Λs, respectively. For instance,
we will use νs instead of νΛs . Let K � N(Λin : Λc) = νin

νc

and M � N(Λs : Λin) = νs

νin
. Since Λs = 3c2

0Λin, it follows
that M = 3nc2n

0 .
The performance of the proposed lattice-based scheme is

evaluated for fixed dimension n and fixed K , as νc, νin and
νs approach 0, while M → ∞ and

√
Mνs → 0. Thus,

we will consider some fixed lattices Λc,0 and Λin,0 and the
scale factors θ and c0 such that

Λc = θΛc,0, Λin = θΛin,0, (4)

Λs = 3c2
0θΛin,0, Λf = c0θΛin,0. (5)

The asymptotic regime we consider in this work is defined by
the following relations

θ → 0, c0 → ∞, c3
0θ → 0. (6)

The following theorem, whose proof is deferred to Appen-
dix B, evaluates the distortions and rates for the proposed
scheme, in the limit of (6).

Theorem 1: Let (X1, X2, X3) be a fixed triple of correlated
sources such that each pdf fXi , i = 1, 2, 3, is continuous
and bounded with finite variance and differential entropy.
Additionally, consider a fixed integer n > 0 and a family
of LRDSCs L(n,r0) = (Λs, Λf , Λin, Λc) satisfying (4), (5)
and (6). For i = 1, 2, 3, let Ui � Qc(Xn

i ) mod Λin. Then in
the asymptotic regime specified by (6),

ds(L(n,r0)) =
4
9
GsM

1
n ν

2
n
s (1 + o(1)), (7)

Gcν
2
n
c (1+o(1))≤dc,i(L(n,r0))≤ 1

3n
PX1X2X3(r0)κ2

1M
1
n ν

2
n
s

+ Gcν
2
n
c (1 + o(1)), i = 1, 2, 3, (8)

Ri(L(n,r0)) = h(Xi) −
1
n

log2(νs) +
1
3n

H(U1, U2, U3)

+ o(1), i = 1, 2, 3, (9)

where κ1 is a positive constant. Additionally, in each of
relations (7)-(9), the term hidden in the little-o notation can
be upperbounded by a function which approaches 0 under (6)
and does not depend on the joint pdf fX1X2X3 .

Remark 1: We would like to point out that the condition
that the marginal pdfs be bounded is needed only for the proof
of relations (9). It is also important to note that this condition
is only mildly restrictive since the pdfs which are relevant in
practice are likely to fulfill it. For instance, any continuous pdf
fX satisfying lim|x|→∞ fX(x) = 0 is necessarily bounded.

Clearly, Theorem 1 implies that when PX1X2X3(r0) is

sufficiently small, the central distortion is dominated by Gcν
2
n
c .

This result is stated next.
Corollary 1: Let fX be a continuous and bounded pdf with

finite variance and differential entropy. Additionally, consider
a fixed integer n > 0, and a family of LRDSCs L(n,r0) =
(Λs, Λf , Λin, Λc) satisfying (4), (5) and (6). Each LRDSC is
applied to a triple of correlated sources (X1, X2, X3) with
marginal pdfs equal to fX , satisfying the inequality

PX1X2X3(r0) ≤
�

M
3
n

,

where lim
(6)

� = 0. It follows that, in the limit of (6),

dc,i(L(n,r0)) = Gcν
2
n
c (1 + o(1)), i = 1, 2, 3,
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where the term hidden in the little-o notation can be upper-
bounded by a function which approaches 0 under (6) and
depends on the joint pdf fX1X2X3 only through PX1X2X3(r0).

IV. COMPARISON WITH MDLVQ

In this section we consider the case when all three sources
are identical and Gaussian, which corresponds to the multiple
description scenario. We compare the performance of the
proposed coding scheme at high resolution with that of the
MDLVQ of [35]. We will use the performance analysis of
the MDLVQ of [35] derived in [41]. Note that the authors
of [41] also proved that the MDLVQ of [35] approaches
the fundamental limit of the quadratic symmetric Gaussian
multiple description problem when only the reconstructions
based on individual descriptions and all descriptions are of
interest (derived in [25]) at high resolution, as the vector
dimension approaches infinity.

Note that the limits (6) are equivalent to ds → 0 and dc

ds
→

0, where dc = dc,1 = dc,2 = dc,3 and ds = ds,1+ds,2+ds,3
3 .

Clearly, U1 = U2 = U3 since we assume that all three sources
are identical. Then relations (9) become

lim
ds→0, dc

ds
→0

(
Ri−h(Xi) +

1
n

log2 νs −
1
3n

H(Ui)
)

= 0,

(10)

where we use Ri instead of Ri(L(n,r0)).
It can be shown as in [44] that lim

(6)
H(Ui) = log2 K , for

i = 1, 2, 3. Plugging in (10), we obtain that

lim
ds→0, dc

ds
→0

(
Ri−h(Xi) +

1
n

log2 νs −
1
3n

log2 K

)
= 0,

(11)

for i = 1, 2, 3. Consider now an n-dimensional MDLVQ as
in [35]. Let RMD denote the rate of each description and
let ds,MD denote the side distortion. For comparison we will
assume that the central lattice used in the MDLVQ is the same
lattice Λc as in our scheme. This implies that dc,MD = dc.
Additionally, we also assume that ds,MD = ds. Let Sn denote
the n-dimensional ball of radius 1, let ν̃s be the volume of the
Voronoi region of the side lattice used in the MDLVQ, and let
K̃ = ν̃s

νc
. According to [41], when ds → 0 and dc

ds
→ 0, one

has

ds,MD =
2
3

3
2
K̃

3
n G(S2n)ν

2
n
c (1 + o(1)), (12)

lim
ds→0, dc

ds
→0

(
RMD − h(X1) +

1
n

log2 ν̃s

)
= 0. (13)

Using the latter relation, together with K = νin

νc
, (11) and (13),

one obtains

lim
ds→0, dc

ds
→0

(RMD−Ri)=
1
3n

lim
ds→0, dc

ds
→0

log2

((
νs

ν̃s

)3
νc

νin

)
.

(14)
Using (7), (12), M = νs

νin
and K̃ = ν̃s

νc
leads to

ds

ds,MD
=

2Gs√
3G(S2n)

((
νs

ν̃s

)3
νc

νin

) 1
n 1 + o(1)

1 + o(1)
.

TABLE I

THE GAP IN (15) FOR SEVERAL VALUES OF n. FOR EACH n, THE LATTICE
Λs IS THE OPTIMAL n-DIMENSIONAL LATTICE FOR QUANTIZATION

REPORTED IN [48]

Letting ds,MD = ds further yields

lim
ds→0, dc

ds
→0

((
νs

ν̃s

)3
νc

νin

) 1
n

=
√

3G(S2n)
2Gs

.

The above relation, combined with (14), implies that

lim
ds→0, dc

ds
→0

(RMD − Ri) =
1
3

log2

(√
3G(S2n)
2Gs

)
. (15)

It was shown in [47] that there is a sequence of lattices Λn

such that limn→∞ G(Λn) = 1
2πe = limn→∞ G(S2n). Based

on this result and (15), it follows that, for i = 1, 2, 3,

lim
n→∞

lim
ds→0, dc

ds
→0

(RMD − Ri) =
1
3

log2

√
3

2
≈ −0.0692.

(16)

Remark 2: A possible reason for the gap in (16) is dis-
cussed in Remark 4 in the following section. Interestingly,
the value achieved in (15) for n = 1 is −0.0914, which is
already very close to the asymptotical value reached when
n → ∞. However, the absolute value of the quantity in (15)
is not a decreasing function of n as can be seen from Table I.

V. DESCRIPTION OF THE PROPOSED LRDSC SCHEME

In this section, we provide a detailed description of the
LRDSC scheme.

A. Preliminaries

The following lemma, made possible by condition (2), is
crucial for the subsequent development. Its proof is similar to
the proof of Lemma 1 in [44] and therefore it is omitted.

Lemma 1: For i, j ∈ {1, 2, 3}, if xn
j − xn

i ∈ Br0 , then

�Qc(xn
j ) − Qc(xn

i )� < rin,

�Qin(Qc(xn
j )) − Qin(Qc(xn

i ))� < 3r̄in.

Further, we will define three labeling functions
βi : Λin → Λs, for i = 1, 2, 3. Specifically, for any
λ ∈ Λin, define

β1(λ) � 3c0λ̃f + λs, β2(λ) � 3c2
0ũf + λs,

β3(λ) � 3τ − 3c0λ̃f − 3c2
0ũf + λs, (17)
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Fig. 2. a) Illustration of the lattices Λs, Λs/3, λf and Λin. The value of c0 is 3. The small dots, the medium dots and the big dots are points in Λin, Λf ,
and Λs, respectively. The crosses are points in Λs/3 \Λs. The point λ, marked with a plus sign, is in Λin. The points λf , λs/3 and λs satisfy λf = Qf (λ),
λs/3 = Qs/3(λf ) and λs = Qs(λs/3). The small hexagon is the boundary of Vf (λf ). The big hexagon is the boundary of Vs(λs). The middle-sized
hexagon is the boundary of Vs/3(λs/3). b) Magnified portion illustrating the vectors ũf = λ − λf , λ̃f = λf − λs/3 and τ = λs/3 − λs.

where

ũf � λ mod Λf = λ − Qf (λ),
λ̃f � Qf (λ) mod Λs/3 = Qf (λ) − Qs/3(Qf (λ)),

τ � Qs/3(Qf (λ)) mod Λs

= Qs/3(Qf (λ)) − Qs(Qs/3(Qf (λ))),

λs � Qs(Qs/3(Qf (λ))).

Figures 2(a) and 2(b) illustrate a point λ along with Qf(λ),
Qs/3(Qf (λ)), Qs(Qs/3(Qf (λ))), ũf , λ̃f and τ .

Note that the above definitions of ũf , λ̃f , τ and λs imply
that ũf ∈ VΛf :Λin , λ̃f ∈ VΛs/3:Λf

, τ ∈ VΛs:Λs/3 , λs ∈ Λs and

λ = ũf + λ̃f + τ + λs. (18)

In the sequel we will consider the following simplified nota-
tion: T � VΛs:Λs/3 , L � VΛs/3:Λf

and F � VΛf :Λin . Then
|T | = N(Λs : Λs/3) = 3n, |L| = N(Λs/3 : Λf ) = cn

0 and
|F| = N(Λf : Λin) = cn

0 . Further, denote

U � {τ + λ̃f + ũf |τ ∈ T , ũf ∈ F , λ̃f ∈ L}. (19)

Then U is a set of coset representatives of Λs relative to Λin.
It follows that |U| = N(Λs : Λin) = M and

Λin =
⋃

λ∈U
(λ + Λs).

The definition of the mappings βi implies that they obey the
shift-invariance property, i.e.,

βi(λ + λ̃s) = βi(λ) + λ̃s, ∀λ ∈ Λin, ∀λ̃s ∈ Λs, i = 1, 2, 3.

(20)

Based on the shift-invariance property the following equalities
are obtained, for i = 1, 2, 3, [44, Eq. (40), (41)],

β−1
i (λs) = β−1

i (0) + λs, ∀λs ∈ Λs, (21)

β−1
i (0) = {λ − βi(λ)|λ ∈ U}. (22)

Remark 3: The design of the mappings βi, i = 1, 2, 3, was
partly inspired by the index assignment used in the MDLVQ
literature. More specifically, we borrowed from the work on
MDLVQ the requirement that the mappings be shift-invariant,
which boils down to defining βi(λ) as the sum of λs and a
function of λ−λs. The second aspect inspired from the prior
work on MDLVQ is the condition

β1(λ) + β2(λ) + β3(λ) = Qs/3(Qf (λ)), (23)

which is adapted from the requirement imposed in [35] that
α1(λ)+α2(λ)+α3(λ) = Qs/3(λ). On the other hand, unlike
the MDLVQ literature, we also impose the linearity condition
for the following reasons: 1) to make it easier to verify that
the finest lattice points λc,1, λc,2, λc,3 can be recovered at
the central decoder; 2) to simplify the performance analysis.
A pleasant byproduct of the linearity is that structured decod-
ing rules can be used, as we will see in the next subsection.

Note that linear mappings were also used in [44] for the
case of two sources, but it was not straightforward to extend
the construction of [44] to three sources, while ensuring that
the central decoder recovers the finest lattice points when the
input sequences are within the distance r0 from one another.
We decided to introduce the additional lattice Λf , which
enables the decomposition (18). Having this decomposition,
our choices for β1 and β2 seemed natural, while β3 was
determined based on (23).

Remark 4: The proof of relation (7) reveals that while
ds,1 and ds,2 are roughly equal, ds,3 is about twice larger.
If ds,3 could be brought down to the value of ds,1, then the
constant 4

9Gs in equation (7) would be replaced by 3
9Gs,

which would lead to the disappearance of the gap in (16).
The reason why ds,3 is twice larger than ds,1 is that the
variables λ̃f and ũf used to define the mappings βi are
independent, thus the magnitude of 3c0λ̃f +3c2

0ũf essentially
equals the sum of the magnitudes of the two terms, which
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Fig. 3. The set W(λf ) is the region between the two hexagons in the figure.

implies that �β1(λ) + β2(λ)� ≈ �β1(λ)� + �β2(λ)�, for
λ ∈ U . Thus, to avoid the gap in (16), while maintaining
the condition (23), β1(λ) and β2(λ) have to be defined such
that �β1(λ) + β2(λ)� ≈ �β1(λ)� ≈ �β2(λ)�, for λ ∈ U . One
possible solution is to let β2(λ) − λs/3 be a fixed suitable
transformation of β1(λ) − λs/3, where λs/3 = Qs/3(Qf (λ)).
However, it remains to be established if such a definition can
guarantee the recovery at the central decoder of the finest
lattice points λc,1, λc,2, λc,3 when the input sequences are
within the distance r0 from one another. This line of inquiry
will be pursued in future work.

B. LRDSC Operation

The following discussion highlights the rationale underlying
the proposed scheme. Let us denote λi = Qin(Qc(xn

i )), for
i = 1, 2, 3. The proposed scheme is developed in such a way
that side decoder i is able to reconstruct βi(λi), and the central
decoder reconstructs λc,i = Qc(xn

i ), for i = 1, 2, 3, when
the source sequences are close enough in Euclidian distance,
i.e., xn

j − xn
i ∈ Br0 for all i, j ∈ {1, 2, 3}. Nevertheless, for

the central decoder to reach this objective some supplementary
information has to be conveyed in addition to β1(λ1), β2(λ2)
and β3(λ3). The amount of this supplementary information
is decreased when λ1, λ2 and λ3 are all in the same Voronoi
region of Λf . Encoder i cannot identify all the situations when
this happens since it only knows the sequence xn

i , but not the
other two source sequences. However, in view of Lemma 1,
if λi ∈ Vf (λf ) and the distance from λi to the boundary of
Vf (λf ) is not smaller than 3r̄in, then encoder i concludes that
the other sequences are also in Vf (λf ) when xn

j − xn
i ∈ Br0

for all i, j ∈ {1, 2, 3}. Thus, we define the set

W � ∪λf∈Λf
W(λf ), where

W(λf ) � Vf (λf ) \ (λf + ηVf (0)), (24)

for η � 1− 3r̄in

rf
as shown in Figure 3. According to Lemma 1,

if λi /∈ W , then λj , j ∈ {1, 2, 3} \ {i}, belongs to the same
Voronoi region of Λf as λi, i.e., Qf(λi) = Qf(λj), when
xn

i − xn
j ∈ Br0 .

On the other hand, when Qf (λi) 
= Qf (λj), it is important
to determine if Qf(λi) and Qf (λj) are in the same Voronoi
cell of Λs/3 or not. Let us define, for λs/3 ∈ Λs/3,

Ṽs/3(λs/3) � ∪λf∈Vs/3(λs/3)∩Λf
Vf (λf ). (25)

The above definition implies that a point λ ∈ Λin has
Qs/3(Qf (λ)) = λs/3 if and only if λ ∈ Ṽs/3(λs/3).

If λi ∈ Ṽs/3(λs/3) and the distance from λi to the boundary of
Ṽs/3(λs/3) is not smaller than 3r̄in, then encoder i determines
that, for any other j, λj also belongs to Ṽs/3(λs/3). Therefore,
we define S(λs/3) as the set of points in Ṽs/3(λs/3) such
that the distance to the boundary of Ṽs/3(λs/3) is smaller
than 3r̄in. Further, let S � ∪λs/3∈Λs/3S(λs/3). Note that
S ⊆ W . According to Lemma 1, if λi /∈ S, then for any
λj , j ∈ {1, 2, 3} \ {i}, Qs/3(Qf (λi)) = Qs/3(Qf (λj)), when
xn

i − xn
j ∈ Br0 . Next we describe in detail how the encoder

and decoder proceed. The encoder operation is illustrated
in Figure 4.

Encoder: For i = 1, 2, 3, encoder i proceeds as follows.
The source sequence xn

i is first mapped to the nearest point
in the central lattice, λc,i � Qc(xn

i ). Further, λc,i is quantized
to the nearest point in Λin, λi � Qin(λc,i). Let ui �
λc,i mod Λin and λs,i � βi(λi). Then the encoder outputs
λs,i, ui, ai, where ai = 1 if λi ∈ W and ai = 0
otherwise. In addition, if ai = 1, the encoder also outputs
λ̃f,i � Qf (λi) mod Λs/3 and bi, where bi = 1 if λi ∈ S
and bi = 0 otherwise. Moreover, if bi = 1, the encoder also
transmits τi � Qs/3(Qf (λi)) mod Λs. The first output, λs,i,
will be utilized at the side decoder i. For this reason, it is
compressed with an entropy encoder before being transmitted.
Differently, u1, u2 and u3 are employed at the central decoder
only. Consequently, they can be compressed with a Slepian-
Wolf encoder. Lastly, ai, bi, λ̃f,i and τi are needed only at the
central decoder. Therefore, they also can be compressed with a
Slepian-Wolf encoder. Nevertheless, we prefer to use entropy
encoding for ai, bi and fixed length codes for τi and λ̃f,i to
simplify the analysis, since, as we will see shortly, the rate
overhead is negligible asymptotically.

Decoder: Side decoder i, for i = 1, 2, 3, outputs the recon-
struction x̂n

s,i � λs,i. The central decoder restores all three val-
ues λs,1, λs,2 and λs,3, and additionally, u1, u2, u3, a1, a2, a3

and b1, b2, b3, if applicable. The decoder first verifies whether
the following inequality is satisfied

�λs,i − λs,j� ≤ 2(5 + 2c0)r̄s + 3r̄in, (26)

for all i, j ∈ {1, 2, 3}. If condition (26) is violated for at
least one pair (i, j) then the central decoder concludes that
xn

j − xn
i /∈ Br0 , and reconstructs source i using λs,i, i.e.,

x̂n
c,i � λs,i, for i = 1, 2, 3.
If inequality (26) holds for all pairs (i, j), then the central

decoder assumes that xn
j − xn

i ∈ Br0 , for all pairs (i, j). For
each i = 1, 2, 3, it computes an estimate of λi, denoted by
λ̂i, and outputs the reconstruction x̂n

c,i � λ̃i + ui. For this the
following are calculated first

λ̃a �Qin(u1−u2), λ̃b �Qin(u1 − u3), λ̃c �Qin(u2 − u3).
(27)

Next the decoder proceeds to compute λ̂i based on the values
of a1, a2 and a3, and of λ̃f,1, λ̃f,2, λ̃f,3, b1, b2, b3, τ1, τ2

and τ3 (where applicable), in accordance with the following
cases.
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Fig. 4. Diagram illustrating the operation of encoder i, for i = 1, 2, 3. IW and IS denote the indicator functions of the sets W and S , respectively.

1) If a1 = 0 or a2 = 0 or a3 = 0 the decoder evaluates

λ̂s/3 � 1
3
(λs,1 + λs,2 + λs,3 + 3c2

0λ̃c), (28)

τ̂ � λ̂s/3 mod Λs, λ̂s � Qs(λ̂s/3), (29)

λ̂f � 1
3c0

(λs,1 − λ̂s), (30)

ûf,2 � 1
3c2

0

(λs,2 − λ̂s), (31)

λ̂2 � λ̂s + τ̂ + λ̂f + ûf,2, (32)

λ̂1 � λ̂2 − λ̃a, λ̂3 � λ̂2 + λ̃c. (33)

2) If a1 = a2 = a3 = 1 and λ̃f,1 = λ̃f,2 = λ̃f,3 the decoder
operates as in case 1.

3) If a1 = a2 = a3 = 1, λ̃f,1, λ̃f,2, λ̃f,3 are not all equal
and bi = 0 for at least one i ∈ {1, 2, 3}, then the decoder
computes

λ̂s/3 � 1
3

(
λs,1 + λs,2 + λs,3 + 3c0(1 − c0)λ̃f,3

+3c2
0(λ̃f,2 + λ̃c) − 3c0λ̃f,1

)
, (34)

λ̂s � Qs(λ̂s/3), τ̂ � λ̂s/3 mod Λs, (35)

ûf,3 � 1
3c2

0

(λ̂s + 3τ̂ − 3c0λ̃f,3 − λs,3), (36)

λ̂3 � λ̂s + τ̂ + λ̃f,i + ûf,3, (37)

λ̂1 � λ̂3 − λ̃b, λ̂2 � λ̂3 − λ̃c. (38)

4) If a1 = a2 = a2 = 1 and b1 = b2 = b3 = 1, then the
decoder computes

λ̂s1 � λs,1 − 3c0λ̃f,1, λ̂s2 � λ̂s1 − Qs(τ2 − τ1), (39)

ûf,2 � 1
3c2

0

(λs,2 − λ̂s2 ), (40)

λ̂2 � λ̂s2 + τ2 + λ̃f,2 + ûf,2, (41)

λ̂1 � λ̂2 − λ̃a, λ̂3 � λ̂2 + λ̃c. (42)

Remark 5: It is worth pointing out that the proposed RDSC
scheme has significant differences versus the scheme of [44].
The main difference stems from the use of the additional lattice
Λf in the proposed design for three sources. As a consequence,

more cases have to be considered at each encoder. More
specifically, in [44] there are only two cases at each encoder
(distinguished by one binary variable), while in the proposed
work there are three cases at each encoder (distinguished by
two binary variables). This also leads to the increase of the
number of cases to be handled at the decoder from three in [44]
to four in the proposed scheme.

The following result essentially states that, if the three input
sequences are at a distance of at most r0 of one another, then
the central decoder is able to refine the reconstructions to their
most finely quantized representations, i.e., using the central
lattice. The proof of the result can be found in Appendix A.

Proposition 1: Let xn
i ∈ R

n, λc,i � Qc(xn
i ),

λi � Qin(λc,i), ui � λc,i mod Λin, λs,i � βi(λi),
ũf,i = λi mod Λf , λ̃f,i = Qf (λi) mod Λs/3, τi �
Qs/3(Qf (λi)) mod Λs, and λsi � Qs(Qs/3(Qf (λi)) for
i = 1, 2, 3. Then when xn

j − xn
i ∈ Br0 , for

i, j ∈ {1, 2, 3}, Slepian-Wolf decoding of u1, u2 and u3 is
successful, and c0 is sufficiently large, we have x̂n

c,i = λc,i,
for i = 1, 2, 3.

VI. CONCLUSION

This work proposes a lattice-based coding scheme for
robust distributed source coding for three correlated sources.
We derive the expressions of the rates and distortions, for
fixed lattice dimension, when the distortions at the individual
decoders and the ratio between the distortions at the central
and individual decoders approach 0. It is additionally shown
that, when the sources are identical and Gaussian, the asymp-
totic performance of our scheme is very close to the theoretical
bound of the quadratic symmetric Gaussian multiple descrip-
tion problem with central and individual decoders, with a gap
of 0.069 bits in terms of rate per description. The proposed
scheme can be extended in a straightforward manner to the
case where the number of sources is greater than three.

APPENDIX A
PROOF OF PROPOSITION 1

We first need the following lemma.
Lemma 2: The following relation holds for i = 1, 2, 3,

r̄(β−1
i (0)) ≤ (5 + 2c0)r̄s. (43)
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Proof: Notice that equation (22) implies that

r̄(β−1
i (0)) ≤ r̄(U) + r̄(βi(U)). (44)

From (19) one obtains that r̄(U) ≤ r̄(T ) + r̄(L) + r̄(F).
Since T ⊂ Vs(0), L ⊂ Vs/3(0) and F ⊂ Vf (0), it further
follows that r̄(U) ≤ r̄s + r̄s/3 + r̄f ≤ 2r̄s. In addition,
the definition of βi implies that r̄(βi(U)) ≤ 3r̄(T )+3c0r̄(L)+
3c2

0r̄(F) ≤ 3r̄s + 3c0r̄s/3 + 3c2
0r̄f . Combining the above

discussion with (44), r̄s/3 = 1
3 r̄s, and r̄f = 1

3c0
r̄s leads

to (43).
Proof of Proposition 1: Let us assume that xn

j −xn
i ∈ Br0 ,

for all i, j ∈ {1, 2, 3}. Let us also assume that the Slepian-
Wolf decoder used at the central decoder recovers u1, u2 and
u3 correctly. We will first prove that condition (26) is fulfilled.
Let us fix arbitrary i 
= j, i, j ∈ {1, 2, 3}. Notice that the shift
invariant property (20) of βk, combined with equality (22),
implies that �λ−βk(λ)� ≤ r̄(β−1

k (0)) for all k ∈ {1, 2, 3} and
λ ∈ Λin. This observation, together with the triangle inequality
and Lemma 1, leads to �λs,i−λs,j� ≤ �λs,i−λi�+�λi−λj�+
�λj − λs,j� ≤ 2r̄(β−1(0)) + 3r̄in, which together with (43)
gives (26).

Using Lemma 1 and the fact that λc,k = λk+uk, k = 1, 2, 3,
we obtain that rin > �λc,i − λc,j� = �ui − uj − (λj − λi)�,
which, together with the fact that λj − λi ∈ Λin, implies that
ui − uj ∈ Vin(λj − λi), i.e., λj − λi = Qin(ui − uj). This
further implies that λ̃a, λ̃b, λ̃c computed in (27) satisfy the
equalities

λ̃a = λ2 − λ1, λ̃b = λ3 − λ1, λ̃c = λ3 − λ2. (45)

According to (18), we have

λi = λsi + τi + λ̃f,i + ũf,i, i = 1, 2, 3. (46)

Moreover, since λs,i = βi(λi), for i = 1, 2, 3, one obtains that

λs,1 = 3c0λ̃f,1 + λs1 , (47)

λs,2 = 3c2
0ũf,2 + λs2 , (48)

λs,3 = 3τ3 − 3c0λ̃f,3 − 3c2
0ũf,3 + λs3 . (49)

Adding the three equations above, side by side, leads to

λs,1 + λs,2 + λs,3 = λs1 + λs2 + λs3 + 3τ3

+ 3c0(λ̃f,1 − λ̃f,3) + 3c2
0(ũf,2 − ũf,3). (50)

Recall that ũf,i = λi − Qf (λi), for all i, which together
with (45) yields ũf,2 − ũf,3 = −λ̃c + Qf (λ3) − Qf (λ2).
Suppose now that case 1 holds. Based on Lemma 1, it follows
that Qf (λ1) = Qf (λ2) = Qf (λ3). This further implies that
ũf,2 − ũf,3 = −λ̃c, λ̃f,1 = λ̃f,2 = λ̃f,3, τ1 = τ2 = τ3 and
λs1 = λs2 = λs3 . Then relation (50) leads to λs,1 + λs,2 +
λs,3 = 3(λs1 + τ1) − 3c2

0λ̃c. The above equality, together
with (28), implies that λ̂s/3 = λs1 + τ1. Combining this with
(29) leads to τ̂ = τ1 = τ2 = τ3 and λ̂s = λs1 = λs2 = λs3 .
Now invoking (30), (31), (47) and (48), one further obtains
λ̂f = λ̃f,1 = λ̃f,2 = λ̃f,3 and ûf,2 = ũf,2. Employing further
equations (32) and (46) leads to λ̂2 = λ2, which together with
(33) and (45) implies that λ̂i = λi, for i = 1, 2, 3.

Assume now that a1 = a2 = a3 = 1. Consider arbitrary
i 
= j, i, j ∈ {1, 2, 3}. Recall that, according to Lemma 1,

�λi − λj� < rin. Since Λf = c0Λin, for c0 sufficiently
large, rin is smaller than the smallest distance between non-
adjacent Voronoi regions of Λf . This implies that λi and
λj are either in the same or in adjacent Voronoi regions
of Λf . Notice that Qf (λk) = λ̃f,k + τk + λsk

, for any
k ∈ {1, 2, 3}. Then, if λ̃f,i = λ̃f,j , it follows that Qf (λi) −
Qf(λj) = τi + λsi − τj − λsj ∈ Λs/3 = c0Λf . This implies
that Qf(λi) and Qf (λj) cannot be adjacent points of Λf .
Therefore, it only remains the possibility that they are equal.
This leads to τi + λsi = τj + λsj and further to τi = τj

and λsi = λsj . Thus, the proof of case 2 carries on as
in case 1.

Suppose now that case 3 holds. The fact that bi = 0
and Lemma 1 imply that Qs/3(Qf (λ1)) = Qs/3(Qf (λ2)) =
Qs/3(Qf (λ3)), leading to λs1 = λs2 = λs3 and τ1 = τ2 =
τ3. Combining this with (46) and (45), one further obtains
ũf,2 − ũf,3 = −λ̃c − λ̃f,2 + λ̃f,3. Plugging this in (50) yields
λs,1 +λs,2 +λs,3 = 3(λs3 +τ3)+3c0(λ̃f,1− λ̃f,3)−3c2

0(λ̃c +
λ̃f,2 − λ̃f,3). The above equation, together with (34), leads
to λ̂s/3 = λs3 + τ3. Combining this with (35) gives that
τ̂ = τ3 and λ̂s = λs3. Equations (36) and (49) further lead to
ûf3 = ũf3 . This in conjunction with (37) and (46) implies
λ̂3 = λ3. Now one can readily invoke (45) to show that
λ̂i = λi for i = 1, 2, 3.

In order to address case 4, we need the following result.
Assertion 1: If λs/3 ∈ Λs/3 and Vs/3(λs/3) is adjacent to

Vs/3(0), then λs/3 ∈ Vs(0).
Proof: Let λs/3 ∈ Λs/3, then 3λs/3 ∈ Λs. Since

Vs/3(λs/3) and Vs/3(0) are adjacent, it follows that Vs(3λs/3)
and Vs(0) are adjacent. Then

3λs/3

2 is on the boundary of
Vs(0). The point λs/3 is in the interior of the segment

connecting 0 and
3λs/3

2 . Therefore, λs/3 is in the interior of
Vs(0). This concludes the proof of Assertion 1.

Now assume that case 4 holds. It can be easily verified that
Qs/3(Qf (λi)) = τi + λsi , for any i = 1, 2, 3. Then, based
on definition (25), it follows that λi ∈ Ṽs/3(τi + λsi), for
i = 1, 2, 3. Since Λs/3 = c2

0Λin, for c0 sufficiently large, rin

is smaller than the smallest distance between non-adjacent sets
Ṽs/3(λs/3). According to Lemma 1, one has �λ1−λ2� < rin,
therefore Ṽs/3(τ1+λs1) and Ṽs/3(τ2+λs2) are either identical
or adjacent. This implies that Vs/3(λs1+τ1) and Vs/3(λs2+τ2)
are either identical or adjacent, and further that Vs/3(λs2 +
τ2)− (λs1 + τ1)) and Vs/3(0) are either identical or adjacent.
Using Assertion 1 one obtains that λs2 + τ2 − (λs1 + τ1) ∈
Vs(0), leading to 0 = Qs(λs2 − λs1 + τ2 − τ1) = λs2 −
λs1 + Qs(τ2 − τ1), i.e., Qs(τ2 − τ1) = λs1 − λs2 . Combining
the above with (39) and (47) implies that λ̂s1 = λs1 and
λ̂s2 = λs2 . Using further (40) and (48) leads to ûf2 = ũf2 .
Based on (41) and (46), the equality λ̂2 = λ2 follows. By addi-
tionally exploiting (42) and (45), one can establish relations
λ̂i = λi, for i = 1, 2, 3. With these observations, the proof is
complete. �

APPENDIX B
PROOF OF THEOREM 1

The following lemma will be used extensively.
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Lemma 3: Let S1 and S2 be two finite subsets of R
n. Then∑

λ1∈S1

∑
λ2∈S2

|�λ1, λ2�| ≤ |S1||S2|r̄(S1)r̄(S2).

Based on the Cauchy-Schwarz inequality, one obtains∑
λ1∈S1

∑
λ2∈S2

|�λ1, λ2�| ≤
∑

λ1∈S1

∑
λ2∈S2

�λ1��λ2�

≤
∑

λ1∈S1

∑
λ2∈S2

r̄(S1)r̄(S2)

= |S1||S2|r̄(S1)r̄(S2).

�

A. Proof of Relation (7)

For each λs ∈ Λs and i = 1, 2, 3, let Ai(λs) �
{xn

i |x̂n
s,i = λs}. Next, for every λ ∈ Λin, let M(λ) �

∪λc∈Vin(λ)∩Λc
Vc(λc). Then Ai(λs) = ∪λ∈β−1

i (λs)M(λ). It is
obvious that M(λ) = λ + M(0) for all λ ∈ Λ. Combining
the above with equality (21) leads to

Ai(λs) = Ai(0) + λs, ∀λs ∈ Λs. (51)

Clearly, one has ds,i(L(n,r0)) = D(QAi , X
n
i ), where QAi is

the quantizer mapping every source sequence xn
i ∈ Ai(λs)

to λs, for λs ∈ Λs. Now let us fix i. The rest of the proof
will be divided in two parts. Part 1 shows that, assuming the
existence of lim

(6)

G(Ai(0))
c2
0

, one has

lim
(6)

D(QAi , X
n
i )

c2
0ν

2
n
s

= lim
(6)

G(Ai(0))
c2
0

. (52)

In Part 2 we evaluate lim
(6)

G(Ai(0))
c2
0

.

Part 1: This proof is similar to Part 1 of the proof of relation
(23) in [44, Appendix C], which in turn employs ideas from the
proof of [49, Lemma 1], but with some differences in the form
of the expressions involved. Therefore, we will only mention
the main steps, but provide the intermediate expressions in
detail. The key idea of the proof is that, in the limit of (6),
the pdf fXn

i
can be approximated by a density function which

is uniform over every set Ai(λs). Specifically, let c � (θ, c0)
and define the density function fc : R

n → [0,∞) as follows.
For each λs ∈ Λs and xn ∈ Ai(λs), let

fc(xn)=
P[Xn

i ∈Ai(λs)]
ν(Ai(λs))

=
1

ν(Ai(λs))

∫
Ai(λs)

fXn
i
(yn)dyn.

(53)

Let Xn
c denote the random variable with pdf fc. The following

relation follows along the same lines as (72) in [44],

1

c2
0ν

2
n
s

|D(QAi , X
n
c ) − D(QAi , X

n
i )|

≤ r̄(Ai(0))2

nc2
0ν

2
n
s

∫
Rn

|fc(xn) − fXn
i
(xn)|dxn. (54)

Further, since Ai(0) = ∪λ∈βi(0)(λ + M(0)), we have
r̄(Ai(0)) ≤ r̄(β−1

i (0))+ r̄(M(0)). Combining this with (43),
r̄s = 3c2

0θr̄in,0 and r̄(M(0)) ≤ r̄in + r̄c ≤ 2r̄in = 2θr̄in,0

gives r̄(Ai(0)) ≤ 9c3
0θr̄in,0, for c0 large enough, which

together with νs = (3c2
0θ)nνin,0 implies that

r̄(Ai(0))

c0ν
1
n
s

≤ 9c3
0θr̄in,0

3c3
oθν

1
n

in,0

→ 3r̄in,0

ν
1
n

in,0

(55)

as relations (6) hold. Further, relations (54) and (55) lead to
lim
(6)

1

c2
0ν

2
n

s

|D(QAi , X
n
c )−D(QAi , X

n
i )| = 0 as in [44, Proof of

(77)]. Finally, the equality D(QAi , X
n
c ) = G(Ai(0))ν

2
n
s

follows as in [44, relations (78)]. The above two relations
prove the claim.

Part 2: Recall that Ai(0) = ∪λ∈β−1
i (0)(λ + M(0)) =

∪λ∈U (λ − βi(λ) + M(0)), where we have used relation (22).
It can be readily verified that M(0) is a fundamental cell of
Λin. Thus, one has ν(M(0)) = νin. The next equality follows
as in [44, Appendix C],∫

Ai(0)

�xn�2 dxn = |U|
∫
M(0)

�xn�2 dxn

︸ ︷︷ ︸
T1

+ 2
∑
λ∈U

�
∫
M(0)

xndxn, λ − βi(λ)�
︸ ︷︷ ︸

T2,i

+ νin

∑
λ∈U

�λ − βi(λ)�2

︸ ︷︷ ︸
T3,i

.

Recall that ν(Ai(0)) = νs = Mνin. Then

G(Ai(0))
c2
0

=
T1

nc2
0(Mνin)1+

2
n

+
T2,i

nc2
0(Mνin)1+

2
n

+
T3,i

nc2
0(Mνin)1+

2
n

. (56)

We first show that the first two terms in the right hand side
of (56) go to 0 in the limit of (6). The proof is also similar
to the counterpart in [44, Appendix C]. Let us start with the
first term. Notice that

∫
M(0)

�xn�2 dxn ≤ (r̄(M(0)))2νin ≤
4θ2r̄2

in,0νin. Combining this with |U| = M and νin = θnνin,0,
we have

T1

nc2
0(Mνin)1+

2
n

≤
4Mθ2r̄2

in,0νin

nc2
0(Mνin)1+

2
n

=
4r̄2

in,0

nc2
0M

2
n ν

2
n

in,0

→ 0 as (6) holds. (57)

Further, it follows by the Cauchy-Schwarz inequality that

|T2,i|≤2
∫
M(0)

�xn�dxn
∑
λ∈U

�λ − βi(λ)�.

Combining the above with
∫
M(0) �x

n�dxn ≤ r̄(M(0))νin ≤
θr̄in,0νin,

∑
λ∈U�λ − βi(λ)� ≤ Mr̄(β−1

i (0)), relation (43)
and r̄s = 3c2

0θr̄in,0, one can readily show that, for sufficiently
large c0, |T2,i| ≤ 36c3

0θ
2νinMr̄2

in,0. The above relation,
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together with M = (3c2
0)

n, implies

|T2,i|
nc2

0(Mνin)1+
2
n

≤
36c3

0θ
2νinMr̄2

in,0

nc2
0M

1+ 2
n νinθ2ν

2
n
in,0

=
4r̄2

in,0

nc3
0ν

2
n

in,0

→ 0 as (6) holds. (58)

Let us evaluate now T3,i

νin
. From now on the similarity with the

proof in [44] breaks down due to the more complex definition
of the mappings βi in the current work. We will discuss
separately the cases i = 1, i = 2 and i = 3. Recall that
U � {τ + λ̃f + ũf |τ ∈ T , ũf ∈ F , λ̃f ∈ L}. Notice that,
if λ ∈ U , then Qs(Qs/3(Qf (λ))) = 0. Then λs = 0 in (17).
Using now (17) and (18), one obtains that

T3,1

νin
=
∑
λ∈U

�λ − 3c0λ̃f�2

=
∑
λ∈U

(
�(1 − 3c0)(λ̃f )�2 + �ũf�2 + �τ�2

)
+
∑
λ∈U

(
2(1−3c0)�λ̃f , τ�+2(1−3c0)�λ̃f , ũf�+2�τ, ũf�

)
=
∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

(1−3c0)2�λ̃f�2+
∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf �2

+
∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�τ �2

+ 2(1 − 3c0)
∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf , λ̃f �

+ 2(1 − 3c0)
∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�λ̃f , τ�

+ 2
∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf , τ�. (59)

Consider the following quantities:

T2 �

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�λ̃f�2

nc2
0M

1+ 2
n ν

2
n

in

, T3 �

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf�2

nc2
0M

1+ 2
n ν

2
n

in

,

(60)

T4 �

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�τ�2

nc2
0M

1+ 2
n ν

2
n

in

, T5 �

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf , λ̃f �

nc2
0M

1+ 2
n ν

2
n

in

,

(61)

T6 �

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�λ̃f , τ�

nc2
0M

1+ 2
n ν

2
n

in

, T7 �

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf , τ�

nc2
0M

1+ 2
n ν

2
n

in

.

(62)

Relation (59) leads to

T3,1

nc2
0(Mνin)1+

2
n

= (1 − 3c0)2T2 + T3 + T4 + 2(1 − 3c0)T5

+2(1 − 3c0)T6 + 2T7. (63)

The following relations will be used extensively M = 3nc2n
0 ,

νf = cn
0νin, νs/3 = c2n

0 νin, νs = 3nc2n
0 νin, |T | = 3n,

|L| = cn
0 , |F| = cn

0 , r̄f = c0θr̄in,0 and r̄s/3 = c2
0θr̄in,0,

r̄s = 3c2
0θr̄in,0, νin = θnνin,0. Based on Lemma 7 in [44],

one obtains

T2 =
nM

9nMc6
0ν

2
n

in

(
G(CΛs/3:Λf

)c4
0ν

2
n

in − Gf )c2
0ν

2
n

in

)

=
1

9c2
0

(
G(CΛs/3:Λf

) − 1
c2
0

Gf

)
, (64)

T3 =
nM

9nMc6
0ν

2
n
in

(
G(CΛf :Λin)c2

0ν
2
n

in − Ginν
2
n

in

)

=
1

9c4
0

(
G(CΛf :Λin) − 1

c2
0

Gin

)
, (65)

T4 =
nM

9nMc6
0ν

2
n

in

(
9G(CΛs:Λs/3)c

4
0ν

2
n

in − Gs/3c
4
0ν

2
n

in

)

=
1
c2
0

(
G(CΛs:Λs/3) −

1
9
Gs/3

)
. (66)

Note that scaling preserves the normalized second moment.
Therefore, one has Gs = Gs/3 = Gf . This result, in conjunc-
tion with Lemma 8 in [44], implies that

lim
(6)

G(CΛs/3:Λf
) = lim

(6)
G(CΛf :Λin) = lim

(6)
G(CΛs:Λs/3) = Gs.

(67)

Further, Lemma 3, together with r̄(F) ≤ r̄f , r̄(L) ≤ r̄s/3 and
r̄(T ) ≤ r̄s, leads to

|T5| ≤

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

|�ũf , λ̃f �|

nc2
0M

1+ 2
n ν

2
n

in

≤
Mr̄f r̄s/3

nc2
0M

1+ 2
n ν

2
n

in

=
r̄2
in,0

9nc3
0ν

2
n

in,0

, (68)

|T6| ≤

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

|�λ̃f , τ�|

nc2
0M

1+ 2
n ν

2
n

in

≤
Mr̄s/3r̄s

nc2
0M

1+ 2
n ν

2
n

in

=
r̄2
in,o

3nc2
0ν

2
n

in,0

, (69)

|T7| ≤

∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

|�ũf , τ�|

nc2
0M

1+ 2
n ν

2
n
in

≤ Mr̄f r̄s

nc2
0M

1+ 2
n ν

2
n

in

=
r̄2
in,o

3nc3
0ν

2
n

in,0

. (70)

Based on relations (65)-(70), one obtains that

lim
(6)

T3 = lim
(6)

T4 = lim
(6)

2(1 − 3c0)T5

= lim
(6)

2(1 − 3c0)T6 = lim
(6)

2T7 = 0. (71)

Further, relation (64) implies that lim
(6)

(1 − 3c0)2T2 = Gs.

Combining the above relation with (63) and (71) gives

lim
(6)

T3,1

nc2
oM

1+ 2
n ν

2
n +1
in

= Gs. (72)
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Let us evaluate now T3,2
νin

.

T3,2

νin
=
∑
λ∈U

�λ − 3c2
0ũf�2

=
∑
λ∈U

(
�(1 − 3c2

0)ũf�2 + �λ̃f�2 + �τ�2
)

+
∑
λ∈U

(
2�λ̃f , τ� + 2(1 − 3c2

0)�ũf , λ̃f �

+ (1 − 3c2
0)�ũf , τ�

)
.

The above equality, together with (60)-(62), leads to

T3,2

nc2
o(Mνin)1+

2
n

= T2 + (1 − 3c2
0)

2T3 + T4 + 2(1 − 3c2
0)T5

+2T6 + 2(1 − 3c2
0)T7. (73)

Using (65) and (67), one obtains

lim
(6)

(1 − 3c2
0)

2T3 = Gs. (74)

From (64) and (66)-(70) it follows that

lim
(6)

T2 = lim
(6)

T4 = lim
(6)

2(1 − 3c2
0)T5

= lim
(6)

T6 = lim
(6)

2(1 − 3c2
0)T7 = 0. (75)

Relations (73)-(75) imply that

lim
(6)

T3,2

nc2
0M

1+ 2
n ν

2
n +1
in

= Gs. (76)

Let us evaluate now T3,3
νin

.

T3,3

νin
=
∑
λ∈U

�λ − 3τ + 3c0λ̃f + 3c2
0ũf�2

=
∑
λ∈U

(
�(1 + 3c0)(λ̃f )�2 + �(1 + 3c2

0)ũf�2 + �2τ�2
)

+
∑
λ∈U

(
− 4(1 + 3c0)�λ̃f , τ)�

+ 2(1 + 3c0)(1 + 3c2
0)�ũf , λ̃f )�

− 4(1 + 3c2
0)�ũf , τ)�

)
.

Invoking (60)-(62) yields

T3,3

nc2
0(Mνin)1+

2
n

= (1 + 3c0)2T2 + (1 + 3c2
0)

2T3

+ 4T4 + 2(1 + 3c0)(1 + 3c2
0)T5

− 4(1 + 3c0)T6 − 4(1 + 3c2
0)T7. (77)

It follows by (64), (65) and (67) that

lim
(6)

(1 + 3c0)2T2 = lim
(6)

(1 + 3c2
0)

2T3 = Gs. (78)

Further, according to (66), (69) and (70) one has

lim
(6)

T4 = lim
(6)

(1 + 3c0)T6 = lim
(6)

(1 + 3c2
0)T7 = 0. (79)

Next we prove that

lim
(6)

(1 + 3c0)(1 + 3c2
0)T5 = 0. (80)

For this, we need first to introduce more notation. Let Fb

denote the set of points which are in F and on the boundary
of Vf (0) and let Lb denote the set of points which are in L
and on the boundary of Vs/3(0). Moreover, let Mb = |Fb| and
Nb = |Lb|. Note that F \ Fb is symmetric about the origin.
Thus,

∑
ũf∈F\Fb

ũf = 0. Likewise,
∑

λ̃f∈L\Lb
λ̃f = 0. Then

based on the linearity of the scalar product, it follows that∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf , λ̃f � =
∑
τ∈T

∑
λ̃f∈Lb

∑
ũf∈Fb

�ũf , λ̃f �.

Thus, one obtains∣∣∣∣∣∣
∑
τ∈T

∑
λ̃f∈L

∑
ũf∈F

�ũf , λ̃f �

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
τ∈T

∑
λ̃f∈Lb

∑
ũf∈Fb

�ũf , λ̃f �

∣∣∣∣∣∣
≤
∑
τ∈T

∑
λ̃f∈Lb

∑
ũf∈Fb

|�ũf , λ̃f �|

≤ 3nNbMbr̄f r̄s/3,

where the last inequality follows according to Lemma 3. Using
further r̄f = c0θr̄in,0 and r̄s/3 = c2

0θr̄in,0 leads to

|(1 + 3c0)(1 + 3c2
0)T5| ≤

(1 + 3c0)(1 + 3c2
0)r̄2

in,0

9nc3
0ν

2
n

in,0

3nNb

3ncn
0

Mb

cn
0

.

(81)

Clearly, the first factor on the right hand side of the above
relation is bounded. Next we will show that Nb

cn
0

→ 0 and
Mb

cn
0

→ 0 as (6) holds, which, together with (81), implies (80).

For this, note first that Nb

cn
0

= Nbνf

νs/3
. Now denote

N � ∪λ̃f∈Lb
Vf (λ̃f ). It can be easily verified that

N ⊆ φ1Vs/3(0) \ φ2Vs/3(0),

where φ1 = 1 + r̄f

r̄s/3
and φ2 = 1 − r̄f

r̄s/3
. This implies that

Nbνf = ν(N ) ≤ (φn
1 − φn

2 )νs/3. Now let us show that
lim
(6)

(φn
1 − φn

2 ) = 0. Note that

(φn
1 − φn

2 ) = (φ1 − φ2)(φn−1
1 + φn−2

1 φ2 + · · · + φn−1
2 )

≤ (φ1 − φ2)nφn−1
1 .

Since φn−1
1 → 1 as (6) holds, it is sufficient to show that

(φ1 − φ2) → 0 as (6) holds. We have

φ1−φ2 = 1+
r̄f

r̄s/3
−1+

r̄f

r̄s/3
=

2θc0r̄in,0

c2
0θr̄in,0

=
2
c0

→ 0 (82)

as (6) holds. We conclude that lim
(6)

Nb

cn
0

= 0. Similarly, it can be

shown that lim
(6)

Mb

cn
0

= lim
(6)

Mbνin

νf
= 0. Consequently, relation

(80) is valid. Relations (77)-(80) imply that

lim
(6)

T3,3

nc2
0M

1+ 2
n ν

2
n +1
in

= 2Gs. (83)

Finally, relations (56)-(58), (72), (76) and (83) lead to
lim
(6)

G(A1(0))
c2
0

= lim
(6)

G(A2(0))
c2
0

= Gs and lim
(6)

G(A3(0))
c2
0

= 2Gs,

which concludes Part 2. Combining Part 1 and Part 2 leads
to (7).
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B. Proof of Relations (8)

Denote Δi,sup � supxn
i ∈Rn �xn

i − x̂n
c,i�, for i = 1, 2, 3. The

following result will be needed.
Lemma 4: There is some constant κ1 such that for c0

sufficiently large, one has

Δi,sup ≤ κ1c0ν
1
n
s , i = 1, 2, 3.

Assume that c0 ≥ 5. According to equation (43), for
i = 1, 2, 3, one has

r̄(β−1
i (0)) ≤ 3cor̄s. (84)

Let xn
i ∈ R

n and consider the notation in Proposition 1. Using
the fact that λc,i = λi + ui and the triangle inequality, one
obtains

�xn
i − x̂n

c,i� = �xn
i − λc,i + ui + λi − x̂n

c,i�
≤ �xn

c,i − λc,i� + �ui� + �λi − x̂n
c,i�

≤ r̄c + r̄in + �λi − x̂n
c,i�

≤ r̄s + �λi − x̂n
c,i�. (85)

If condition (26) is violated, then x̂n
c,i = λs,i, leading to

�λi − x̂n
c,i� = �λi − λs,i� ≤ r̄(β−1

i (0)) ≤ 3 c0r̄s.
By combining this with (85), one further obtains that
�xn

i − x̂n
c,i� ≤ (3c0 + 1)r̄s ≤ 4c0r̄s.

Consider now the situation when condition (26) is obeyed
and case 1 is in effect, i.e., a1 = 0 or a2 = 0 or a3 = 0.
Recall that x̂n

c,i = λ̃i+ui, where λ̃i is evaluated by the decoder.
Then

�λi − x̂n
c,i� ≤ �λi − λ̃i� + �ui� ≤ �λi − λ̃i� + r̄in. (86)

Let us consider i = 2. Using (32) and the triangle inequality
then invoking (30) and (31), one obtains

�λ2 − λ̃2� ≤ �λ2 − λ̃s� + �τ̃� + �¯̃
λf� + �¯̃uf,2�

≤ �λ2 − λs,2� + �λs,2 − λ̃s� + �τ̃�

+
1

3c0
�λs,1 − λ̃s� +

1
3c2

0

�λs,2 − λ̃s�.

Applying further �λ2−λs,2� ≤ r̄(β−1
i (0)) ≤ 3c0r̄s, �τ̃� ≤ r̄s,

1
3c0

≤ 1 and 1
3c2

0
≤ 1 leads to

�λ2 − λ̃2� ≤ 3c0r̄s + �λs,1 − λ̃s� + 2�λs,2 − λ̃s�. (87)

The relation λ̃s = λ̃s/3 − τ̃ (from (29)), together with the
triangle inequality, implies

�λs,j − λ̃s� ≤ �λs,j − λ̃s/3� + �τ̃� ≤ �λs,j − λ̃s/3� + r̄s,

(88)

for j = 1, 2, 3. Combining (28) with the triangle inequality
yields

�λs,1 − λ̃s/3� ≤ 1
3
�λs,1 − λs,2� +

1
3
�λs,1 − λs,3� + c2

0�λ̃c�.
(89)

According to (26), one has �λs,1 − λs,j� ≤ 6c0r̄s + 3r̄in.
Plugging this in (89) leads to

�λs,1 − λ̃s/3� ≤ 4c0r̄s + 2r̄in + c2
0�λ̃c�. (90)

Now we will derive an upper bound for �λ̃c�. Note that

λ̃c = Qin(u2 − u3) = (u2 − u3) − (u2 − u3) mod Qin.

Then

�λ̃c� ≤ �u2�+�u3�+�(u2−u3) mod Qin(u1−u2)� ≤ 3r̄in.
(91)

Plugging (91) in (90), then (90) in (88) and using the fact that
r̄s = 3c2

0r̄in gives

�λs,1 − λ̃s� ≤ 4c0r̄s + 2r̄in + 2r̄s ≤ 5c0r̄s. (92)

Similarly, one obtains �λs,2 − λ̃s� ≤ 5c0r̄s. Plugging the
previous inequality and (92) in (87) yields �λ2−λ̃2� ≤ 18c0r̄s.
By combining the above inequality with (85) and (86), we have

�xn
1 − x̂n

c,1� ≤ r̄s + 18c0r̄s + r̄in ≤ 19c0r̄s,

for c0 sufficiently large. The proof for the rest of the cases
proceeds similarly. �
Let us denote by Pe,SW the probability of failure of the
Slepian-Wolf decoder. According to Proposition 1 we obtain
that, for i = 1, 2, 3,

D(Qc, X
n
i ) ≤ dc,i(L(n,r0))

≤ (PX1X2X3(r0) + Pe,SW )Δ2
i,sup

+ D(Qc, X
n
i ). (93)

According to [1], the value of Pe,SW can be decreased
arbitrarily by enlarging the block size used by the Slepian-
Wolf encoder. Leveraging the fact that Δi,sup is bounded,
we conclude that the effect on the distortion of the Slepian-
Wolf decoding failure can also be diminished arbitrarily.
Combining this observation with (93) and with Lemma 4,
it follows that, as the block size of the Slepian-Wolf coder
goes to ∞, the following holds

D(Qc, X
n
i ) ≤ dc,i(L(n,r0))

≤ PX1X2X3(r0)κ2
1c

2
0ν

2
n
s + D(Qc, X

n
i ). (94)

According to Lemma 1 in [49], one has D(Qc, X
n
i ) =

Gcν
2
n
c (1 + o(1)) in the limit of (6). Plugging this result in

(94) leads to (8).

C. Proof of Relations (9)

Let us first denote P̄i � P[Qin(Qc(Xn
i )) ∈ W ] and

P̂i � P[Qin(Qc(Xn
i )) ∈ S|Qin(Qc(Xn

i )) ∈ W ], where W
and S are defined in Section V-B. Additionally, for 0 ≤ z ≤ 1,
let Hb(z) � −z log2 z − (1 − z) log2(1 − z). Further, note
that the rate needed to transmit βi(λi) is 1

nH(QAi(Xn
i )). The

rate needed for ai is 1
nHb(P̄i), while the rate for encoding λ̂f,i

equals 1
n P̄i log2 |L| = P̄i log2 c0. Since bi is transmitted only

when ai = 1, the rate needed for bi is 1
n P̄iHb(P̂i). The rate

used for encoding τi equals 1
n P̄iP̂i log2 |T | = P̄iP̂i log2 3.

Finally, the rate used for encoding u1,u2 and u3 with a
Slepian-Wolf coder, i.e., 1

nH(U1, U2, U3), is equally divided
among the three encoders. It follows that

Ri(L(n,r0))=
1
n

(
H(QAi(X

n
i ))+

1
3
H(U1, U2, U3)+Hb(P̄i)

+P̄iHb(P̂i)
)

+ P̄i(log2 c0 + P̂i log2 3). (95)
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Since lim
(6)

r̄(Ai(0)) = 0, as proved in Part 1 of the proof of

relation (7), we can use Lemma 2 from [49] (proved by Csiszar
in [51]) and the fact that ν(Ai(0)) = νs to obtain that

lim
(6)

1
n

(H(QAi(X
n
i )) + log2(νs)) = h(Xi). (96)

Lemma 5, proved next, states that lim
(6)

(P̄i log2 c0) = 0.

This implies that lim
(6)

P̄i = 0 = lim
(6)

P̂i and further that

lim
(6)

Hb(P̄i) = 0 = lim
(6)

Hb(P̂i). The above considerations,

together with equalities (95) and (96), imply relations (9).
Lemma 5: For i = 1, 2, 3, one has lim

(6)
(P̄i log2 c0) = 0.

Let us fix i. Denote

W̃(λf ) � {xn
i ∈ R

n : Qin(Qc(xn
i )) ∈ W(λf )}

and W̃ � ∪λf∈Λf
W̃(λf ). Thus, P̄i = P[Xn

i ∈ W̃ ]. A moment
of thought reveals that

W̃(λf ) ⊂ (λf + η1Vf (0)) \ (λf + η2Vf (0)),

where η1 � 1 + r̄in+r̄c

rf
and η2 � η − r̄in+r̄c

rf
= 1 − 4r̄in+r̄c

rf
.

The above relation implies that

ν(W̃(λf )) ≤ (ηn
1 − ηn

2 )νf . (97)

Since fXi has finite variance, it follows that E[�Xn
i �] ∈ R.

Let ρ1(c0) � E[�Xn
i �](log2 c0)2. Markov’s inequality implies

that P[�Xn
i � ≥ ρ1(c0)] ≤ 1

(log2 c0)2
. It follows that

P̄i ≤ P[Xn
i ∈ W̃ ∩ Bρ1(c0)]︸ ︷︷ ︸

T1

+ P[Xn
i /∈ Bρ1(c0)]︸ ︷︷ ︸

T2

.

Since T2 ≤ 1
(log2 c0)2

, in order to prove the lemma it is suffi-
cient to show that lim

(6)
(T1 log2 c0) = 0. For this, let us denote

B0 � sup{fXi(xn)|xn ∈ R
n)}, which is finite since fXi is

bounded. Note that if xn
i ∈ Bρ1(c0) then Qf (Qin(Qc(xn

i ))) ∈
Bρ2(c0), where ρ2(c0) � ρ1(c0)+ r̄c + r̄in + r̄f . Then one has

T1 ≤
∑

λf∈Λf∩Bρ2(c0)

∫
W̃(λf )

fXn
i
(xn)dxn

≤
∑

λf∈Λf∩Bρ2(c0)

B0ν(W̃(λf ))

(a)

≤ B0(ηn
1 − ηn

2 )
∑

λf∈Λf∩Bρ2(c0)

νf

(b)

≤ B0(ηn
1 − ηn

2 )ν(Bρ2(c0)+r̄f
), (98)

where (a) is obtained using (97), while (b) holds since
∪λf∈Λf∩Bρ2(c0)Vf (λf ) ⊆ Bρ2(c0)+r̄f

. Further,

(ηn
1 − ηn

2 ) = (η1−η2)(ηn−1
1 +ηn−2

1 η2+ηn−3
1 η2

2+· · ·+ηn−1
2 )

≤ (η1 − η2)nηn−1
1 . (99)

Relations (98) and (99), together with lim
(6)

η1 = 1 and

ν(Bρ2(c0)+r̄f
) = ν(B1)(ρ2(c0) + r̄f )n, imply that, in order

to conclude the proof, it is enough to prove that

lim
(6)

((η1 − η2)(ρ2(c0) + r̄f )n log2 c0) = 0. (100)

Let r̄ � r̄c + r̄in + 2r̄f . Then

(η1 − η2)(ρ2(c0) + r̄f )n log2 c0

=
5θr̄in,0+2θr̄c,0

c0θrin,0

(
E[�Xn

i �](log2 c0)2+r̄
)n

log2 c0

=
5r̄in,0+2r̄c,0

rin,0

(
E[�Xn

i �]
(log2 c0)2+

1
n

c
1
n
0

+r̄(
log2 c0

c0
)

1
n

)n

.

Using further the relations lim
(6)

r̄ = 0, lim
(6)

( log2 c0
c0

)
1
n = 0 and

lim
(6)

(log2 c0)
2+ 1

n

c
1
n
0

= 0, (100) follows. This completes the proof

of Lemma 5. �
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