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Remote Vector Gaussian Source Coding With
Decoder Side Information Under Mutual

Information and Distortion Constraints
Chao Tian, Member, IEEE, and Jun Chen, Member, IEEE

Abstract—Let ������� ���� be zero-mean, jointly Gaussian random
vectors of dimensions ��, �� , and �� , respectively. Let� be the set
of random variables � such that � � ��� � ����������� is a Markov
string. We consider the following optimization problem:

���
���

����� �� �����

subject to one of the following two possible constraints: 1)
������� ����� � �� , and 2) the mean squared error between ���

and ���� � ����������� is less than 	. The problem under the first
kind of constraint is motivated by multiple-input multiple-output
(MIMO) relay channels with an oblivious transmitter and a relay
connected to the receiver through a dedicated link, while for the
second case, it is motivated by source coding with decoder side
information where the sensor observation is noisy. In both cases,
we show that jointly Gaussian solutions are optimal. Moreover, ex-
plicit water filling interpretations are given for both cases, which
suggest transform coding approaches performed in different
transform domains, and that the optimal solution for one problem
is, in general, suboptimal for the other.

Index Terms—Gaussian vector, relay channel, source coding
with side information, transform coding.

I. INTRODUCTION

I N a relay channel [1], the relay wishes to help the trans-
mitter to convey information reliably to the end receiver. In

certain cases, the transmitter does not actively cooperate with
the relay, which falls into the oblivious cooperation framework
[2]; it can also be understood as a special case of the nomadic
transmitter setting where two relays send summary informa-
tion regarding their received signals to a final central processing
center [3], but in this special case, the link between one relay
and the processing center is taken to have an almost infinite
capacity. In both settings, the transmitter may send its signal
without awareness of the existence of the relay, and the relay
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does not necessarily know exactly the codebooks the transmitter
is using.1

We are interested in the case that the relay is connected to
the receiver through a dedicated link (e.g., a separate frequency
band or a land line) of a maximum rate . We assume the
channel noises are additive and Gaussian, and moreover, the
transmitter which has transmit antennas is using Gaussian
signaling ; this is a reasonable and popular assumption [3].
The relay which has receive antennas observes , and it
is a noisy version of . The relay now has the task of source
coding this noisy observation for the end receiver. The end re-
ceiver, which is the decoder in this source coding setting, has
antennas and thus also has side information through its own
observation of the channel. Assuming channel state information
and the probability distribution of are known at the relay and
end receiver, and using well-known properties of the typical se-
quences, it can be shown that the system can reliably transmit
at rate arbitrarily close to , if there exists a random variable

, such that

(1)

This can be rewritten as the optimization problem

(2)

subject to

(3)

which is exactly the optimization problem under the first kind
of constraint given in the abstract. Roughly speaking, the relay
utilizes a source coding scheme based on the Wyner–Ziv coding
technique [4], and the quantity is exactly this coding
rate, however the receiver places the mutual information con-
straint (3), instead of attempting to reconstruct the source to
satisfy certain distortion constraint as in [4].

Let us turn to the more conventional rate-distortion setting
where the encoder observes a noisy version of the source, and
the end receiver, which has certain side information, is interested
in recovering the source within certain distortion. Wyner and
Ziv’s solution [4] generalizes naturally to this remote source
setting (see [5] and [6]). The single-letter optimization posed in

1If the relay knows the codebooks of the transmitter, the relay may be able
to decode the messages, or when it is not able to decode, it may use any coding
strategy to help the transmitter. The restricted problem setting we consider here
essentially requires the relay to always use the compress-and-forward strategy
given in [1].
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the abstract under the second constraint is thus exactly the rate
distortion function under a mean squared error (MSE) distortion
criterion, i.e., the quantity is again the source coding
rate. We will denote this function as .

It is now clear that the essential task is to determine the op-
timal random variable , since in both problems it provides the
optimal quantization codebook, and perhaps more importantly,
the optimal resource allocation for these vector source coding
problems. One key question in this context is whether the op-
timal solutions of the random variables are the same under
these two constraints.

In this paper, we show that for both cases a jointly Gaussian
vector solution is optimal for , which also naturally leads
to transform coding and water-fill interpretations. However, the
water filling is performed in different spaces for the two prob-
lems, which implies that, in general, the optimal solutions in the
rate distortion setting are suboptimal solutions in the relay set-
ting, and vice versa. It is thus important to distinguish between
these two constraints, and use the appropriate one depending on
the particular system requirement.

One may also ask whether giving the decoder side informa-
tion to the encoder helps. Indeed our result shows that en-
coder side information does not help for both cases, similar to
the well-known result in Wyner–Ziv source coding of scalar
Gaussian sources.

The solution of the vector problem under the mutual informa-
tion constraint is largely inspired by the work in [8] for the case
without side information at the decoder. However, our proof is
significantly simpler than theirs, despite the fact that side infor-
mation is introduced. Our work is also relevant to [7]. However,
in [7], only distortion-constrained problem with direct obser-
vation of the source is considered, which does not include the
problems considered here.

In the rest of this paper, the following notation is adopted.
Random vectors are written in bold capital letters, and random
variables in capital letters. are jointly Gaussian, zero-
mean, real-valued random vectors. We write their variance ma-
trices as , and covariance matrices as , , and

, respectively. is the underlying source of interest, is
the noisy observation at the encoder, and is the decoder side
information. We do not assume that and are conditionally
independent given , i.e., the channel noises are not necessarily
independent. All the logarithms are base .

Before proceeding, we will rewrite the relation between ,
, and to simplify the proof given in the sequel. It is clear

that without loss of generality, we can write

(4)

where and are zero-mean jointly Gaussian random vec-
tors independent of each other, is independent of , and
is independent of . More precisely, we have by applying
well-known linear estimation calculation [9] that

(5)

where . We will assume the inverses
of the above matrices are well defined, which is usually satis-
fied except for some degenerate cases. The following covariance
matrices are also important:

(6)

II. SCALAR RANDOM VARIABLE PROBLEMS

For the scalar case, denote , , and
, respectively. We consider the scalar Gaussian case

first. Since we are not aware of a formal proof for the case under
the mutual information constraint, such a proof is given; for the
other case, we simply restate the known result.

A. The Mutual Information Constraint Problem

Theorem 1: For the scalar Gaussian source and

if (7)

and, otherwise

(8)

Proof: We start the converse proof by writing

(9)

To bound the second term, we have

(10)

Then, it follows:

(11)

where is by applying the conditional version of the entropy
power inequality [10]. Thus, we have
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Because the function is monotonically
increasing in when , and , we have

(12)

Clearly, when we take where is a
zero-mean Gaussian independent of everything else such
that , all the inequalities become equality.

Since , the Markov string
implies that .

Thus, when , the optimization problem is
not feasible. Substitute appropriate values into the quantities,
and it is easy to see because it is the
variance of . The proof is thus complete.

B. The Rate-Distortion Problem

Theorem 2 ([5], [6]): For the scalar Gaussian source, we have
for

(13)

and if ; if .
We omit the proof here; see [5] and [6]. It can be shown that

in both cases encoder side information does not help, i.e., even
when the Markov string is relaxed to , the
solutions do not change. Further, notice the similarity between
the functions and . Indeed, for the scalar problem,
for both cases, the solution is given by the same Gaussian so-
lution with the variance of properly chosen.
However, as we will illustrate next, for the vector problem, their
solutions no longer coincide.

III. RANDOM VECTOR PROBLEMS

In this section, we discuss the vector version of the problems.
We provide a proof by decomposing the problem into a set of
componentwise problems. It is conceivable that the enhance-
ment technique given in [11] and [12] may be of use, however
our proof directly yields the water filling interpretation.

A. The Mutual Information Constraint Problem

The following notation is needed. For a symmetric posi-
tive–definite matrix , let its eigenvalue decomposition be

, where is the diagonal matrix with eigenvalues on its
diagonal. Define , where is the diagonal
matrix where the squared root of each element of is taken.
Similarly, is also defined for a symmetric positive–defi-
nite matrix, however with an inverse on each nonzero element
of . The main result in this section is the following theorem.

Theorem 3: Let the eigenvalue of be

given as . Then, for

where , , and is chosen
such that

If , then .

We will consider a specific transform; this transform is
usually referred to as the canonical correlation analysis in
statistics. First, find the singular value decomposition of

, where and are two orthog-
onal matrices and is a diagonal matrix with singular values
on the diagonal. Define and ,
which in fact gives the transforms and ,
respectively. Notice that the transformation matrices are full
rank, and under these transforms

(14)

where is the identity matrix of dimension . Similarly

(15)

Moreover, we have

(16)

These facts imply that after the transform, the components
of and , respectively, are independent and identically dis-
tributed with unit variance given . The vectors of and
are only componentwise dependent given . Moreover, since
the element of is a covariance of two random vari-
ables of unit variance, its diagonal values satisfy .

Proof: Since the transform and are full rank, and
thus information lossless, we have

(17)

Thus, we have by the conditional independence and the chain
rule

(18)

where is due to the Markov string
. On the other hand, we have

(19)
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Now define , and it is clear that
is a Markov string. Thus, we have relaxed the

problem into

(20)

(21)

where for .
Using the same outer bounding derivation as the scalar

problem, we can further write the relaxed problem as2

(22)

(23)

where is the number of nonzero values.
A water-filling solution can be derived from the above opti-

mization problem. More precisely, by the Kuhn–Tucker condi-
tion, we can find the optimizing solution as

where we use to denote , and is the “water
level” such that the sum-rate constraint is satisfied with equality.
Now defining and noticing give the formula
in the theorem.

It remains to show that the solution of the relaxed problem is
indeed achievable, i.e., there exists a random variable (vector)

that matches this lower bound, but this is obvious by let-
ting , where is a Gaussian random vector
with independent components such that the equality

holds. This indeed is a Gaussian solution, and the
theorem is proved.

B. The Rate-Distortion Problem

Assuming the MSE distortion is taken to be averaged over all
components, we have the following theorem.

Theorem 4: Let the eigenvalues of be given as
, . Then, for

(24)

where is the trace of a matrix, and is chosen such
that

(25)

2This componentwise problem is not the same problem as the original scalar
coding problem, since the Markov string is different. It is in fact equivalent to
the case that side information��� is also available at the encoder. However, since
the lower bounding derivation of the scalar problem holds for either cases, it
indeed gives a lower bound here for the vector problem.

If , then ; if , then
.

The proof of this theorem is rather standard, however we in-
clude it below for completeness.

Proof: To prove the converse, consider the fact that

(26)

It is clear that

because is independent of and , thus independent of
and . Now define , from which
we see that

(27)

Thus, there exists a function such that

(28)

Denote the eigenvalue decomposition of as
. Denote , which clearly has indepen-

dent components. We have the following chain of inequalities:

(29)

where . Notice that is an orthogonal trans-
form, thus preserves the MSE distortion. Define

, then it is clear that we have . This is a
conventional rate-distortion problem, and thus

(30)

where is the water level such that

(31)
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This establishes the lower bound for the rate distortion func-
tion. The fact that this lower bound is achievable is straightfor-
ward by letting , where is a Gaussian
vector having independent components, with their variances de-
termined by

(32)

The proof is complete.

IV. CONCLUDING REMARKS

From the proofs of Theorem 3 and Theorem 4, it is seen
that the two transforms in which water filling is performed
are different under the two kinds of constraints. For the mu-
tual information constraint, the transform is ,
where is determined by the eigenvalue decomposition of

, and the water filling is along these
eigenvalues. For the MSE distortion constraint, the transform is
determined by the eigenvalue decomposition of ,
and the water filling is along these eigenvalues. Moreover, the
transform may not be orthogonal, thus it does not preserve
trace and the MSE distortion. This result implies that the
optimal solution for one problem is, in general, suboptimal for
the other. Thus, when multiple-input multiple-output (MIMO)
system is considered for the relay problem, it is important to
recognize that the Wyner–Ziv source coding component should
be used under the mutual information constraint, instead of
distortion constraint. It should also be noted that the problem
under mutual information constraint considered here includes
the hypothesis testing problem in [13] as a special case when
the source is vector Gaussian, and thus the given result provides
an explicit solution for it.

It is theoretically interesting to consider the same optimiza-
tion problem when the two kinds of constraints are placed simul-
taneously. The extremal inequality in [11] indicates that the op-
timal value is attained by timesharing Gaussian solutions. How-
ever, it is unclear whether a single Gaussian solution suffices
and whether there exists an explicit water filling interpretation.
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