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Robust Distributed Compression of Symmetrically
Correlated Gaussian Sources

Yizhong Wang, Li Xie, Xuan Zhang, and Jun Chen™, Senior Member, IEEE

Abstract— Consider a lossy compression system with
£-distributed encoders and a centralized decoder. Each encoder
compresses its observed source and forwards the compressed data
to the decoder for joint reconstruction of the target signals under
the mean-squared-error distortion constraint. It is assumed
that the observed sources can be expressed as the sum of the
target signals and the corruptive noises, which are generated
independently from two symmetric multivariate Gaussian
distributions. Depending on the parameters of such distributions,
the rate-distortion limit of this system is characterized either
completely or at least for sufficiently low distortions. The results
are further extended to the robust distributed compression
setting, where the outputs of a subset of encoders may also be
used to produce a non-trivial reconstruction of the corresponding
target signals. In particular, we obtain in the high-resolution
regime a precise characterization of the minimum achievable
reconstruction distortion based on the outputs of £ + 1 or
more encoders when every k out of all £ encoders are operated
collectively in the same mode that is greedy in the sense of
minimizing the distortion incurred by the reconstruction of the
corresponding k target signals with respect to the average rate
of these k encoders.

Gaussian source,
squared error,

Index Terms— Distributed compression,
Karush-Kuhn-Tucker conditions, mean
rate-distortion.

I. INTRODUCTION
ONSIDER a wireless sensor network where potentially
noise-corrupted signals are collected and forwarded to a
fusion center for further processing. Due to the communication
constraints, it is often necessary to reduce the amount of
the transmitted data by local pre-processing at each sensor.
Though the multiterminal source coding theory, which aims
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to provide a systematic guideline for the implementation of
such pre-processing, is far from being complete, significant
progress has been made over the past few decades, starting
from the seminal work by Slepian and Wolf on the lossless
case [1] to the more recent results on the quadratic Gaussian
case [2]-[17]. Arguably the greatest insight offered by this
theory is that one can capitalize on the statistical dependency
among the data at different sites to improve the compres-
sion efficiency even when such data need to be compressed
in a purely distributed fashion. However, this performance
improvement comes at a price: the compressed data from
different sites might not be separably decodable, instead they
need to be gathered at a central decoder for joint decom-
pression. As a consequence, losing a portion of distributedly
compressed data may render the remaining portion completely
useless. Indeed, such situations are often encountered in
practice. For example, in the aforementioned wireless sensor
network, it could happen that the fusion center fails to gather
the complete set of compressed data needed for performing
joint decompression due to unexpected sensor malfunctions or
undesirable channel conditions. A natural question thus arises
whether a system can harness the benefits of distributed com-
pression without jeopardizing its functionality in adverse sce-
narios. Intuitively, there exists a tension between compression
efficiency and system robustness. A good distributed compres-
sion system should strike a balance between these two factors.
The theory intended to characterize the fundamental tradeoff
between compression efficiency and system robustness for the
centralized setting is known as multiple description coding,
which has been extensively studied [18]-[36]. In contrast, its
distributed counterpart is far less developed, and the relevant
literature is rather scarce [37]-[39].

In the present work we consider a lossy compression system
with ¢ distributed encoders and a centralized decoder. Each
encoder compresses its observed source and forwards the com-
pressed data to the decoder. Given the data from an arbitrary
subset of encoders, the decoder is required to reconstruct the
corresponding target signals within a prescribed mean squared
error distortion threshold (dependent on the cardinality of
that subset). It is assumed that the observed sources can be
expressed as the sum of the target signals and the corruptive
noises, which are generated independently from two (possi-
bly different) symmetric! multivariate Gaussian distributions.

I This symmetry assumption is not essential for our analysis. It is adopted
mainly for the purpose of making the rate-distortion expressions as explicit
as possible.
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This setting is similar to that of the robust Gaussian CEO
problem studied in [37] and [38]. However, there are two
major differences: the robust Gaussian CEO problem imposes
the restrictions that 1) the target signal is a scalar process,
and 2) the noises across different encoders are independent.
Though these restrictions could be justified in certain scenar-
ios, they were introduced largely due to the technical reliance
on Oohama’s bounding technique for the scalar Gaussian CEO
problem [3], [6]. In this paper we shall tackle the more
difficult case where the target signals jointly form a vector
process by adapting recently developed analytical methods in
Gaussian multiterminal source coding theory [10], [13]-[15]
to the robust compression setting. Moreover, we show that
the theoretical difficulty caused by correlated noises can be
circumvented through a fictitious signal-noise decomposition
of the observed sources such that the resulting noises are
independent across encoders. In fact, it will become clear that
this decomposition can be useful even for analyzing those
distributed compression systems with independent noises. Our
main results are summarized below.

1) For the case where the decoder is only required to
reconstruct the target signals based on the outputs of all ¢
encoders, the rate-distortion limit is characterized either
completely or partially, depending on the parameters of
signal and noise distributions,

2) For the case where the outputs of a subset of encoders
may also be used to produce a non-trivial reconstruction
of the corresponding target signals, the minimum achiev-
able reconstruction distortion based on the outputs of
k+1 or more encoders is characterized either completely
or partially, depending on the parameters of signal and
noise distributions, when every k out of all ¢ encoders
are operated collectively in the same mode that is greedy
in the sense of minimizing the distortion incurred by the
reconstruction of the corresponding k target signals with
respect to the average rate of these k encoders.

The rest of this paper is organized as follows. We state
the problem definitions and the main results in Section II.
The proofs are presented in Section III and Section IV.
We conclude the paper in Section V.

Notation: The expectation operator, the transpose oper-
ator, the trace operator, and the determinant operator are
denoted by E[], ()T , tr(-), and det(-), respectively.
A j-dimensional all-one row vector is written as 1;. We use
diag"” (k1, - - - ,Kj) to represent a j X j diagonal matrix with
diagonal entries k1,--- ,K;, and use Y™ as an abbreviation of
(Y(1),---,Y(n)). For a set A with elements a; < --- < aj,
(wi)iea means (we,, - ,wq,). The cardinality of a set S
is denoted by |S|. Throughout this paper, the base of the
logarithm function is e.

II. PROBLEM DEFINITIONS AND MAIN RESULTS

Let the target signals X = (X1,---, X;)” and the corrup-
tive noises Z = (Z1,--- , Z;)T be two mutually independent
f-dimensional (¢ > 2) zero-mean Gaussian random vectors,
and the observed sources S = (Sp,---,S,)T be their sum
(i.e., S = X + Z). Their respective covariance matrices are
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given by
X PXVX PXVX
Ty A PXVX
: - - PXVX
PXVX PXVX X
Yz PzYz PzYz
PzYzZ e i :
P ,
: - . PzVz
pPzYVz PzYVz vz
Vs PSS PSS
psvs e
rs2 |79 ,
: ' PSS
PSS PSS s
and satisfy I's = TI'x + I'z. Moreover, we construct an

iid. process {(X(t),Z(t),S(t))}s2,; such that the joint
distribution of X(¢) 2 (Xi(t),---, X ()T, Z(t) =
(Z2(t). -+, Ze(t)". and S(t) 2 (Si(t), -~ , Se(t))" is the
same as that of X, Z, and S fort=1,2,---.

By the eigenvalue decomposition, every j X j (real) matrix

a B - B
r@a | b :
PR
8 - B «
can be written as
r = @WAD(@UNHT, (1)

where ©0) is an arbitrary (real) unitary matrix with the first
column being %1?, and

AD £ diag (o + (j = f.a =B, a=f).
For j € {1, -, ¢}, let Fgg), F(Zj), and ng) denote the leading
7 X 7 principal submatrices of I'x, I'z, and I'g, respectively;
in view of (1), we have

Fgg) _ @(j)Ag)(@(j))T,
F(Zj) _ @(j)A(Zj)(@(j))T,
F(sj) — @(j)Ag)(@(j))T,

where

>

A £ diag? Ay, Axz, o Axa),
AL dlag(]) (A(Zj,)17 )\Z,27 cee AZ72)5
_Agj::<hagU)ng;7A52a"'vASﬁ)

=
NS
>

>
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with
A2 A+ (- Dpx)x,
Ax2 = (1 - px)7yx,
M2 (14 (= 1p2)rz,
Az = (1= pz)vz,
M2 L+ (G = Dpshrs,
As2 = (1= ps)ys-

Note that I'x, I'z, and I'g are positive semidefinite (and
consequently are well-defined covariance matrices) if and only
i A >0, Axz 2 0, A%, >0, Az > 0,08 >0,
and Agp > 0. Furthermore, we assume that yx > 0 since
otherwise the target signals are not random. It follows by this
assumption that vg > 0, )\%?I‘FAX’Q > 0, and )\g)l-l-)\syg > 0.

Definition 1: Given k € {1,--- ,{}, a rate-distortion tuple
(r,dg,--- ,dyg) is said to be achievable if, for any € > 0, there
exist encoding functions ¢§") R” — Ci("), i=1,---,¢, such
that

1 (n)
— I . <
= g oglC;| <r+e,
€A
ACA{L,--- ¢} with |A| =k, 2)

ﬁ DD CEIX() - Xia(t)’) < diay + e
€A t=1

AC{L,--- 0} with |4 >k (3)

where X; 4(t) £ E[X; (t)|(¢)§,") (S77))ie.a]. The set of all such
achievable (r,dy,--- ,dy) is denoted by RDj.

Remark 1: Due to the symmetry of the underlying distrib-
utions, it can be shown via a timesharing argument that RD,
is not affected if we replace (2) with either of the following
constraints

1 n )

EIngz‘( )| <r+e i=1,---,¢,
IS (n)
o ;Zl log |C;"| < r+e¢,

and/or replace (3) with either of the following constraints

n

% ZE[(Xz(t) - XivA(t))Q] < d|,4‘ + €,

AC{1,-- ¢} with |A| >k,
- > DO CE(X(t) = Xia(t)?) < dj+e,

n
(j)]n AC{L, 0}:| Al=g i€ A t=1

j=k, 0
Remark 2: We show in Appendix A that, for j = k,--- ./,
. 1<
Ao & = I ~EIXlS1, 8]
i=1
1 i—1
B fjxin 1+ j—dmin,Qv
J ’ J
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where
0, Ay =0,
dfrjli)n,l = A.()??lA(ZJ,)l .
5 otherwise,
A1
0, As2 =0,
o 2 AxoA
i, %, otherwise.
5,2
It is clear that d; > dfﬁi)n, j = k,--- L for any

(rydg,--- ,d¢) € RDj. Moreover, if d; > vyx for some
j € {k,---,¢}, then the corresponding distortion constraint
is redundant. Henceforth we shall focus on the case d; €

(dgi)nv'YX)’ J=k, L
Definition 2: For dy € (dfﬁn,vx), let

O (dy) £ min{r : (r,dy) € RD;}.

In order to state our main results, we introduce the following
quantities. For any k € {1,--- ¢} and d}, € (dir]fi)nﬁx), let

k k k) \k—
gy 2 L og A5 TGN sz + XN
k) = 5. k )
2k ()\22))1@
() () (k)
A9 (dy) 2 Aa (A1 +2A97)
J

1 +20")
. k
n (J—DAx2(Az2 + )\ég))
iz +A3))

) j:kv"'aga

where )\g) is the unique positive number satisfying
MOOZ 28 (= DAxaz2 +25)
KOS +29)) E(Asz2+A5)

=di. @)

Our first result is a partiazl characterization of (%) (dy).
Theorem 1: For d; € (dEnin,’yX),

T(é)(dg) — 7(4)(@)

if either of the following conditions is satisfied:
1) ps >0 and

¢ 4
(=DA% A2 O (D — 1) 402N, > 0,
5)

where

O)\—
J0 & P52 = X505 42N ©)
- 0 4 4 4 '
M) — AP O8, + AP

2) ps <0 and
OO0 1)+ 08007 20, O

where
o s Wam 0P D
As2 = Ago(As2 + Ag))—l
Remark 3: 1) Consider the case pg > 0. When (¢ —

1))&’2()\551)1)2 < 4@()\&?1)2)\%!2, the inequality (5)
always holds, and () (d,) is characterized for all d, €
(d(méi)na’YX)- When (£ — 1)A§(,2(Ag)1)2 > 45()‘()?1)%‘?9,2’
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2)

DA% (20O (@ = 1) +
Z()\( ) 1)°X%.5 = 0 has two real roots in the interval [0, 1]:

the equation (¢ —

¢
L0 2 450\&(?1)”\%,2

1 — ¢ )
(0= 1% ,(0))?

N =
N —

¢
400202,
2
(€= 1A% (A2

L
)

L

N | =
+
N | —

Therefore, the inequality (5) holds if

(0 (0 (€)

oru()>u . )

It is easy to verify that (9) is satisfied when Ag,)r >
sz = 0 (which implies p() = 0) or A{) = A2 > 0
(which implies 1 = 1). When A{) > As2 > 0, (¥
is a strictly decreasing function of d,, converging to 1
asdy — d ) and to % as dy — 7yx; hence, it suffices

S iy

min

to analyze the followirfg1 four scenarios.
a) u(é) < i(sf plo > ug) is satisfied for all d; €
S,1

(din?m’)’x) N '
b) i < 252 and < p < 10 p® > s
S,1
satlsﬁed for all d, sufficiently close to dmm
o " :\\(S[f and p < 1: u® < 49 is satisfied
S,1

for all d, sufficiently close to vx while u(e) > M(Z)

1s satlsﬁed for all d; sufficiently close to dmln
()

d) N1 = 0 and py ’ = 1: This can happen only when
AL =0
X,1 :

In view of the above discussion, under the condition
ps > 0, rD(dy) is characterized at least for all d,
sufficiently close to dmm = 0 and )\g)l >
As,2 (note that )\g(?l = 0 implies Ag 2 > 0).

Consider the case ps < 0. When ()\%?1)2)\%,2 <
4&\%2(/\(3{)1)2, the inequality (7) always holds, and
rO(dy) is characterized for all d; € (dl(mna'VX)
When ()\()?1)2)\2372 > 48)\%(72()\(;)1)2, the equation
APD2AZ O WO — 1) + 0% ,(A$))? = 0 has two
real roots in the interval [0, 1]:

unless )\()?1

14
Joal 1| M
! 2 2 ()\(é) )22
L
0 8 1+1 45)\2)( 20\( ))
2 7272 (}\(4) )202

Therefore, the inequality (7) holds if

N < l/y) or v > l/y). (10)

It is easy to verify that (10) is satisfied when Ago >
)‘g)r = 0 (which implies ) = 0) or /\(Sz)1 =As2>0
(which implies v = 1). When As2 > Ag,)r >0, v

is a strictly decreasing function of dy, converging to 1
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Fig. 1.  Plots of 7(¥)(d,) with d, € (dmm,'yx) for the three cases in
Example 1.

A,
as dy — dﬁnfn and to Y= as d¢ — 7x; hence, it suffices

to analyze the followmg four scenarios.
)
< % 0 > {9 is satisfied for all d; €

)

, 0 (O
oo <t <L 1/()>1/2 is

satisfied fcr all dy sufficiently close to dmm

©
@ ﬁ and I/ée) <1Lv® < 1/§ ) is satisfied

(6

c) 1y
for all d; sufficiently close to yx while v(©) > v
is satisfied for all d, sufficiently close to d(e)
d) uf“ =0and 1/(4) = 1: This can happen only when
>\X,2 = 0.
In view of the above discussion, under the condition
ps < 0, rD(dy) is characterized at least for all d,
sufficiently close to dmln unless A\ X 2 = 0 and Ago >
)‘gr (note that Ax o = 0 implies /\ 1> 0).

Example 1: Let ¢ = 10. In Fig. 1 we plot 7 (dy) with
de € (dmfn, ~vx ) for the following three cases, all with pg > 0.

1)

2)

3)

Case 1: /\%)1 = 08, Ax2 = 1, /\3,1 = 5, and
As.2 = 4. In this case d') = 0.7422 and vx = 0.98.

It can be verified that (¢ — 1))&72()\59{)1)2 = 225 <
46(/\%)1) A%, = 409.6. Therefore, r*)(d;) coincides
with T(e)(dg) for all dy € (dfn?n,'yx)

Case 2: )\%)1 =05, Ax2=1, )‘s 1 =6, and Ago = 3.
In this case d(é) 0.6458 and yx = 0.95. It can be

verified that 0D ~ 0.0751 < % 0.5 < py) ~

0.9249 < 1. Therefore, r(“)(d,) comc1des with 79 (dy)
for all d; sufficiently close to dmfn (see the solid-line
portion).

Case 3: )‘Xl =1, Ax 2 =045, /\51 =12, and A\g2 =
2.4. In this case de 3n = 0.4207 and yx = 0.505. It can
be verified that z; Ve )‘S 2 =0.2 and u(e)

~
~

~
~

)~ 0.3253 >

0.6747 < 1. Therefore, r(“)(d,) comc1des with 79 (dy)
for all dy sufficiently close to dlﬁn and all dy sufficiently
close to vx (see the solid-line portion).
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Theorem 1 is a special case of the following more general
result.

Theorem 2: 1) For d, € (dgfl)n,'yx)

TF® (d), d (dr), -, d (dr)) € RDy.

2) For (r,dy, - ,dy) € RDy, with dj, € (dmm,'yx)

) (di)

if either of the following conditions is satisfied:
i) ps >0 and

k
(k= 1A% (A2 ® (u® — 1)
+ k(Ag](c,)ﬂQ)\QS,z

7“2?

>0, (1D

where 1(®) is defined in (6) with ¢ replaced by k.
ii) pg <0 and

AED2AZ B (8 — 1) + k2%, ()% > 0,

(12)
where (%) is defined in (8) with ¢ replaced by k.

3) For j € {k,---,¢} and (r,dg,--- ,dy) € RDy with
di € (dffi)n,'yx) and r = 7¥)(d}), we have

d; > d" (dy)

if either of the following conditions is satisfied:

a) Condition 1)
b) ps <0, )\Sl>0 and

(5D + (k= 1) (AL NE ()2
+ (k= DED =% LG 20,
(13)
() = DO N ()2
+ (k= D)+ N5 (6?2 0,
(14)
where
J(kd) _ ML= 08208 +2) !
A5z — \y0hsa + D)1

Proof: See Section III for the proof of the achievability
part (i.e, Part 1) of Theorem 2) and Section IV for the proof
of the converse part (i.e., Part 2) and Part 3) of Theorem 2).

|

Remark 4: 1) The argument in Remark 3 can be lever-
aged to prove that, for the case ps > 0, the inequal-

ity (11) holds at least for all dj, sufficiently close to dffi)n
unless /\g?)l = 0 (which can happen only when k = /)
and )\gk)l > Ag,2 (note that )‘g];,)1 = 0 implies g2 > 0);
similarly, for the case pg < 0, the mequahty (12)

holds at least for all dj, sufﬁ01ently close to dInln unless

Ax2 = 0and Ago > )\S 1 (note that Ax o = 0 implies
)\fgk)l > 0).

2) For the case ps < 0, the condition /\E‘;j)1 > 0 can be
potentially violated (i.e., )\g)l = 0) only when j = /.
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d,
Fig. 2. Plots of d\*(dy) with d € (d0),vx) for j =

2,3,5,10,100, 1000, co, where the relevant parameters are specified in
Exa.mple 2

3) Consider the case pg < 0 and /\S1 > 0. If )\(k)l > 0,
then the 1nequa11ty (13) holds at least for dj, sufficiently
close to dmm, if )\ = 0, which implies k = j = /,
then the 1nequahty (13) always holds. The mequality
(14) holds at least for dj, sufficiently close to d unless
Ax2 =0and Agy > Y.

Example 2: Let vx = 1, p;} = 0.8, vz = 0.5, pz = 0.1,
and £ = 2. In this case dn]fin ~ 0.2799. It can be verified
that ps & 0.5667 > 0 and (k — 1)A%,(A4])? = 0.2209 <
4/4:()\(;;7)1)2)\%72 = 10.9512. In light of Remark 3, condition i)

in Theorem 2 is satisfied. In Fig. 2 we plot d;k) (dy) with

dy € (dmm,'yx) for various j.

III. PROOF OF PART 1) OF THEOREM 2

The following lemma can be obtained by adapting the
classical result by Berger [40] and Tung [41] to the current
setting.

Lemma 1: For any auxiliary

A
random vector V =

(Vi,--+,Vo)T jointly distributed with (X, Z,S) such that
{X,Z, (Si)ire (1, 00\ (i) (V )i e{1,~~,e}\{¢}} = 8 oV
form a Markov chain, ¢ = 1,---,¢, and any (r,dy--- ,dy)
such that
rl, € R(A), AC{1,--- ¢} with |A| =k,
1
dlA\ > A ZE X E[X |( i )z EA]) ]
| |z€A
ACA{l1,--- £} with |A] >k,

where R(A) denotes the set of (r;);c4 satisfying

Zmzl 0 cBCA,

i€B

i zEBv (W)zEBl( )lE.A\B)

we have

(T,dk”' ,dg) € RDy,.

Remark 5: Roughly speaking, r1;, € R(.A) is the constraint
induced by the conventional Berger-Tung inner bound, which
ensures the joint decodability of (V;);c.4 based on the outputs
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of encoders specified by A. Therefore, if 71, € R(A) holds
for every A C {1,--- ¢} with |A] = k, then the outputs
of any k£ or more encoders are jointly decodable and the
corresponding V;’s can be leveraged to reconstruct the target
signals via MMSE estimation.

Equipped with this lemma, we are in a position to prove
Part 1) of Theorem 2. Let Q (Q1, -+ ,Q¢)T be an
{-dimensional zero-mean Gaussian random vector with covari-
ance matrix

Ag 2 diag!

(/\Q, ,)\Q) > 0.

Moreover, we assume that () is independent of (X, Z, .S), and
let
‘/;,és’t_‘_Qu Z:17a€

Clearly, V 2 (V4,---
in Lemma 1. Let

, Vo)1 satisfies the condition specified

2 ZI(S1, S VA, Vi),

a2 L

%IH El e

J
ZE X EX|V17 7‘/}])2]7 ]:kavg

1=

—

It is easy to show that r1; € R(A) for all A C {1,---,¢}
with |A| = k by leveraging the contra-polymatroid struc-
ture [42] of R(A) and the symmetry of the underlying
distributions. Let Aé) denote the leading j x j principal

submatrix of Ag, j =k, ---,{. We have
1
T:%(h(Vh 'aVk)_h(‘/la"'aVk|517"';Sk))

1

= 81 Qu 5+ Q0) s 1)
1 ) det( —I—A( ))

= — Og—
2k det(AY))

1 det(AY +AY)
og———F7—

2k det(A%))

1 8 +20)(As2+Ag)h !

= —log
k
2k AO

Moreover, for j =k, -+ , £,

1 . . ; N .
d; = jtr(rg? ~TQ@Y +A9) 1)

1 : : . N .
= jtr(Agg) ~ AP A +A9) AP
_ A(]) (A(]) T20) | (= DAx200z2 + )
(A(]) + o) JAs2+Aq) 7
which is a strictly increasing function of Aq, converging to
dffli)n as Ag — 0 and to yx as Ag — oo. One can readily

complete the proof of Part 1) of Theorem 2 by invoking
Lemma 1.
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IV. PROOF OF PART 2) AND PART 3) OF THEOREM 2

Fix k and j with 1 < k < j < £. We proceed by considering
the nondegenerate case I‘g) > 0 and the degenerate case
Fg) = 0 separately. The argument for the nondegenerate case
is quite sophisticated and is roughly divided into 3 steps:

1) augment the probability space via a fictitious signal-

noise decomposition;

2) establish certain constraints on the relevant parameters;

3) analyze the resulting convex optimization problems.

In contrast, the degenerate case can be easily handled due to
its connection with the multiple description problem and the
centralized remote source coding problem.

A. Nondegenerate Case

Step 1: Let (Si,---,S)T = (U, ,U)T +
(Wi, -+, W;)T be a fictitious signal-noise decomposition of
(S1,-+, 8T, where (Uy,---,U;)T and (Wh,---,W;)T

are two mutually independent j-dimensional zero-mean
Gaussian vectors with covariance matrices

ry) - o,

A(]) dlag(j) ()‘Wa ) )\W) - 07

respectively. We then construct the auxiliary random processes
{Ui0), - U;(0)T2y and (WD), -, We())T}2,
accordingly.

It is worth mentioning that the idea of augmenting the
probability space via the introduction of auxiliary random
processes is inspired by [8], [10], [13]-[15], [18], [24], [26],
and [28]. Our construction (without the symmetry constraint)
can be viewed as a generalization of that in [10], which is
restricted to the special case where the corruptive noises are
absent. It should also be contrasted with the conventional

approach where (Uy,---,U;)T and (Wy,---,W;)T are set
respectively to be (X1, --,X;)? and (Z1,---,Z;)T (with
the components of (Z1,---,Z;)T assumed to be mutually

independent); our construction is more flexible and often
yields stronger results. The fictitious signal-noise decomposi-
tion is closely related to the Markov coupling argument in [43].
One subtle difference is that the fictitious decomposition is
specified for (Si,---,S;)7 instead of (Sy,---,S0)7. As a
consequence, we can choose Ay from (0, min{)\(sj)l, As2}),
which may offer more freedom than (0, mm{)\sp)\s,g})

since min{/\g)l, Asz2} > min{)\g)l,)\sg} and the inequality
is strict when pg < 0 and j < /.

Step 2: In view of Definition 1, for any (r,dy---,d;) €
RDy and € > 0, there exist encoding functions gf)g") :R" —
Ci(”) i=1,---,7, such that

=S logle| < 7 e,

€A
ACH{L,--- 5} with |A] =k, (15)
1 - .
o Z ZE[(Xi(t) — Xi.a(t)?] < di +e,
i€ A t=1
ACA{L,--- 5} with |A] =k, (16)

Xi,{l,--- ’j}(f/))Q] S Clj + €.
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‘We have
Y log e
€A
> H((¢" (S1))ica)
= I((UP)ieas (6" (S7))ien)
+H (6™ (S1))ieal (UP)iea)
= I((U)ica; (6™ (S7))ic.a)
+I((SP)iea (6" (SP))ieal (UM)ica)
= h((U")iea) + h(W)ica)
— W((U)ieal (@ (S7))ica)
~h((STieal (U ica <¢<”><sz ))ica)
=3 2 log((2me)* det(TF))) + +3 " Jog((2me

— (U )ieal (67 (SP))ie.)
— (S )ieal(UM)icas (6 (ST))ica),

where Fgc) and A%k,) denote the leading k x k principal

a7

submatrices of Fg) and A(V{,), respectively. For t = 1,--- | n,
let
Sa(t) £ E[(Us(t) - [?i,A(t))zéA(Ui(t) - ?i,A(t))ieA],
A(t) 2 E[(Si(t) — Sia(t)jea(Si(t) — Si.a(t))ical,
where
Us.a(t) 2 E[U®)|(@5 (S3))weal, i€ A,
Si.a(t) 2 BISi(0)|(UDirea (657 (SH)veal, i€ A
Moreover, let
1 n
Sa 2 =) wal)
nia
1 n
Aa s = Al
i3
It can be verified that
<<U">ieA|<¢<”><S”>>ieA)
= Z (U (1))ical(@™ (SM))icas (U Hica)

<Zh

= Z h((U(t) = Ui a(t))ieal (@ (S1))iea)

£)ical (0" (S7))ie)

n

< SO R(L(E) - D alt)ie)
<y % log((2me)" det(Sa (1)) (18)
< glog((%re)k det(X4)) (19)

where (18) is due to the maximum differential entropy
lemma [44, p. 21], and (19) is due to the concavity of the
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log-determinant function. Similarly, we have
h(S)ieal (U )ica. (6 (S7))ie.n)
< glog((Zﬂe)k det(AL).  (20)
Combining (15), (17), (19), and (20) gives
1. det(T¥) det(AlR)
—1 < . 21
2 8 Gor(m ) det(Ag) = TE @
Fort=1,--- n,let
Da(t) 2 E[(Si(t) — 55 a(t)fea(Sit) — Si,a(t))ical,
where
Sia(t) ZE[S()](65" (S)veal, i€ A
Moreover, let
1 n
L -
A= > D)
t=1
Clearly, we have
0<Dy=<TW. (22)
Furthermore, as shown in Appendix B,
Sa =W @®)y=1p,@E)-1pik) 4 p®
~Ip )Ty, (23)
Aa = (DF+ @A) = @) 24)
The argument for (23) can also be leveraged to prove
— Z Z]E i.A(1))%]
zeAt 1
= (0 () D) T 4+ 1§
-1 T,
which, together with (16), implies
(0P (0§ DA T 4+ 1§
TP < k(d, + ). (25)
Fort=1,---,n, let
Mg ()
L E[(S1() =511, j3 (&), S(t) = Sj g1, 4 ()"
(S1(t) = S1q1, 53 (@), 85(8) = Sy 1, 53 ()]
D{l,m,j}(t)
L E[(S1() =511, j3 (&), S(t) = Sj g1, 4 ()T
(S1(t) = S11, 53 (@), 85(8) = Sy 1, 3 ()]
5i(t) & E[(Si(t) — Si(1)?], i=1,--- ],
where
Sif1, 3 ()
2 B[S (1)|U7- -, UL, 67 (S >,- Lol (S,
Z - ]‘5 7 )
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Sivtr gy (8) 2 B[S, ()6 (ST, -, 6™ (ST],
1= ]-a e 7ja
Si(t) £ B[S (1)|U7, o™ (SM)], i=1,--- 4.

Moreover, let

1 n

Ay = 2D Ay (0),
t=1
RN

D{ly...’j} = EZD{I""’j}(t)’
t=1

5 2 6i(t), i=1,--,j.
t=1

The argument for (24) and (25) can be leveraged to show that

Ay 2 (DG 5+ Q)T =)D 26
(TP CP) "Dy ;@) TP 4T
—TQ@) 1Py < j(d; +€). 27)
It is also clear that
0<d;, i=1,--- L (28)

Furthermore, in view of the fact that S} = U* + W', i =
1,---,j, and that (U',---,U}),W{",--- , W] are mutually
independent, we must have

Ay = diag™ (6;)iea,
gt diag(j) (517 e ,(5]').

(29)

A (30)

)

Combining (21)—(30), sending ¢ — 0, and invoking a sym-
metrization and convexity argument® shows that there exist
D®) DU and § satisfying the following set of inequalities

1. det(™) 1. Iy

% ogm §log7§r, 3D
0 <D® <1¥) (32)
0< 94, (33)
diag(k) (6, ,6)
< (D) T+ AT = @) 6
(0 g DM EE) T + 1§
1@ 1r®) < kdy, (35)
diag(j)(é, <o, 0)
< (@) AT =@ 66
(TP 2) D0 (1)1 4 1)
—rQ Y)Y < jd;, (37)

2It can be verified that that D 4, Dy, 5ys A 4, and A{Lm,j}

can be replaced simultaneously by their respective symmetrized
1

counterparts sym(w PAC{L g A=k Da)s  sym(Dyi gy

k

Sym(ﬁEAQ{L---,j}:\A\:kAA)» and  sym(Ayg ... ;)  without

k
violating the relevant inequalities. Here sym(-) maps the given matrix
to a matrix of the same size with all its diagonal (resp. off-diagonal) entries
equal to the mean of the diagonal (resp. off-diagonal) entries of the given
matrix.
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where
D — @(k)diag(k) (dgk),dék), o 7dgk))(@(lc))T7
DY = @) djagl?) (d(lj)7 déﬂ), . ’d(QJ))(@(j))T

X . .

g )7 dgj),dg]),

for some dgk) ,d and

k k)N — k)N— k k k k)— k
B0 AT )~ DTS TP T T,

Equivalently, (31)—(37) can be written as

k
L (1)
2k (8 = awdt A8
_ )\2
+k ! log S(’i) + L log 2w
2k (As2 — Aw)dy” + Asadw 2 g
< (38)
(k) (k)
0 <di” <Agh, (39)
0 < ds” < s, (40)
0 <9, 41)
§ < (@) AR - G H Y (42)
§ < (@) A = Agh) (43)
k k)\— k k k k)N —
AED2AEN 2 + A — 0208
+ (k= 1)(0% 25345 + Ax2 — Ak ,05h)
< kdy, (44)
§ < (@) A - gD H Y (45)
§ < (@) A = Ash) 7 (46)
A2 2P + a9, - P2
+( = D% 22524 + Ax2 = Ak 5A55)
< jd;. (47)

Step 3: Subcase 1: )\g)l > Ag2 > 0. We can send Ay —
Ag,2 and deduce from (38), (42), (43), (45), and (46) that

n(di",ds 6y <7, (48)
k) — — E)v—1\—
§< (@) g - EDTHTL @)
5 <dP, (50)
§< (@) a5 -0 6D
5 <dS, (52)
where
n(d®,dP, 6)
2 Lo (s 1 Liog 282
27 (0]~ Asa)d + AN, 2 O
Furthermore, combining (47), (51), and (52) gives
]_ . . B _ . B _ _
4 2 S(ORDPOG)26 + )™ = ag) ™
AR~ QRO
i—1
+jT(/\§<72>\§7226 + Ax2 — X aAgh): (53)
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Now consider the following convex optimization problem:

; (k) (k) P
T, n(dy”,dy ", 6) (P)
subject to (39), (40), (41), (49), (50), and (44). According
to the Karush-Kuhn-Tucker conditions, (dgk),dék),é) is a
minimizer of the convex optimization problem (P) if and only
if (39), (40), (41), (49), (50), and (44) are satisfied, and there

exist nonnegative ay, as, b1, b, ¢ such that
As2 = AG) .

2k((AS] — A5 + A1 As.2)
— b1+ Aghd? — (AG) )

ay

+eAPN2OE) 2 =0, (54)
az — by + c(k — 1)X% yAg3 =0, (55)
1
—%+b1+b2:0, (56)
ar (d" - 25 =0, (57)
as(dS) — Xg2) =0, (58)
(0 — ((d{) 71+ A5 — (WD) =0, (59)
by(6 — dSF) =0, (60)
k k)\— k k k k)\—
(D282 + A8 — A28

(k= 1) (W% A52d87 + Axa — Ak o5 h) — kdy) = 0.
(61)

Assume dj, € (df:i)n,'yx). It can be verified via algebraic
manipulations that n(dgk),dgk), 0) =7(dy,) for

d" 2 (G 9 H
dy) 2 (Agh+ (8™,
52 55+ %)Y

(62)

where )\g) is given by (4). We shall identify the condition
under which this specific (4", d{"’, ) is a minimizer of (P).
Clearly, (59)—(61) are satisfied. Moreover, in view of (57), (58)
as well as the fact that d(lk) < )\gk)l and d(Qk) < Ag,2, we must

have
am =0, m=1,2,
which, together with (54)—(56), implies
k k k k)N — k
, a8 = + 2k 08 ()
1 — )
2k(d”)?
by = (k—1)eAX 2A55,
d + (k —1)d

CcC =
AED2AED (@) + (k — 1A% L2523 (d5Y)?2
1
X ﬁ

It is obvious that b and ¢ are nonnegative. Therefore, it suf-
fices to have by > 0, which is equivalent to condition (11).
Moreover, under this condition, every minimizer (dgk) , dék), 9)
of (P) must satisfy (62) due to the fact that %1og )‘fs’z is
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a strictly convex function of § (in other words, (48), (39),
(40), (41), (49), (50), and (44) imply that & is uniquely
determined and is given by (62) when r = T(dj)). Hence,
under condition (11), when r = 7(dj), we can deduce d; >
d'") (dy,) by substituting (62) into (53).

Subcase 2: \g o > )\(Sj)l > 0. We can send \yy — )\g)l and
deduce from (38), (42), (43), (45), and (46) that

i, 6y <, (63)
5 < () + DT =ED T (64
§< (@YD =g (69)
5 <d?, (66)
§< (@) + DT AT 6D
where
i(di”, s, 5)
£ ilog : (A(Sk)l)Q ,
2k 7 08 = A" + 251
k—1 A2 1 A9
+—7 log o — Ag)l)jé; N ASQA(S% +5 log %

Furthermore, combining (47), (66), and (67) gives
1 . . B . . . _
dj = SO O8N0+ A%, = AR
Jj—1 ol _ N1y —
AR AS0T A - (8T
+Ax2 — A 2A55)- (68)

Now consider the following convex optimization problem:

: Al gk (k) ;
d§k§1;§>76n(d1 ydy”,6) (P)
subject to (39), (40), (41), (64), (65), and (44). According
to the Karush-Kuhn-Tucker conditions, (dgk)7 dék),é) is a
minimizer of the convex optimization problem (P) if and only
if (39), (40), (41), (64), (65), and (44) are satisfied, and there
exist nonnegative a1, as, 131, 52, ¢ such that

j k
A= AG .
k j k k j
2K(AG = ASDA” +AGAD)
b1+ g - ) )

ay

+eAEDP N2 =0, (69)
(k= 1)) = Xs2) )
GV oy a2
2]@(0\5,2 - )‘5,1)d2 + /\372/\3,1)
7 1)\ — k — k)N —
—ba(1+ (AF) 71 — AghdSY) 2
+é(k — 1)A\x2A53 =0, (70)
1 . .
—%+b1+b2:0, (71)
a(d" - 25 =0, (72)
az(ds — Asp) =0, (73)
b (5 — ((d¥y—1 AWY=1 -\ By=1y-1y _ 74
10— ((d77) " + (Ag7) (As1) ) ) =0, (74)

)
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ba(8 — (a5 1+ (M) = A5k H =0,
~ k k)N — k k k k)\—
OED2OED) 2 A - 02 aE)
(k=DA% 2530 + Ax 2 — A% A55) — kdi) = 0.
(76)

(75)

Assume dj, € (dffi)n,'yx). It can be verified via algebraic
manipulations that ﬁ(dgk),dgk), 0) =7(dy,) for
k k)y— )\ —1\—
7 £ (gD + 0N
di” £ (s + () )
52 ()T T (77)

where )\g ) s given by (4). We shall identify the conditions
under which this specific (4", d{", ) is a minimizer of (P).
Clearly, (74)—(76) are satisfied. Moreover, in view of (72), (73)
as well as the fact that dgk) < )\fgk)l and dék) < Ag,2, we must
have

am =0, m=1,2,
which, together with (69)—(71), implies
k JONC E)y— k
5 —diY + 2ke(AF PG 2’

b= 2k42 ’

o _ U= D0 = d) + 260k — DXZ AGE (A7)
T 2k62 ’
. d\” + (k - 1)ad”

AED2AED72(d)2 + (k — DA% 253 ()2
1
X ﬁ

It is obvious that ¢ is nonnegative. Therefore, it suffices

to have 131 > (0 and 132 > 0, which are equivalent to

conditions (13) and (14), respectively (note that, when j = k,

condition (13) is redundant and condition (14) is simplified

to condition (12)). Moreover, under these conditions, every

minimizer (dgk)(,giék),é) of (P) must satisfy (77) due to the
A J

fact that %1og SL is a strictly convex function of ¢ (in other

words, (63), (39), (40), (41), (64), (65), and (44) imply that §
is uniquely determined and is given by (77) when r = 7(dy)).
Hence, under conditions (13) and (14), when r = 7(dg),
we can deduce d; > dg-k) (di) by substituting (77) into (68).

B. Degenerate Case
Subcase 1: )\g)l > Ag2 = 0. We have

75 (dy) = ilog 7’%{
2k 7 ysdy —vxvz’
&, g U= E)vivz + (kvs — jvz)yxde
A (dy) =

(s = kyz)vx = (5 — k)vsde

The desired conclusion that r > 7 (di) and that d; >
d;k) (di,) when r = 7 (d},) follows from the corresponding
result for the quadratic Gaussian multiple description prob-
lem [26], [35]. Note that (k — 1)A% (A4 )u® (1™ — 1) +
k;()\g];?)l)z)\%’2 = 0 (consequently, condition (11) is satisfied)
when /\(Sj)1 > Ag2 =0.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 3, MARCH 2019

Subcase 2: g o > /\(SZ)1 = 0. It can be verified that

-1 (£ =DA%,
IOg . )
20 g}\S’QdZ — ([ — 1)>\X,2>\Z,2

7(6) (de) _ ¢

which coincides with the rate-distortion function (normalized
by /) of the corresponding centralized remote source coding
problem. Therefore, we must have r > 70 (de). Also, note that
()\()?1)2)\?9721/(4)(1/(4) —-1)+ 03(72()\;{)1)2 = 0 (consequently,
condition (12) is satisfied for £ = ¢) when Ag o > )\g)l =0.

V. CONCLUSION

We have studied the problem of robust distributed compres-
sion of correlated Gaussian sources in a symmetric setting and
obtained a characterization of certain extremal points of the
rate-distortion region. It is expected that one can make further
progress by integrating our techniques with those developed
for the quadratic Gaussian multiple description problem.

APPENDIX A
CALCULATION OF dfjﬂ)n
Assuming I‘(Sj) =0 (ie., )\g)l > 0 and Ag2 > 0), we have
J
> El(Xi — E[X[S1, -+, 55)°])
i=1
= w(ry -9 )Ty

= (AQ - AD(AY)AQ)

_ Ag?,)1)‘(zj,)1 . 1)>\X,2)\Z,2
R

from which the desired result follows immediately. The degen-
erate case /\59],) = 0 or Ag,2 = 0 can be handled by performing
the above analysis in a suitable subspace.

APPENDIX B
PROOF OF (23) AND (24)

Fort=1,---,n,
(Gia®)lea 2 (U)o 4 — E[(U:(1) el (Si(1) 2 4]
= (U() 4 — TE ) 1S ()

which is a k-dimensional zero-mean Gaussian random vector
with covariance I‘gﬂ) - ngk) (I‘fgk))’lfgﬂ) and is independent

of (871 4. As a consequence,

(Ui a®)ea =T CE) NS a)hn, t=1,-+,n.
Now it can be readily verified that
Ba(t) = T () DA )Ty
+E[(G,a() e a(Gialt))ical
=) DA @) T Tl
~Ip ()T, =1,

from which (23) follows immediately.
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Fort=1,.-.

Au(t) < E[(Si(t) = 57 at)ica(Si(t) = 5f a(t))ieal

,n, we have

= (DA®) "+ A= @) H L @8)

where (S'f’ ()X 4 denotes the linear MMSE estimator of

3

(Si(t))T 4 based on (S;a(t)%, and (Us(t))% 4. Since

(A~

1+ B~1Y~1 is matrix concave in A for A = 0 and B > 0,

it follows that

E (D) + AR @)

< (D3 + () = @) a9

Combing (78) and (79) proves (24).
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