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Robust Multiresolution Coding
Jun Chen, Member, IEEE, Sorina Dumitrescu, Member, IEEE, Ying Zhang, and Jia Wang

Abstract—In multiresolution coding a source sequence is en-
coded into a base layer and a refinement layer. The refinement
layer, constructed using a conditional codebook, is in general
not decodable without the correct reception of the base layer. By
relating multiresolution coding with multiple description coding,
we show that it is in fact possible to construct multiresolution
codes in certain ways so that the refinement layer alone can be
used to reconstruct the source to achieve a nontrivial distortion.
As a consequence, one can improve the robustness of the existing
multiresolution coding schemes without sacrificing the efficiency.
Specifically, we obtain an explicit expression of the minimum
distortion achievable by the refinement layer for arbitrary finite
alphabet sources with Hamming distortion measure. Experi-
mental results show that the information-theoretic limits can
be approached using a practical robust multiresolution coding
scheme based on low-density generator matrix codes.

Index Terms—Low-density generator matrix, message-passing
algorithm, multiple description coding, multiresolution coding,
successive refinement.

I. INTRODUCTION

MANY important applications require multicast deliv-
ery of data from a single user to multiple receivers

with diverse characteristics in terms of bandwidth resources,
computational capabilities, and fidelity requirements. It is
desirable that the reconstruction quality at each receiver is
commensurate with its own demand and capability. As a
promising solution to this problem, multiresolution coding has
received significant attention in recent years [1]–[8].

In multiresolution coding a source sequence is encoded into
a base layer and a refinement layer; a coarse reconstruction
of the source is possible based on the base layer while
the two layers together can lead to better reconstruction
quality. Although it is commonly assumed that the role of
the refinement layer is simply to improve the reconstruction
precision upon that achieved by the base layer, it is of
considerable interest to know whether the refinement layer
alone can be used to reconstruct the source. Unfortunately, for
most existing multiresolution coding schemes, the refinement
layer is constructed using a conditional codebook, thus is un-
decodable without the correct reception of the base layer or is
essentially useless for producing any nontrivial reconstruction.
By interpreting multiresolution coding as a special case of
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multiple description coding and leveraging relevant multiple
description code constructions, we shall show that it is in
fact possible to design multiresolution codes in certain ways
so that the refinement layer alone can be (partially) decoded
to produce a nontrivial reconstruction of the source. This is
certainly a desirable feature since it improves the robustness
of multiresolution codes without sacrificing the efficiency.

The remainder of this paper is organized as follows. In
Section II, we discuss the connection between multiresolution
coding and multiple description coding. Some existing results
on these two coding problems are reviewed. In Section III,
we derive an explicit expression of the minimum distortion
achievable by the refinement layer for arbitrary finite alphabet
sources with Hamming distortion measure. A practical robust
multiresolution coding scheme based on low-density gener-
ator matrix (LDGM) codes is proposed in Section IV. The
effectiveness of the proposed scheme is verified in Section V.
Finally, we conclude the paper in Section VI.

II. MULTIRESOLUTION CODING AND MULTIPLE

DESCRIPTION CODING

We shall first review some basic definitions and results
regarding multiresolution coding and multiple description cod-
ing. It will be seen that a key step toward understanding
the role of refinement layer in multiresolution coding is to
interpret multiresolution coding as a special form of multiple
description coding.

A. Multiple Description Coding

In the multiple description problem, a source sequence is
encoded into two descriptions, which are constructed in such
a way that an adequate reconstruction of the source is possible
based on each description while the two descriptions together
can lead to better reconstruction quality. A fundamental prob-
lem of multiple description coding is to characterize the rate-
distortion region, which determines the information-theoretic
limits of multiple description coding.

Consider an i.i.d. process {𝑋(𝑙)}∞𝑙=1 with marginal distri-
bution 𝑝𝑋 on source alphabet 𝒳 . Let 𝑑 : 𝒳 ×𝒳 → [0,∞) be
a distortion measure, where 𝒳 is the reconstruction alphabet.
We assume that 𝒳 and 𝒳 are finite sets.

Definition 1: The quintuple (𝑅1, 𝑅2, 𝐷0, 𝐷1, 𝐷2) is said
achievable, if for all sufficiently large 𝑛, there exist encoding
functions

𝑓
(𝑛)
𝑖 : 𝒳𝑛 → {1, 2, ⋅ ⋅ ⋅ , ⌊2𝑛𝑅𝑖⌋}, 𝑖 = 1, 2,

and decoding functions

𝑔
(𝑛)
0 : {1, 2, ⋅ ⋅ ⋅ , ⌊2𝑛𝑅1⌋} × {1, 2, ⋅ ⋅ ⋅ , ⌊2𝑛𝑅2⌋} → 𝒳𝑛,

𝑔
(𝑛)
𝑖 : {1, 2, ⋅ ⋅ ⋅ , ⌊2𝑛𝑅𝑖⌋} → 𝒳𝑛, 𝑖 = 1, 2,
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such that

𝔼

[ 1
𝑛

𝑛∑
𝑙=1

𝑑(𝑋(𝑙), 𝑋𝑖(𝑙))
]
≤ 𝐷𝑖, 𝑖 = 0, 1, 2,

where 𝑋𝑛
0 = 𝑔

(𝑛)
0 (𝑓

(𝑛)
1 (𝑋𝑛), 𝑓

(𝑛)
2 (𝑋𝑛)) and 𝑋𝑛

𝑖 =

𝑔
(𝑛)
𝑖 (𝑓

(𝑛)
𝑖 (𝑋𝑛)), 𝑖 = 1, 2. The multiple description rate-

distortion region, denoted by ℛ𝒟MD, is the closure of the
set of all achievable quintuples (𝑅1, 𝑅2, 𝐷0, 𝐷1, 𝐷2).

While a computable characterization of ℛ𝒟MD is still
unknown, several inner bounds of ℛ𝒟MD can be found in the
literature [9]–[11], among which the EGC inner bound [9] is
the one that is particularly relevant to our setting. Specifically,
the EGC inner bound ℛ𝒟EGC is the convex hull of the
set of quintuples (𝑅1, 𝑅2, 𝐷0, 𝐷1, 𝐷2) for which there exist
auxiliary random variables 𝑋𝑖, 𝑖 = 0, 1, 2, jointly distributed
with the generic source variable 𝑋 , such that

𝑅𝑖 ≥ 𝐼(𝑋 ;𝑋𝑖), 𝑖 = 1, 2,

𝑅1 +𝑅2 ≥ 𝐼(𝑋 ;𝑋0, 𝑋1, 𝑋2) + 𝐼(𝑋1;𝑋2),

𝐷𝑖 ≥ 𝔼[𝑑(𝑋,𝑋𝑖)], 𝑖 = 0, 1, 2.

The coding scheme associated with the EGC inner bound
can be roughly understood as follows. Generate codebook 1
and codebook 2 using marginal distributions 𝑝𝑋1 and 𝑝𝑋2 ,
respectively. For each pair of codewords, one from codebook
1 and the other from codebook 2, generate a codebook using
the conditional distribution 𝑝𝑋0∣𝑋1𝑋2

; such a codebook will
be referred to as a conditional codebook. The source 𝑋 is
encoded into two descriptions, where description 1 contains
an index specifying a codeword 𝑋1 in codebook 1 and a
portion of index specifying a codeword 𝑋0 in the conditional
codebook while description 2 contains an index specifying
a codeword 𝑋2 in codebook 2 and the remaining portion of
index for 𝑋0. Here the conditional codebook itself is specified
by 𝑋1 and 𝑋2 (or equivalently, the indices of 𝑋1 and 𝑋2).
Given a single description, say, description 𝑖, one can decode
𝑋𝑖 and use it as the reconstruction of 𝑋 . If both descriptions
are received, then one can decode 𝑋0 and use it as the
reconstruction. Note that given a single description, it is in
general impossible to (even partially) decode 𝑋0 since the
available information is not enough to specify the conditional
codebook from which 𝑋0 is picked; moreover, if such a
description only contains a partial index for 𝑋0, then the
position of 𝑋0 in the conditional codebook is also ambiguous.

B. Multiresolution Coding

It is instructive to view multiresolution coding as a special
form of multiple description coding in which the distortion
constraint on the second description (i.e., 𝐷2) is not imposed.
In this scenario it is common to refer to the first description
as the base layer and the second description as the refinement
layer.

Definition 2: The multiresolution coding rate-distortion re-
gion ℛ𝒟MR is given by

ℛ𝒟MR = {(𝑅1, 𝑅2, 𝐷0, 𝐷1) : (𝑅1, 𝑅2, 𝐷0, 𝐷1,∞) ∈ ℛ𝒟MD}.
As shown in [12], ℛ𝒟MR is equal to the set of quadruples

(𝑅1, 𝑅2, 𝐷0, 𝐷1) for which there exist auxiliary random vari-

ables 𝑋0 and 𝑋1, jointly distributed with the generic source
variable 𝑋 , such that

𝑅1 ≥ 𝐼(𝑋 ;𝑋1),

𝑅1 +𝑅2 ≥ 𝐼(𝑋 ;𝑋0, 𝑋1),

𝐷𝑖 ≥ 𝔼[𝑑(𝑋,𝑋𝑖)], 𝑖 = 0, 1.

It is easy to see that ℛ𝒟MR is equivalent to ℛ𝒟EGC with
𝑋2 set to be a constant. Such a connection is well under-
stood. In fact, most existing multiresolution code constructions
are based on this interpretation of ℛ𝒟MR. However, this
interpretation has the following implicit consequence on the
resulting constructions, that is, the refinement layer alone
is in general useless for reconstructing the source. Indeed,
in the aforedescribed EGC scheme, if one sets 𝑋2 to be a
constant, then the second description alone is in general not
(even partially) decodable since it only contains a portion of
index specifying a codeword 𝑋0 in the conditional codebook.
It will be seen that there is an alternative way to design the
refinement layer based on a deeper connection between ℛ𝒟MR

and ℛ𝒟EGC.

C. Connection

In the most general formulation, if one simply imposes the
requirement that the refinement layer alone can be used to
produce a nontrivial reconstruction of the source, then mul-
tiresolution coding becomes equivalent to multiple description
coding. In practice, multiresolution coding often has a more
restricted meaning: loosely speaking, the base layer and the
refinement layer should be constructed in a greedy manner
to achieve the minimum distortion at each reconstruction
step. This is the case where multiresolution coding is most
interesting. Indeed, such a greedy property can even be viewed
as the essential feature of multiresolution coding. We shall
show that in this natural setting it is possible to determine the
minimum distortion achievable by the refinement layer of a
multiresolution code.

Let 𝑅(𝐷) denote the rate-distortion function, i.e., 𝑅(𝐷) =
min𝑝𝑋̂∣𝑋 𝐼(𝑋 ; 𝑋̂), where the minimization is over 𝑝𝑋̂∣𝑋 sub-

ject to the constraint 𝔼[𝑑(𝑋, 𝑋̂)] ≤ 𝐷. Define

𝑅(𝑅1, 𝐷0, 𝐷1) = min{𝑅1 +𝑅2 : (𝑅1, 𝑅2, 𝐷0, 𝐷1) ∈ ℛ𝒟MR}.
It can be shown [12] that

𝑅(𝑅1, 𝐷0, 𝐷1) = max
{
𝑅1, min

𝑝𝑋0𝑋1∣𝑋
𝐼(𝑋 ;𝑋0, 𝑋1)

}
,

where the minimization is over 𝑝𝑋0𝑋1∣𝑋 subject to the
constraints 𝔼[𝑑(𝑋,𝑋0)] ≤ 𝐷0, 𝐼(𝑋 ;𝑋1) ≤ 𝑅1, and
𝔼[𝑑(𝑋,𝑋1)] ≤ 𝐷1. Define

𝐷∗
2(𝐷0, 𝐷1) = min

𝑅1=𝑅(𝐷1)

𝑅1+𝑅2=𝑅(𝑅1,𝐷0,𝐷1)
(𝑅1,𝑅2,𝐷0,𝐷1,𝐷2)∈ℛ𝒟MD

𝐷2.

Note that 𝐷∗
2(𝐷0, 𝐷1) can be interpreted as the minimum

distortion achievable by the refinement layer in the case where
𝑅1 = 𝑅(𝐷1) and 𝑅1 + 𝑅2 = 𝑅(𝑅(𝐷1), 𝐷0, 𝐷1). The
following result is a simple consequence of [13, Lemma 3].

Theorem 1: Let 𝒬 denote the convex hull of the set of quin-
tuples (𝑅1, 𝑅2, 𝐷0, 𝐷1, 𝐷2) for which there exist auxiliary
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random variables 𝑋𝑖, 𝑖 = 0, 1, 2, jointly distributed with the
generic source variable 𝑋 , such that

𝐼(𝑋1;𝑋2) = 0,

𝑅𝑖 ≥ 𝐼(𝑋 ;𝑋𝑖), 𝑖 = 1, 2,

𝑅1 +𝑅2 ≥ 𝐼(𝑋 ;𝑋0, 𝑋1, 𝑋2),

𝐷𝑖 ≥ 𝔼[𝑑(𝑋,𝑋𝑖)], 𝑖 = 0, 1, 2.

We have

𝐷∗
2(𝐷1, 𝐷0) = min

𝑅1=𝑅(𝐷1)

𝑅1+𝑅2=𝑅(𝑅1,𝐷0,𝐷1)
(𝑅1,𝑅2,𝐷0,𝐷1,𝐷2)∈𝒬

𝐷2. (1)

Remark: This result can also be proved by invoking [14,
Theorem 1] if 𝑅(𝑅1, 𝐷1, 𝐷0) = 𝑅(𝐷0).

Note that one can obtain 𝒬 from ℛ𝒟EGC by imposing an
additional constraint 𝐼(𝑋1;𝑋2) = 0 (i.e., 𝑋1 and 𝑋2 are in-
dependent). This reveals a new perspective on multiresolution
coding. Roughly speaking, to obtain a multiresolution coding
scheme from an EGC scheme, one just needs to let 𝑋2 be
independent of 𝑋1, instead of setting 𝑋2 to be a constant. In
this way, the refinement layer alone is still useful since one
can decode 𝑋2 and use it as the reconstruction of the source.

In principle it is possible to compute 𝐷∗
2(𝐷0, 𝐷1) by solv-

ing the minimization problem in (1) via numerical methods.
In the next section we shall derive an explicit expression
of 𝐷∗

2(𝐷0, 𝐷1) for arbitrary finite alphabet sources with
Hamming distortion measure.

III. FINITE ALPHABET SOURCE WITH HAMMING

DISTORTION MEASURE

Let 𝒳 = 𝒳 = {0, 1, ⋅ ⋅ ⋅ ,𝑚} for some positive integer 𝑚.
Let 𝑑 = 𝑑𝐻 : 𝒳 × 𝒳 → {0, 1} be the Hamming distortion
measure, i.e, 𝑑𝐻(𝑥, 𝑥) = 0 if 𝑥 = 𝑥̂ and 𝑑𝐻(𝑥, 𝑥̂) = 1
if 𝑥 ∕= 𝑥̂. Note that 𝔼[𝑑𝐻(𝑋, 𝑋̂)] = ℙ(𝑋 ∕= 𝑋̂). Without
loss of generality, we shall assume 𝑝𝑋(0) ≥ 𝑝𝑋(1) ≥ ⋅ ⋅ ⋅ ≥
𝑝𝑋(𝑚) > 0.

Let 𝑅(𝐷) and 𝐷(𝑅) denote the rate-distortion function and
the distortion-rate function, respectively, of source 𝑋 with
Hamming distortion measure. The following facts are well
known [15]–[17].

F1) 𝐷(𝑅)∣𝑅=0 = 1−max𝑥∈𝒳 𝑝𝑋(𝑥) = 1− 𝑝𝑋(0).
F2) 𝑅(𝐷) is a strictly convex function of 𝐷 for 𝐷 ∈

[0, 𝐷(𝑅)∣𝑅=0].
F3) For 0 ≤ 𝐷0 ≤ 𝐷1 < 𝐷(𝑅)∣𝑅=0, we have

𝐼(𝑋 ;𝑋1) = 𝑅(𝐷1),

𝐼(𝑋 ;𝑋0, 𝑋1) = 𝑅(𝐷0),

ℙ(𝑋 ∕= 𝑋𝑖) = 𝐷𝑖, 𝑖 = 0, 1,

if and only if 𝑋 −𝑋0 −𝑋1 form a Markov chain, and
𝑝𝑋𝑋0𝑋1 is specified by

𝑝𝑋𝑖(𝑥) =
(𝑝𝑋(𝑥)− 𝜆𝑖)

+

∑
𝑥′∈𝒳 (𝑝𝑋(𝑥′)− 𝜆𝑖)+

, 𝑥 ∈ 𝒳 , 𝑖 = 0, 1,

(2)

𝑝𝑋∣𝑋0
(𝑥∣𝑥0)

=

⎧⎨
⎩

1−𝐷0, 𝑥 = 𝑥0 ∈ 𝒳+
0

𝜆0, 𝑥 ∕= 𝑥0, 𝑥 ∈ 𝒳+
0 , 𝑥0 ∈ 𝒳+

0

𝑝𝑋(𝑥) 𝑥 /∈ 𝒳+
0 , 𝑥0 ∈ 𝒳+

0

, (3)

𝑝𝑋0∣𝑋1
(𝑥0∣𝑥1)

=

⎧⎨
⎩

1−𝐷1−𝜆0

1−𝐷0−𝜆0
, 𝑥0 = 𝑥1 ∈ 𝒳+

1
𝜆1−𝜆0

1−𝐷0−𝜆0
, 𝑥0 ∕= 𝑥1, 𝑥0 ∈ 𝒳+

1 , 𝑥1 ∈ 𝒳+
1

𝑝𝑋(𝑥0)−𝜆0

1−𝐷0−𝜆0
𝑥0 ∈ 𝒳+

0 , 𝑥0 /∈ 𝒳+
1 , 𝑥1 ∈ 𝒳+

1

,

(4)

where 𝜆0 ∈ [0, 𝜆1] and 𝜆1 ∈ [0, 𝑝𝑋(1)) are uniquely
determined by
∑

𝑥𝑖∈𝒳+
𝑖

𝑝𝑋𝑖(𝑥𝑖)𝑝𝑋∣𝑋𝑖
(𝑥∣𝑥𝑖) = 𝑝𝑋(𝑥), 𝑥 ∈ 𝒳 , 𝑖 = 0, 1,

and 𝒳+
𝑖 = {𝑥 ∈ 𝒳 : 𝑝𝑋(𝑥) − 𝜆𝑖 > 0}, 𝑖 = 0, 1.

F4) 𝑅(𝑅(𝐷1), 𝐷0, 𝐷1) = 𝑅(𝐷0) for 0 ≤ 𝐷0 ≤ 𝐷1 ≤
𝐷(𝑅)∣𝑅=0.

The following theorem is the main result of this section.
Theorem 2: 𝐷∗

2(𝐷1, 𝐷0) = 𝐷(𝑅)∣𝑅=0+𝐷0−𝐷1 for 0 ≤
𝐷0 ≤ 𝐷1 ≤ 𝐷(𝑅)∣𝑅=0.
Remark: For the binary uniform source, Theorem 2 reduces
to [13, Theorem 5]. Moreover, it is interesting to note that
Theorem 2 also holds for the quadratic Gaussian case [18].

We shall prove Theorem 2 by establishing a series of
lemmas. It is clear that Theorem 2 is true when 𝐷1 =
𝐷(𝑅)∣𝑅=0. Therefore, we shall only consider the case 0 ≤
𝐷0 ≤ 𝐷1 < 𝐷(𝑅)∣𝑅=0. For 0 ≤ 𝐷0 ≤ 𝐷1 < 𝐷(𝑅)∣𝑅=0,
let 𝑝𝑋𝑋0𝑋1 be the probability distribution specified by (2)-
(4) and the Markov chain constraint 𝑋 − 𝑋0 − 𝑋1; de-
fine 𝐷̃2(𝐷0, 𝐷1) = min𝑝𝑋2∣𝑋𝑋0𝑋1

ℙ(𝑋 ∕= 𝑋2), where the
minimization is over 𝑝𝑋2∣𝑋𝑋0𝑋1

subject to the constraints
𝐼(𝑋 ;𝑋1, 𝑋2∣𝑋0) = 0 (i.e.,𝑋−𝑋0−(𝑋1, 𝑋2) form a Markov
chain) and 𝐼(𝑋1;𝑋2) = 0 (i.e., 𝑋1 and 𝑋2 are independent).

Lemma 1: 𝐷∗
2(𝐷0, 𝐷1) = 𝐷̃2(𝐷0, 𝐷1) for 0 ≤ 𝐷0 ≤

𝐷1 < 𝐷(𝑅)∣𝑅=0.
Proof: For any 𝑋2 such that 𝐼(𝑋 ;𝑋1, 𝑋2∣𝑋0) = 0 and

𝐼(𝑋1;𝑋2) = 0, let

𝑅1 = 𝐼(𝑋 ;𝑋1),

𝑅2 = 𝐼(𝑋,𝑋1;𝑋2) + 𝐼(𝑋 ;𝑋0∣𝑋1, 𝑋2),

𝐷𝑖 = ℙ(𝑋 ∕= 𝑋𝑖), 𝑖 = 0, 1, 2.

Note that 𝑅2 ≥ 𝐼(𝑋 ;𝑋2) and

𝑅1 +𝑅2 = 𝐼(𝑋 ;𝑋1) + 𝐼(𝑋,𝑋1;𝑋2) + 𝐼(𝑋 ;𝑋0∣𝑋1, 𝑋2)

= 𝐼(𝑋 ;𝑋1) + 𝐼(𝑋1;𝑋2) + 𝐼(𝑋 ;𝑋2∣𝑋1)

+ 𝐼(𝑋 ;𝑋0∣𝑋1, 𝑋2)

= 𝐼(𝑋 ;𝑋1) + 𝐼(𝑋 ;𝑋2∣𝑋1) + 𝐼(𝑋 ;𝑋0∣𝑋1, 𝑋2)

= 𝐼(𝑋 ;𝑋0, 𝑋1, 𝑋2).

Therefore, we have (𝑅1, 𝑅2, 𝐷0, 𝐷1, 𝐷2) ∈ 𝒬. Moreover,
since

𝑅1 = 𝐼(𝑋 ;𝑋1) = 𝑅(𝐷1),

𝑅1 +𝑅2 = 𝐼(𝑋 ;𝑋0, 𝑋1, 𝑋2) = 𝐼(𝑋 ;𝑋0, 𝑋1) = 𝑅(𝐷0),

𝐷𝑖 = ℙ(𝑋 ∕= 𝑋𝑖), 𝑖 = 0, 1,
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it follows from F4) and Theorem 1 that𝐷∗
2(𝐷0, 𝐷1) ≤ ℙ(𝑋 ∕=

𝑋2), which further implies that 𝐷∗
2(𝐷0, 𝐷1) ≤ 𝐷̃2(𝐷0, 𝐷1).

Now we proceed to show that 𝐷∗
2(𝐷0, 𝐷1) ≥ 𝐷̃2(𝐷0, 𝐷1).

In view of F4) and Theorem 1, we have (𝑅(𝐷1), 𝑅(𝐷0) −
𝑅(𝐷1), 𝐷0, 𝐷1, 𝐷

∗
2(𝐷0, 𝐷1)) ∈ 𝒬. By the definition of 𝒬,

there exist 𝑝
𝑋𝑋

(𝑗)
0 𝑋

(𝑗)
1 𝑋

(𝑗)
2

and 𝜇𝑗 > 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟, for
some positive integer 𝑟 such that

𝐼(𝑋
(𝑗)
1 ;𝑋

(𝑗)
2 ) = 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟, (5)

𝑟∑
𝑗=1

𝜇𝑗 = 1, (6)

𝑟∑
𝑗=1

𝜇𝑗𝐼(𝑋 ;𝑋
(𝑗)
1 ) ≤ 𝑅(𝐷1), (7)

𝑟∑
𝑗=1

𝜇𝑗𝐼(𝑋 ;𝑋
(𝑗)
0 , 𝑋

(𝑗)
1 , 𝑋

(𝑗)
2 ) ≤ 𝑅(𝐷0), (8)

𝑟∑
𝑗=1

𝜇𝑗ℙ(𝑋 ∕= 𝑋
(𝑗)
𝑖 ) ≤ 𝐷𝑖, 𝑖 = 0, 1, (9)

𝑟∑
𝑗=1

𝜇𝑗ℙ(𝑋 ∕= 𝑋
(𝑗)
2 ) ≤ 𝐷∗

2(𝐷0, 𝐷1). (10)

It can be shown by leveraging F2) that

𝐼(𝑋 ;𝑋
(𝑗)
𝑖 ) = 𝑅(𝐷𝑖), 𝑖 = 0, 1, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟, (11)

ℙ(𝑋 ∕= 𝑋
(𝑗)
𝑖 ) = 𝐷𝑖, 𝑖 = 0, 1, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟. (12)

By (8) and (11), we must have

𝐼(𝑋 ;𝑋
(𝑗)
0 , 𝑋

(𝑗)
1 , 𝑋

(𝑗)
2 ) = 𝐼(𝑋 ;𝑋

(𝑗)
0 , 𝑋

(𝑗)
1 ) = 𝐼(𝑋 ;𝑋

(𝑗)
0 ),

𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟, (13)

i.e., 𝐼(𝑋 ;𝑋
(𝑗)
1 , 𝑋

(𝑗)
2 ∣𝑋(𝑗)

0 ) = 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟. In view of
(11), (12), and (13), one can readily show by invoking F3) that
𝑝
𝑋𝑋

(𝑗)
0 𝑋

(𝑗)
1

= 𝑝𝑋𝑋0𝑋1 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑟. Therefore, it follows

from (10) and the definition of 𝐷̃2(𝐷0, 𝐷1) that

𝐷∗
2(𝐷0, 𝐷1) ≥ min

𝑗∈{1,2,⋅⋅⋅ ,𝑟}
ℙ(𝑋 ∕= 𝑋

(𝑗)
2 ) ≥ 𝐷̃2(𝐷0, 𝐷1).

The proof is complete.
It is easy to see from the definition of 𝒳+

0 and 𝒳+
1 that

𝒳+
𝑖 = {0, 1, ⋅ ⋅ ⋅ ,𝑚𝑖}, 𝑖 = 0, 1, for some positive integers 𝑚0

and 𝑚1; moreover, we have 𝒳+
1 ⊆ 𝒳+

0 (i.e., 𝑚1 ≤ 𝑚0). Let
𝒫(𝒳+

0 ) denote the set of probability distributions defined on
𝒳+

0 .
Lemma 2: With no loss of generality one can assume 𝑝𝑋2 ∈

𝒫(𝒳+
0 ) in the definition of 𝐷̃2(𝐷0, 𝐷1).
Proof: See Appendix A.

Lemma 3: For any 𝑋2 such that 𝑝𝑋2 ∈ 𝒫(𝒳+
0 ) and

𝐼(𝑋 ;𝑋2∣𝑋0) = 0, we have

ℙ(𝑋 ∕= 𝑋2) = 𝐷0 + (1−𝐷0 − 𝜆0)ℙ(𝑋0 ∕= 𝑋2).

Proof: See Appendix B.
Define 𝐷̄2(𝐷0, 𝐷1) = min𝑝𝑋2∣𝑋0𝑋1

ℙ(𝑋0 ∕= 𝑋2), where
the minimization is over 𝑝𝑋2∣𝑋0𝑋1

subject to the constraints
𝑝𝑋2 ∈ 𝒫(𝒳+

0 ) and 𝐼(𝑋1;𝑋2) = 0. It is obvious that
𝐷̄2(𝐷0, 𝐷1) is unaffected if the constraint 𝑝𝑋2 ∈ 𝒫(𝒳+

0 ) is
removed.

Lemma 4: 𝐷̃2(𝐷0, 𝐷1) = 𝐷0+(1−𝐷0−𝜆0)𝐷̄2(𝐷0, 𝐷1).
Proof: In view of the fact that 𝐷0 ≤ 𝐷(𝑅)∣𝑅=0 = 1 −

𝑝𝑋(0) (see F1)) and 𝜆0 ≤ 𝜆1 ≤ 𝑝𝑋(1) ≤ 𝑝𝑋(0) (see F3)),
we have 1 − 𝐷0 − 𝜆0 ≥ 0. Therefore, this result is a direct
consequence of Lemma 2 and Lemma 3.

Lemma 5: 𝐷̄2(𝐷0, 𝐷1) = 1− 𝑝𝑋0(0)− ℙ(𝑋0 ∕= 𝑋1).
Proof: See Appendix C.

Combining Lemmas 1, 4, and 5, we have

𝐷∗
2(𝐷0, 𝐷1)

= 𝐷0 + (1−𝐷0 − 𝜆0)(1− 𝑝𝑋0(0)− ℙ(𝑋0 ∕= 𝑋1))

= 𝐷0 + (1−𝐷0 − 𝜆0)
(
1− 𝑝𝑋0(0)− 1 +

1−𝐷1 − 𝜆0
1−𝐷0 − 𝜆0

)

(14)

= 1− (1−𝐷0)𝑝𝑋0(0)− 𝜆0(1− 𝑝𝑋0(0)) +𝐷0 −𝐷1

= 1− 𝑝𝑋(0) +𝐷0 −𝐷1 (15)

= 𝐷(𝑅)∣𝑅=0 +𝐷0 −𝐷1, (16)

where (14), (15), and (16) follow from (4), (3), and F1),
respectively. This completes the proof of Theorem 2.

IV. PRACTICAL ROBUST MULTIRESOLUTION CODING

SCHEME

We shall present a robust multiresolution coding scheme
based on LDGM codes.

It is instructive to first explain the underlying ideas using
random codes and joint typicality encoding.

1) Codebook Generation: Generate two random code-
books 𝒞1 = {𝑥𝑛1,𝑘1

}2𝑛(𝐼(𝑋;𝑋1)+𝜖1)

𝑘1=1 and 𝒞2 =

{𝑥𝑛2,𝑘2
}2𝑛(𝐼(𝑋,𝑋1;𝑋2)+𝜖2)

𝑘2=1 according to
∏𝑛

𝑙=1 𝑝𝑋1(⋅) and∏𝑛
𝑙=1 𝑝𝑋2(⋅), respectively. For each pair of codewords

𝑥𝑛1,𝑘1
∈ 𝒞1 and 𝑥𝑛2,𝑘2

∈ 𝒞2, generate a random codebook

𝒞0(𝑘1, 𝑘2) = {𝑥𝑛0,𝑘0,𝑘1,𝑘2
}2𝑛(𝐼(𝑋;𝑋0∣𝑋1,𝑋2)+𝜖0)

𝑘0=1 according
to

∏𝑛
𝑙=1 𝑝𝑋0∣𝑋1𝑋2

(⋅∣𝑥1,𝑘1(𝑙), 𝑥2,𝑘2(𝑙)).
2) Encoding: Given the source sequence 𝑥𝑛, first find 𝑘∗1

such that 𝑥𝑛1,𝑘∗
1

is jointly strongly typical with 𝑥𝑛, then
find 𝑘∗2 such that 𝑥𝑛2,𝑘∗

2
is jointly strongly typical with

(𝑥𝑛, 𝑥𝑛1,𝑘∗
1
), finally find 𝑘∗0 such that 𝑥𝑛0,𝑘∗

0 ,𝑘
∗
1 ,𝑘

∗
2

is jointly
strongly typical with (𝑥𝑛, 𝑥𝑛1,𝑘∗

1
, 𝑥𝑛2,𝑘∗

2
). The base layer

of the multiresolution code contains the index 𝑘∗1 while
the refinement layer contains 𝑘∗2 and 𝑘∗0 .

3) Decoding: The decoder uses 𝑥𝑛1,𝑘∗
1

as the reconstruc-
tion if the base layer is received, uses 𝑥𝑛2,𝑘∗

2
as the

reconstruction if the refinement layer is received, and
uses 𝑥𝑛0,𝑘∗

0 ,𝑘
∗
1 ,𝑘

∗
2

as the reconstruction if both layers are
received.

Notice that the encoder can be regarded as the cascade
of three encoders ℰ1, ℰ2, and ℰ3 outputting indices 𝑘∗1 , 𝑘

∗
2 ,

and 𝑘∗0 , respectively. Following the above theoretical coding
system we propose a practical coding scheme, which employs
a multilevel LDGM code to generate the codebook, in con-
junction with a message passing algorithm, at each component
encoder. Multilevel LDGM codes were introduced in [19] to
generate codebooks with codewords of non-uniform empirical
distribution. They were shown to achieve the rate-distortion
bound for single description coding of general finite alphabet
sources, when used with the strong typicality encoding rule.
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Fig. 1. Factor graph of a multilevel LDGM code.

We mention that a three-stage successive coding scheme
based on LDGM codes for the multiple description problem
was proposed in [20]. However, the purpose of the three
component encoders in [20] differs from our case. Precisely,
in [20], the first stage generates a common part of the two
descriptions, while the second and third stages produce the
remaining part of description 1, respectively description 2.

Next we briefly review the design of multilevel LDGM
codes under a uniform framework and clarify the specifics
for each encoding stage. Notice that the design requirements
for each codebook specify the output alphabet 𝒵 of the
codewords, the size 2𝑛𝑅 of the codebook and 𝑛 probability
distributions 𝑝1(⋅), ⋅ ⋅ ⋅ , 𝑝𝑛(⋅) over 𝒵 . The requirement for the
codebook is to be randomly generated according to

∏𝑛
𝑙=1 𝑝𝑙(⋅).

Precisely, we have 𝑝𝑙(⋅) = 𝑝𝑋1(⋅) for ℰ1, 𝑝𝑙(⋅) = 𝑝𝑋2(⋅)
for ℰ2, and 𝑝𝑙(⋅) = 𝑝𝑋0∣𝑋1𝑋2

(⋅∣𝑥1,𝑘∗
1
(𝑙), 𝑥2,𝑘∗

2
(𝑙)) for ℰ3,

1 ≤ 𝑙 ≤ 𝑛.
To approximately satisfy the above requirement, we select

an integer 𝜔 > 0 and 𝑛 mappings 𝜙𝑙 : {0, 1}𝜔 → 𝒵 such that
∣𝜙−1

𝑙 (𝑧)∣ ≈ 2𝜔𝑝𝑙(𝑧) for all 1 ≤ 𝑙 ≤ 𝑛 and 𝑧 ∈ 𝒵 . Based on
these mappings, the function Φ : {0, 1}𝑛𝜔 → 𝒵𝑛 is defined
as follows: the 𝑙-th symbol of Φ(𝑐𝑛𝜔) equals 𝜙𝑙(𝑐(𝑙), 𝑐(𝑛 +
𝑙), ⋅ ⋅ ⋅ , 𝑐(𝑛(𝜔 − 1) + 𝑙)) for all 𝑐𝑛𝜔 ∈ {0, 1}𝑛𝜔. Further, a
low-density generator matrix 𝐺 of dimension 𝑛𝜔 ×𝑚, over
the binary field 𝐺𝐹 (2) is chosen, where 𝑚 = 𝑛𝑅. Then the
codebook generated by the multilevel LDGM code is defined
as

𝒞 = {𝑧𝑛 ∈ 𝒵𝑛∣𝑧𝑛 = Φ(𝐺𝑣𝑚), 𝑣𝑚 ∈ {0, 1}𝑚},
where the matrix multiplication is performed over 𝐺𝐹 (2).

The multilevel LDGM code is associated with a factor graph
as illustrated in Figure 1. The graph consists of 𝑛 source
nodes {𝑆1, ⋅ ⋅ ⋅ , 𝑆𝑛}, corresponding to the sequence input
to the encoder, 𝑚 variable nodes {𝑉1, ⋅ ⋅ ⋅ , 𝑉𝑚}, 𝑛𝜔 check
nodes {𝐶1, ⋅ ⋅ ⋅ , 𝐶𝑛𝜔}, and 𝑛 network nodes {𝑁1, ⋅ ⋅ ⋅ , 𝑁𝑛}.
Each variable node 𝑉𝑘 is associated with information bit
𝑣(𝑘) and is connected by an edge to every check node 𝐶𝑞

such that 𝐺(𝑞, 𝑘) = 1. Every check node 𝐶𝑞 is assigned
a bit value 𝑐(𝑞) computed as the modulo 2 summation
of the bit values at adjacent variables nodes. Finally, each
network node 𝑁𝑙 is connected by an edge to check nodes
𝐶𝑙, 𝐶𝑙+𝑛, ⋅ ⋅ ⋅ , 𝐶𝑙+(𝜔−1)𝑛, and to the source node 𝑆𝑙. 𝑁𝑙

is associated with the 𝑙-th symbol 𝑧(𝑙) of the codeword,
computed by applying the mapping 𝜙𝑙(⋅) to the bit values
at the adjacent check nodes. The construction of the mapping

𝜙𝑙(⋅) ensures that the marginal distribution of symbol 𝑧(𝑙)
approximates 𝑝𝑙(⋅).

Notice that encoder ℰ3 needs multiple conditional code-
books. However, by choosing a common value of the integer
𝜔 and a common low-density generator matrix 𝐺 for all these
codes, the associated factor graphs become identical. What
differs from one codebook to another are only the functions
𝜙𝑙(⋅). Since the number of different mappings 𝜙𝑙(⋅) is small,
the storage space needed at ℰ3 is comparable with that for a
single LDGM code.

Each encoder is associated with a pair of random variables
𝑌 and 𝑍 jointly distributed over the alphabets 𝒴 and 𝒵 ,
respectively. The encoder requirement is, given the input
sequence 𝑦𝑛, to select a codeword 𝑧𝑛 jointly strongly typical
with 𝑦𝑛. The input sequence 𝑦𝑛 is the source sequence
𝑥𝑛 combined with the codeword(s) selected by previous
encoder(s), if any. Thus, the alphabet 𝒴 is the cartesian product
of 𝒳 and the codeword alphabets of previous encoder(s),
if any. Precisely, for ℰ1 we have (𝑌, 𝑍) = (𝑋,𝑋1) and
𝑦𝑛 = 𝑥𝑛. For ℰ2 we have 𝑌 = (𝑋,𝑋1), 𝑍 = 𝑋2, and 𝑦(𝑙) =
(𝑥(𝑙), 𝑥1,𝑘∗

1
(𝑙)), 1 ≤ 𝑙 ≤ 𝑛. Finally, for ℰ3, we have 𝑌 =

(𝑋,𝑋1, 𝑋2), 𝑍 = 𝑋0, and 𝑦(𝑙) = (𝑥(𝑙), 𝑥1,𝑘∗
1
(𝑙), 𝑥2,𝑘∗

2
(𝑙)),

1 ≤ 𝑙 ≤ 𝑛.
As in prior work on LDGM-based coding [19]–[22], we use

a message passing algorithm over the associated factor graph
as a heuristic to solve the encoder problem. Our algorithm of
choice is belief propagation with decimation. It proceeds in
a series of rounds. Each round consists of a message passing
phase where messages are transmitted between every adjacent
nodes in a series of iterations, followed by a decimation phase
where some variable nodes are fixed and removed from the
factor graph. The algorithm stops when all variable nodes are
fixed.

At each message passing iteration, every node 𝐴 passes
a message to each adjacent non-source node 𝐵. If 𝐴 is not
a source node then the message consists of two components:
𝑀𝐴→𝐵(0) and 𝑀𝐴→𝐵(1). If 𝐴 is a source node, the message
consists of ∣𝒵∣ components: 𝑀𝐴→𝐵(𝑧), 𝑧 ∈ 𝒵 .

During the first iteration in the first round, only the source
nodes and check nodes pass messages, the messages sent by
check nodes being (0.5, 0.5). After that, at each iteration the
schedule of message transmission is: 1) from network nodes
and variable nodes to check nodes; 2) from source nodes
and check nodes to their adjacent nodes. Every non-source
node computes the message to pass along an edge using
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𝑀𝑆𝑙→𝑁𝑙
(𝑧) = exp(−𝜆(𝑦(𝑙), 𝑧)),

for all 𝑧 ∈ 𝒵, 1 ≤ 𝑙 ≤ 𝑛,

𝑀𝑁𝑙→𝐶𝑙+𝑠𝑛
(𝑏) =

∑
𝑧∈𝒵

𝑀𝑆𝑙→𝑁𝑙
(𝑧)

∑
𝑏𝜔∈{0,1}𝜔
𝑏(𝑠+1)=𝑏
𝜙𝑙(𝑏

𝜔)=𝑧

∏
𝑗=0
𝑗 ∕=𝑠

𝜔−1
𝑀𝐶𝑙+𝑗𝑛→𝑁𝑙

(𝑏(𝑗)),

𝑀𝐶𝑙+𝑠𝑛→𝑁𝑙
(𝑏) =

1

2
+

(−1)𝑏

2

∏
𝑘∈ℬ𝑣(𝑙+𝑠𝑛)

(𝑀𝑉𝑘→𝐶𝑙+𝑠𝑛
(0)−𝑀𝑉𝑘→𝐶𝑙+𝑠𝑛

(1)),

for all 𝑏 ∈ {0, 1}, 1 ≤ 𝑙 ≤ 𝑛, 0 ≤ 𝑠 ≤ 𝜔 − 1,

𝑀𝐶𝑙+𝑠𝑛→𝑉𝑘
(𝑏) =

1

2
+

(−1)𝑏

2
(𝑀𝑁𝑙→𝐶𝑙+𝑠𝑛

(0)−𝑀𝑁𝑙→𝐶𝑙+𝑠𝑛
(1))

∏
𝑖∈ℬ𝑣(𝑙+𝑠𝑛)∖{𝑘}

(𝑀𝑉𝑖→𝐶𝑙+𝑠𝑛
(0)−𝑀𝑉𝑖→𝐶𝑙+𝑠𝑛

(1)),

𝑀𝑉𝑘→𝐶𝑙+𝑠𝑛
(𝑏) =

∏
𝑞∈𝒜𝑐(𝑘)∖{𝑙+𝑠𝑛}

𝑀𝐶𝑞→𝑉𝑘
(𝑏),

for all 𝑏 ∈ {0, 1}, 𝑘 ∈ ℬ𝑣(𝑙 + 𝑠𝑛), 1 ≤ 𝑙 ≤ 𝑛, 0 ≤ 𝑠 ≤ 𝜔 − 1.

Fig. 2. Message passing equations. After applying these equations, the components of each message are normalized to sum up to 1.

the messages received along its other adjacent edges at the
previous iteration. The equations to calculate the messages
are presented in Figure 2. We have denoted by 𝒜𝑐(𝑘) the
set of indices 𝑞 such that 𝐶𝑞 is adjacent to node 𝑉𝑘, and by
ℬ𝑣(𝑞) the set of of indices 𝑘 such that 𝑉𝑘 is adjacent to 𝐶𝑞 .
The quantities 𝜆(𝑦, 𝑧) ≥ 0, 𝑦 ∈ 𝒴 , 𝑧 ∈ 𝒵 , used in defining
the source messages, are parameters tuned during code design
phase based on simulations. As a guideline for selecting these
parameters we use the intuition that 𝜆(𝑦, 𝑧) should be (roughly
speaking) inverse proportional to 𝑝𝑍∣𝑌 (𝑧∣𝑦).

The message passing phase ends when all the messages
𝑀𝑉𝑘→𝐶𝑞 (0) converge or a maximum number of iterations,
typically 100, is reached. At the decimation phase, the
marginal distributions at variable nodes are computed and the
variable nodes whose bias is greater than a threshold 𝜂 > 0
are fixed. If no such variable node exists then the one with
highest bias is fixed. After that the fixed variables are removed
from the graph. The check node whose all adjacent variable
nodes are fixed will send to the adjacent network node the
following message: 𝑀(0) = 1

𝛾 ((1 − 𝑐) exp(𝛿) + 𝑐 exp(−𝛿))
and 𝑀(1) = 1

𝛾 (𝑐 exp(𝛿)+(1−𝑐) exp(−𝛿)), where 𝑐 equals to
the modulo-2 summation of the values of all adjacent variable
nodes. Finally, after all variable nodes are fixed, the output
codeword is determined on network nodes by mapping the
connected check nodes values.

Notice that the design of the proposed scheme does not
depend on the distortion measure, but only on the joint dis-
tribution 𝑝𝑋𝑋1𝑋2𝑋0 . Therefore, although we have tested this
scheme only for Hamming distortion measure, we hypothesize
that it is applicable to any distortion function. To support this
claim it is worth mentioning that the simulation results in [19]
show very good performance of multilevel LDGM codes in the
case of single description source coding with a non-Hamming
distortion measure.

TABLE I
VALUES OF PARAMETER 𝛿 USED IN SIMULATIONS.

𝑃𝑖 ℰ1 ℰ2 ℰ3
𝑃1 0.7 1.6 1.6
𝑃2 0.7 1.6 1.6
𝑃3 0.7 4 4

TABLE II
VALUES OF PARAMETERS 𝜆((𝑥, 𝑥1), 𝑥2) AT ENCODER ℰ2 .

𝑥, 𝑥1, 𝑥2 𝑃1 𝑃2 𝑃3

0, 0, 0 0 0.6 0
0, 0, 1 0 0 0
0, 1, 0 0 0 0
0, 1, 1 2.0 2.2 8
1, 0, 0 2.8 2.8 8
1, 0, 1 0 0 0
1, 1, 0 2.8 2.8 9
1, 1, 1 0 0 0

V. EXPERIMENTAL RESULTS

We have tested the proposed robust multiresolution cod-
ing scheme for the binary uniform source with Ham-
ming distortion measure, targeting three distortion triples
(𝐷0, 𝐷1, 𝐷

∗
2(𝐷1, 𝐷0)): 𝑃1 = (0.1, 0.3, 0.3), 𝑃2 =

(0.05, 0.3, 0.25) and 𝑃3 = (0, 0.3, 0.2). In all three cases,
𝑅1 = 𝑅(𝐷1) and 𝑅2 = 𝑅(𝐷0) − 𝑅(𝐷1) hold. The degree
distributions of the LDGM codes used in our tests are taken
from the website (http://lthcwww.epfl.ch.research/ldpcopt) or
obtained by implementing the algorithm in [23]. We use
damping as in [20], [22] in our message passing algorithm, if
the messages do not converge after 30 iterations.

The length of the input sequences in our tests is 𝑛 =
10, 000. We use 𝜂 = 0.9 and 𝜔 = 4. The values of parameter
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TABLE III
VALUES OF PARAMETERS 𝜆((𝑥, 𝑥1, 𝑥2), 𝑥0) AT ENCODER ℰ3 .

𝑥, 𝑥1, 𝑥2, 𝑥0 𝑃1 𝑃2 𝑃3

0, 0, 1, 0 0 0 0
0, 0, 1, 1 2.8 2.8 10
1, 0, 1, 0 1.8 2.6 10
1, 0, 1, 1 0 0 0

TABLE IV
TEST RESULTS: (𝐷0,𝐷1,𝐷∗

2(𝐷1,𝐷0)) IS A TARGET DISTORTION TRIPLE;
𝑅1 AND 𝑅2 ARE THE RATES OF THE BASE, RESPECTIVELY, REFINEMENT

LAYER; 𝐷̂0 , 𝐷̂1 , AND 𝐷̂2 ARE THE EMPIRICAL DISTORTIONS.

(𝑅1, 𝑅2) (𝐷0, 𝐷1, 𝐷
∗
2(𝐷1, 𝐷0)) 𝐷̂0 𝐷̂1 𝐷̂2

(0.1187, 0.4122) (0.10, 0.30, 0.30) 0.109 0.308 0.304
(0.1187, 0.5955) (0.05, 0.30, 0.25) 0.066 0.308 0.258
(0.1187, 0.8813) (0.00, 0.30, 0.20) 0.012 0.309 0.206

𝛿 are listed in Table I. To define the source messages for ℰ1,
we use 𝜆(0, 0) = 𝜆(1, 1) = 0 and 𝜆(0, 1) = 𝜆(1, 0) = 0.7.
The values of 𝜆(𝑦, 𝑧) for encoders ℰ2, and ℰ3 are presented
in Tables II and III, respectively. It is worth mentioning that
for all three cases 𝑃1, 𝑃2, 𝑃3, variable 𝑋0 is a deterministic
function of 𝑋1 and 𝑋2 when (𝑋1, 𝑋2) ∕= (0, 1). Thus, at
encoder ℰ3, for 𝑙 such that (𝑥1,𝑘∗

1
(𝑙), 𝑥2,𝑘∗

2
(𝑙)) ∕= (0, 1), the

network node𝑁𝑙 always sends the uniform message (0.5, 0.5),
irrespective of the message received from 𝑆𝑙. Therefore, we set
𝜆((𝑥, 𝑥1, 𝑥2), 𝑥0) = 0 for all binary quadruples (𝑥, 𝑥1, 𝑥2, 𝑥0)
with (𝑥1, 𝑥2) ∕= (0, 1).

Table IV presents the experimental results. The first column
contains the rates 𝑅1, 𝑅2 of the base, respectively, refinement
layer. The second column contains the target distortion triple
(𝐷0, 𝐷1, 𝐷2). The remaining three columns present the em-
pirical values of the three distortions, respectively, averaged
over 100 runs. As observed from Table IV, the distortions are
very close to the theoretical limits.

VI. CONCLUSION

This work derives an explicit expression of the minimum
distortion achievable by the refinement layer of a multiresolu-
tion code for arbitrary finite alphabet sources with Hamming
distortion measure. A practical robust multiresolution coding
scheme based on LDGM codes is proposed, which shows
promising performance.

APPENDIX A
PROOF OF LEMMA 2

For any 𝑋2 such that 𝐼(𝑋 ;𝑋1, 𝑋2∣𝑋0) = 0 and
𝐼(𝑋1;𝑋2) = 0, define 𝑋̃2 = 𝑋2 if 𝑋2 ∈ 𝒳+

0 and 𝑋̃2 = 0
if 𝑋2 /∈ 𝒳+

0 . It is clear that 𝐼(𝑋 ;𝑋1, 𝑋̃2∣𝑋0) = 0 and

𝐼(𝑋1; 𝑋̃2) = 0. Note that for 𝑥0 ∈ 𝒳+
0

𝑝𝑋∣𝑋0
(0∣𝑥0) ≥ min(1−𝐷0, 𝜆0)

≥ min(1− 𝐷(𝑅)∣𝑅=0 , 𝜆0)

= min(𝑝𝑋(0), 𝜆0)

= 𝜆0

≥ max
𝑥/∈𝒳+

0

𝑝𝑋∣𝑋0
(𝑥∣𝑥0),

where the first equality follows from F1), and the second
equality follows from the fact that 𝜆0 ≤ 𝜆1 ≤ 𝑝𝑋(1) ≤ 𝑝𝑋(0)
(see F3)). Therefore, we have

ℙ(𝑋 = 𝑋2) =
∑

𝑥0∈𝒳+
0

∑
𝑥2∈𝒳

𝑝𝑋𝑋0𝑋2(𝑥2, 𝑥0, 𝑥2)

=
∑

𝑥0∈𝒳+
0

∑
𝑥2∈𝒳

𝑝𝑋∣𝑋0
(𝑥2∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥2)

=
∑

𝑥0∈𝒳+
0

( ∑

𝑥2∈𝒳+
0

𝑝𝑋∣𝑋0
(𝑥2∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥2)

+
∑

𝑥2 /∈𝒳+
0

𝑝𝑋∣𝑋0
(𝑥2∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥2)

)

≤
∑

𝑥0∈𝒳+
0

( ∑

𝑥2∈𝒳+
0

𝑝𝑋∣𝑋0
(𝑥2∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥2)

+ 𝑝𝑋∣𝑋0
(0∣𝑥0)

∑

𝑥2 /∈𝒳+
0

𝑝𝑋0𝑋2(𝑥0, 𝑥2)
)

=
∑

𝑥0∈𝒳+
0

(
𝑝𝑋∣𝑋0

(0∣𝑥0)
(
𝑝𝑋0𝑋2(𝑥0, 0)

+
∑

𝑥2 /∈𝒳+
0

𝑝𝑋0𝑋2(𝑥0, 𝑥2)
)

+
∑

𝑥2∈𝒳+
0 ,𝑥2 ∕=0

𝑝𝑋∣𝑋0
(𝑥2∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥2)

)

=
∑

𝑥0∈𝒳+
0

∑

𝑥̃2∈𝒳+
0

𝑝𝑋∣𝑋0
(𝑥̃2∣𝑥0)𝑝𝑋0𝑋̃2

(𝑥0, 𝑥2)

= ℙ(𝑋 = 𝑋̃2).

APPENDIX B
PROOF OF LEMMA 3

Note that

ℙ(𝑋 = 𝑋2)

=
∑

𝑥0∈𝒳+
0

∑

𝑥2∈𝒳+
0

𝑝𝑋𝑋0𝑋2(𝑥2, 𝑥0, 𝑥2)

=
∑

𝑥0∈𝒳+
0

∑

𝑥2∈𝒳+
0

𝑝𝑋∣𝑋0
(𝑥2∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥2)

=
∑

𝑥0∈𝒳+
0

(
𝑝𝑋∣𝑋0

(𝑥0∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥0)

+
∑

𝑥2∈𝒳+
0 ,𝑥2 ∕=𝑥0

𝑝𝑋∣𝑋0
(𝑥2∣𝑥0)𝑝𝑋0𝑋2(𝑥0, 𝑥2)

)

=
∑

𝑥0∈𝒳+
0

(
(1−𝐷0)𝑝𝑋0𝑋2(𝑥0, 𝑥0)
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+
∑

𝑥2∈𝒳+
0 ,𝑥2 ∕=𝑥0

𝜆0𝑝𝑋0𝑋2(𝑥0, 𝑥2)
)

(17)

= (1 −𝐷0)ℙ(𝑋0 = 𝑋2) + 𝜆0ℙ(𝑋0 ∕= 𝑋2),

where (17) is due to (3). Therefore, we have

ℙ(𝑋 ∕= 𝑋2) = 1− ℙ(𝑋 = 𝑋2)

= 1− (1−𝐷0)ℙ(𝑋0 = 𝑋2)− 𝜆0ℙ(𝑋0 ∕= 𝑋2)

= 𝐷0 + (1 −𝐷0 − 𝜆0)ℙ(𝑋0 ∕= 𝑋2).

APPENDIX C
PROOF OF LEMMA 5

It is easy to see that

𝐷̄2(𝐷0, 𝐷1)

= min
𝑝𝑋0𝑋1𝑋2

1−
∑

𝑥0∈𝒳+
0

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥0) (18)

subject to the constraints

− 𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2) ≤ 0,

𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 , 𝑥2 ∈ 𝒳+
0 , (19)∑

𝑥2∈𝒳+
0

𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2) = 𝑝𝑋0𝑋1(𝑥0, 𝑥1),

𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 , (20)

𝑝𝑋1(𝑥1)
∑

𝑥0∈𝒳+
0

𝑝𝑋0𝑋1𝑋2(𝑥0, 0, 𝑥2)

− 𝑝𝑋1(0)
∑

𝑥0∈𝒳+
0

𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2) = 0,

𝑥1 ∈ 𝒳+
1 ∖ {0}, 𝑥2 = 𝒳+

0 ∖ {0}, (21)

where (19) and (20) are due to the fact that 𝑝𝑋0𝑋1𝑋2 is a
probability distribution and that 𝑝𝑋0𝑋1 is fixed while (21) is
due to the independence of 𝑋1 and 𝑋2.

Since (18) is a linear programming problem, the
Karush-Kuhn-Tucker conditions are sufficient for global
optimality. Now introduce Lagrangian multipliers 𝜇 =
(𝜇𝑥0,𝑥1,𝑥2)𝑥0∈𝒳+

0 ,𝑥1∈𝒳+
1 ,𝑥2∈𝒳+

0
, 𝛼 = (𝛼𝑥0,𝑥1)𝑥0∈𝒳+

0 ,𝑥1∈𝒳+
1

,
and 𝛽 = (𝛽𝑥1,𝑥2)𝑥1∈𝒳+

1 ∖{0},𝑥2∈𝒳+
0 ∖{0} for (19), (20), and

(21), respectively. Define

𝐺(𝑝𝑋0𝑋1𝑋2 , 𝜇, 𝛼, 𝛽)

= 1−
∑

𝑥0∈𝒳+
0

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥0)

−
∑

𝑥0∈𝒳+
0

∑

𝑥1∈𝒳+
1

∑

𝑥0∈𝒳+
0

𝜇𝑥0,𝑥1,𝑥2𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2)

+
∑

𝑥0∈𝒳+
0

∑

𝑥1∈𝒳+
1

𝛼𝑥0,𝑥1

∑

𝑥2∈𝒳+
0

𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2)

+
∑

𝑥1∈𝒳+
1 ∖{0}

∑

𝑥2∈𝒳+
0 ∖{0}

𝛽𝑥1,𝑥2

∑

𝑥0∈𝒳+
0

(𝑝𝑋1(𝑥1)

× 𝑝𝑋0𝑋1𝑋2(𝑥0, 0, 𝑥2)− 𝑝𝑋1(0)𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2)).

The Karush-Kuhn-Tucker conditions are given by

∂𝐺(𝑝𝑋0𝑋1𝑋2 , 𝜇, 𝛼, 𝛽)

∂𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2)
= 0, 𝑥0 ∈ 𝒳+

0 , 𝑥1 ∈ 𝒳+
1 , 𝑥2 ∈ 𝒳+

0 ,

(22)

− 𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2) ≤ 0, 𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 , 𝑥2 ∈ 𝒳+
0 ,∑

𝑥2∈𝒳+
0

𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2) = 𝑝𝑋0𝑋1(𝑥0, 𝑥1),

𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 ,

𝑝𝑋1(𝑥1)
∑

𝑥0∈𝒳+
0

𝑝𝑋0𝑋1𝑋2(𝑥0, 0, 𝑥2)

− 𝑝𝑋1(0)
∑

𝑥0∈𝒳+
0

𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2) = 0,

𝑥1 ∈ 𝒳+
1 ∖ {0}, 𝑥2 = 𝒳+

0 ∖ {0},
𝜇𝑥0,𝑥1,𝑥2 ≥ 0, 𝑥0 ∈ 𝒳+

0 , 𝑥1 ∈ 𝒳+
1 , 𝑥2 ∈ 𝒳+

0 ,

𝜇𝑥0,𝑥1,𝑥2𝑝𝑋0𝑋1𝑋2(𝑥0, 𝑥1, 𝑥2) = 0,

𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 , 𝑥2 ∈ 𝒳+
0 ,

where (22) is equivalent to

𝑑𝐻(𝑥0, 𝑥2)− 1− 𝜇𝑥0,𝑥1,𝑥2 + 𝛼𝑥0,𝑥1

+
∑

𝑥′
1∈𝒳+

1 ∖{0}
𝛽𝑥′

1,𝑥2
𝑝𝑋1(𝑥

′
1) = 0,

𝑥0 ∈ 𝒳+
0 , 𝑥1 = 0, 𝑥2 ∈ 𝒳+

1 ∖ {0},
𝑑𝐻(𝑥0, 𝑥2)− 1− 𝜇𝑥0,𝑥1,𝑥2 + 𝛼𝑥0,𝑥1 − 𝛽𝑥1,𝑥2𝑝𝑋1(0) = 0,

𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 ∖ {0}, 𝑥2 ∈ 𝒳+
0 ∖ {0},

𝑑𝐻(𝑥0, 𝑥2)− 1− 𝜇𝑥0,𝑥1,𝑥2 + 𝛼𝑥0,𝑥1 = 0,

𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 , 𝑥2 = 0.

Let

𝑝𝑋0𝑋1𝑋∗
2
(𝑥0, 𝑥1, 𝑥2)

=

⎧⎨
⎩

𝑝𝑋0𝑋1(𝑥1, 𝑥1)− 𝑝𝑋0𝑋1(0, 𝑥1), 𝑥0 = 𝑥1 ∕= 𝑥2 = 0
𝑝𝑋0𝑋1(𝑥0, 𝑥1), 𝑥0 = 𝑥2 ∕= 𝑥1
𝑝𝑋0𝑋1(0, 𝑥1), 𝑥0 = 𝑥1 = 𝑥2
0, otherwise

for 𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 , and 𝑥2 ∈ 𝒳+
0 . Let

𝜇∗
𝑥0,𝑥1,𝑥2

= 0, 𝑥0 = 𝑥2 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 ,

𝜇∗
𝑥0,𝑥1,𝑥2

= 0, 𝑥0 = 𝑥1 ∈ 𝒳+
1 ∖ {0}, 𝑥2 = 0,

𝜇∗
𝑥0,𝑥1,𝑥2

= 𝛼∗
𝑥0,𝑥1

,

𝑥0 ∕= 𝑥1, 𝑥2 = 0, 𝑥0 ∈ 𝒳+
0 ∖ {0}, 𝑥1 ∈ 𝒳+

1 ,

𝜇∗
𝑥0,𝑥1,𝑥2

= 𝛼∗
𝑥0,𝑥1

+
∑

𝑥′
1∈𝒳+

1 ∖{0}
𝛽∗
𝑥′
1,𝑥2

𝑝𝑋1(𝑥
′
1),

𝑥0 ∕= 𝑥2, 𝑥1 = 0, 𝑥0 ∈ 𝒳+
0 , 𝑥2 ∈ 𝒳+

0 ∖ {0},
𝜇∗
𝑥0,𝑥1,𝑥2

= 𝛼∗
𝑥0,𝑥1

− 𝛽∗
𝑥1,𝑥2

𝑝𝑋1(0),

𝑥0 ∕= 𝑥2, 𝑥0 ∈ 𝒳+
0 , 𝑥1 ∈ 𝒳+

1 ∖ {0}, 𝑥2 ∈ 𝒳+
0 ∖ {0},

𝛼∗
𝑥0,𝑥1

= 0, 𝑥0 = 𝑥1 ∈ 𝒳+
1 ∖ {0},

𝛼∗
𝑥0,𝑥1

= 1, 𝑥0 = 0, 𝑥1 ∈ 𝒳+
1 ,

𝛼∗
𝑥0,𝑥1

= 1, 𝑥0 ∕= 𝑥1, 𝑥0 ∈ 𝒳+
0 ∖ {0}, 𝑥1 ∈ 𝒳+

1 ∖ {0},
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𝛼∗
𝑥0,𝑥1

=
1−∑

𝑥′
1 ∕=𝑥0,𝑥′

1∈𝒳+
1 ∖{0} 𝑝𝑋1(𝑥

′
1)

𝑝𝑋1(0)
,

𝑥0 ∈ 𝒳+
0 ∖ {0}, 𝑥1 = 0,

𝛽∗
𝑥1,𝑥2

=
𝛼∗
𝑥2,𝑥1

− 1

𝑝𝑋1(0)
, 𝑥1 ∈ 𝒳+

1 ∖ {0}, 𝑥2 ∈ 𝒳+
0 ∖ {0}.

It can be verified that the Karush-Kuhn-Tucker conditions are
satisfied by the constructed (𝑝𝑋0𝑋1𝑋∗

2
, 𝜇∗, 𝛼∗, 𝛽∗). Moreover,

note that

1−
∑

𝑥0∈𝒳+
0

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1𝑋∗
2
(𝑥0, 𝑥1, 𝑥0)

= 1−
∑

𝑥0∈𝒳+
1

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1𝑋∗
2
(𝑥0, 𝑥1, 𝑥0)

−
∑

𝑥0∈𝒳+
0 ∖𝒳+

1

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1𝑋∗
2
(𝑥0, 𝑥1, 𝑥0)

= 1−
∑

𝑥0∈𝒳+
1

(
𝑝𝑋0𝑋1𝑋∗

2
(𝑥0, 𝑥0, 𝑥0)

+
∑

𝑥1 ∕=𝑥0

𝑝𝑋0𝑋1𝑋∗
2
(𝑥0, 𝑥1, 𝑥0)

)

−
∑

𝑥0∈𝒳+
0 ∖𝒳+

1

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1𝑋∗
2
(𝑥0, 𝑥1, 𝑥0)

= 1−
∑

𝑥0∈𝒳+
1

(
𝑝𝑋0𝑋1(0, 𝑥0) +

∑
𝑥1 ∕=𝑥0

𝑝𝑋0𝑋1(𝑥0, 𝑥1)
)

−
∑

𝑥0∈𝒳+
0 ∖𝒳+

1

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1(𝑥0, 𝑥1)

= 1− 𝑝𝑋0(0)−
∑

𝑥0∈𝒳+
1

∑
𝑥1 ∕=𝑥0

𝑝𝑋0𝑋1(𝑥0, 𝑥1)

−
∑

𝑥0∈𝒳+
0 ∖𝒳+

1

∑

𝑥1∈𝒳+
1

𝑝𝑋0𝑋1(𝑥0, 𝑥1)

= 1− 𝑝𝑋0(0)− ℙ(𝑋0 ∕= 𝑋1).

The proof is complete.
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