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The Equivalence Between Slepian-Wolf Coding and
Channel Coding Under Density Evolution

Jun Chen, Da-ke He, and Ashish Jagmohan

Abstract—We consider Slepian-Wolf code design based on low-
density parity-check (LDPC) coset codes. The density evolution
formula for Slepian-Wolf coding is derived. An intimate connec-
tion between Slepian-Wolf coding and channel coding is then
established. Specifically we show that, under density evolution,
each Slepian-Wolf coding problem is equivalent to a channel
coding problem for a binary-input output-symmetric channel.

Index Terms—Channel coding, linear codes, source coding.

I. INTRODUCTION

CONSIDER the problem (see Fig. 1) of encoding the
source {𝑋𝑖}∞𝑖=1 with side information {𝑌𝑖}∞𝑖=1 only at

the decoder. Here {(𝑋𝑖, 𝑌𝑖)}∞𝑖=1 is a stationary and memory-
less process with zero-order probability distribution 𝑃𝑋𝑌 on
𝒳 × 𝒴 . For brevity, we shall identify the memoryless pair
{(𝑋𝑖, 𝑌𝑖)} by using a pair of random variables (𝑋,𝑌 ) with
distribution 𝑃𝑋𝑌 . In their landmark paper [1], Slepian and
Wolf proved a surprising result that the minimum rate for
reconstructing {𝑋𝑖}∞𝑖=1 at the decoder with asymptotically
zero error probability is the conditional entropy 𝐻(𝑋 ∣𝑌 ) of
𝑋 given 𝑌 , which is the same as the case where the side
information {𝑌𝑖}∞𝑖=1 is also available at the encoder. The
quantity𝐻(𝑋 ∣𝑌 ) is often referred to as the Slepian-Wolf(SW)
limit.

Shortly after Slepian and Wolf’s seminal work, Wyner [2]
pointed out the possibility of using linear codes for SW
coding. Consider a simple example1 in which 𝒳 and 𝒴
are both binary, and the channel 𝑃𝑋∣𝑌 (i.e., the conditional
distribution of 𝑋 given 𝑌 induced by 𝑃𝑋𝑌 ) is a binary
symmetric channel with parameter 𝑝 ∈ (0, 0.5) (BSC(𝑝)), i.e.,
𝑋𝑖 = 𝑌𝑖⊕𝑍𝑖 for all 𝑖 ≥ 1, where ⊕ is the modulo-2 addition,
and 𝑍𝑖 denotes a binary random variable (independent of 𝑌𝑖)
that takes value 1 with probability 𝑝. Note that 𝑌 needs not
to be uniformly distributed in this example. The SW coding
scheme proposed by Wyner works as follows: given the source
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1It is pointed out in [3] that Slepian and Wolf themselves were the first to

notice this example.
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Fig. 1. Slepian-Wolf source coding.

sequence 𝑋𝑛 = (𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑛), the encoder sends 𝑋𝑛H
to the decoder, where H is the parity check matrix of a
linear code 𝒞; the decoder then tries to recover 𝑋𝑛 from
𝑋𝑛H given the side information 𝑌 𝑛. Wyner also observed an
intriguing connection between SW coding and channel coding
in this example. Let H be an 𝑛× 𝑘 parity check matrix of a
binary linear channel code 𝒞 for which there exists a decoding
function 𝑔(⋅) such that 𝑍𝑛 can be decoded from its syndrome
𝑍𝑛H with error probability 𝜖. Correspondingly in SW coding,
upon receiving the syndrome 𝑆𝑘 = 𝑋𝑛H, the decoder can
calculate

𝑆𝑘 ⊕ 𝑌 𝑛H = (𝑋𝑛 ⊕ 𝑌 𝑛)H = 𝑍𝑛H

and then use the function 𝑔(⋅) to recover 𝑍𝑛 with error
probability 𝜖. Since 𝑋𝑛 = 𝑌 𝑛⊕𝑍𝑛, 𝑋𝑛 can also be recovered
with error probability 𝜖. In view of the fact that the capacity
of a binary symmetric channel is achievable with linear codes
[4], we can let the rate 𝑛−𝑘

𝑛 of channel code 𝒞 be arbitrarily
close to the channel capacity 1−𝐻𝑏(𝑝) while maintaining any
prescribed error probability 𝜖 > 0. Hence, the compression
rate 𝑘

𝑛 of Wyner’s SW coding scheme can be arbitrarily
close to 𝐻(𝑋 ∣𝑌 ) = 𝐻𝑏(𝑝), which is exactly the SW limit.
Throughout this paper, 𝐻𝑏(⋅) stands for the binary entropy
function, i.e., 𝐻𝑏(𝑝) = −𝑝 log 𝑝− (1− 𝑝) log(1− 𝑝), and log
denotes the logarithm function to base 2.

In the above example, if we view 𝑔(⋅) as the maximum
likelihood (ML) decoding function for BSC(𝑝), then it is
not hard to verify that the decoding in the aforementioned
example is exactly the maximum a posteriori (MAP) decoding
for the SW problem. Therefore, Wyner’s simple example
suggests that there might exist a connection between SW
coding and channel coding in the linear coding framework.
The significance of this potential connection lies in that it is
then possible to convert SW code design to linear channel
code design.

In about three decades after [1], SW coding has relatively
little impact on practice largely due to the difficulty in
designing practical and efficient SW codes. Note that even
in Wyner’s example, the design of a good channel code for
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the binary symmetric channel itself was a formidable task.
Incidentally, recently we have seen a revolutionary advance
in the development of capacity-approaching (linear) channel
codes (e.g., Turbo codes and low-density parity-check (LDPC)
codes) and practical decoding algorithms (e.g., belief prop-
agation decoding and linear programming decoding). This
advance in channel coding theory, coupled with the potential
of SW coding for distributed data compression in various
networks and multimedia systems, led to a recent surge of
interest in practical SW code design. In particular, with a
wealth of tools to design linear channel codes available now to
exploit, Wyner’s linear channel coding approach to SW coding
suddenly becomes very appealing.

From the design point of view, the simple example dis-
cussed by Wyner [2] implies the following method (hereafter
Method A) to design SW codes for a source-side information
pair (𝑋,𝑌 ).

Step 1: Given the joint probability distribution 𝑃𝑋𝑌 in SW
coding, identify a channel 𝑃𝑋∣𝑌 ;

Step 2: Design a good linear code 𝒞 for the identified
channel;

Step 3: Use the code 𝒞 (or equivalently its parity check ma-
trix H) for SW coding (see the example reviewed
above).

An alternative design method (hereafter Method B) is to
replace the channel in Step 1 by the conditional distribution
𝑃𝑌 ∣𝑋 of 𝑌 given 𝑋 .2 Observe that in both Methods A and
B, Step 2 is the standard linear channel code design step.
Thus these methods allow us to leverage a large body of
channel coding theory directly. Furthermore, from the example
reviewed above, we have learned that if 𝑃𝑋∣𝑌 is a binary
symmetric channel, Method A is optimal in the sense that if
the linear channel code 𝒞 is a capacity-approaching channel
code for 𝑃𝑋∣𝑌 , then it can also be used to approach the SW
limit for (𝑋,𝑌 ). Naturally, it is tempting to generalize that
Method A (or Method B) is also optimal for arbitrary 𝑃𝑋𝑌 .
Indeed, almost all the existing practical SW codes [5]–[14] are
designed by either dealing with restricted cases (say, Wyner’s
setup) for which Method A (or Method B) is known to be
optimal or following one of the above two methods without
questioning its optimality. In the following, we shall argue that
contrary to this common assumption, neither Method A nor
Method B is optimal for SW coding in general.

2This channel 𝑃𝑌 ∣𝑋 is often considered to be natural since the role of 𝑋
in SW coding is similar to channel input in channel coding while the role of
𝑌 is similar to channel output. Indeed, there is a theoretical justification for
this assumption. It was shown in [15] that a good SW code for distribution
𝑃𝑋𝑌 can be obtained by partitioning the typical sequences (with respect
to 𝑃𝑋 ) in 𝒳𝑛 into roughly 2𝑛𝐻(𝑋∣𝑌 ) channel codes (for channel 𝑃𝑌 ∣𝑋 ),
each of rate approximately 𝐼(𝑋; 𝑌 ). However, SW codes constructed in this
way are intrinsically nonlinear, and therefore, do not fit into Wyner’s linear
coding approach. Unfortunately, this subtle difference seems to have often
been overlooked in practice.

Without loss of generality3, we shall assume 𝒳 = {0, 1}
throughout this paper. According to Step 3 in both Methods A
and B, the rate of SW code is equal to the rate of syndrome,
so we have the following equation

𝑅𝑆𝑊 = 1−𝑅𝐶𝐻

where 𝑅𝑆𝑊 is the rate of SW code, and 𝑅𝐶𝐻 is the rate
of linear channel code 𝒞. It is clear that minimizing 𝑅𝑆𝑊 is
equivalent to maximizing 𝑅𝐶𝐻 . If the equivalent channel is
𝑃𝑌 ∣𝑋 as in Method B, then the maximum achievable 𝑅𝐶𝐻 is
the capacity of channel 𝑃𝑌 ∣𝑋 , which is denoted by 𝐶(𝑃𝑌 ∣𝑋).
Now consider any distribution 𝑃𝑋𝑌 with the property that
𝑃𝑋(0) ∈ (0, 0.5) and 𝑃𝑌 ∣𝑋 is a BSC(𝑝) with 𝑝 ∈ (0, 0.5). It
is easy to show that in this case

𝐻(𝑋 ∣𝑌 ) < 1− 𝐶(𝑃𝑌 ∣𝑋).

That is, even if we can design a linear channel code that
achieves the capacity 𝐶(𝑃𝑌 ∣𝑋), the resulting SW code rate
𝑅𝑆𝑊 = 1− 𝐶(𝑃𝑌 ∣𝑋) is still bounded away from the funda-
mental limit 𝐻(𝑋 ∣𝑌 ). This phenomenon was also observed
in [17] and led to the claim that in this case the SW limit
is not achievable with linear channel codes. Now consider
another example. Let 𝑃𝑋𝑌 be a joint distribution satisfying
the property that 𝑃𝑋 is uniform, but the capacity-achieving
input distribution for channel 𝑃𝑌 ∣𝑋 is non-uniform. In this
case, we have

𝐻(𝑋 ∣𝑌 ) = 𝐻(𝑋)− 𝐼(𝑋 ;𝑌 ) = 1− 𝐼(𝑋 ;𝑌 )

> 1− 𝐶(𝑃𝑌 ∣𝑋).

This implies that using a linear channel code for channel
𝑃𝑌 ∣𝑋 with rate close to the capacity 𝐶(𝑃𝑌 ∣𝑋), the resulting
SW code rate would beat the fundamental limit 𝐻(𝑋 ∣𝑌 ).
Obviously, this leads to a contradiction. One may argue
that the maximum rate achievable with linear codes is not
𝐶(𝑃𝑌 ∣𝑋), but the mutual information across the channel 𝑃𝑌 ∣𝑋
with the uniform input, which is denoted by 𝐼(𝑃𝑌 ∣𝑋). Since
𝑃𝑋 is uniform in the current example, we have

𝐻(𝑋 ∣𝑌 ) = 𝐻(𝑋)− 𝐼(𝑋 ;𝑌 ) = 1− 𝐼(𝑃𝑌 ∣𝑋),

which seemingly resolves the contradiction.
However, the above example can be slightly modified to

make the contradiction unresolvable. We fix a conditional
probability distribution 𝑃𝑌 ∣𝑋 and assume4 that 𝐻(𝑋 ∣𝑌 ) is
maximized by a non-uniform 𝑃𝑋 . Let 𝑃𝑋𝑌 be the joint
distribution induced by 𝑃𝑌 ∣𝑋 and the maximizer 𝑃𝑋 . For
the conditional entropy 𝐻(𝑋 ∣𝑌 ) associated with this joint
distribution, we have

𝐻(𝑋 ∣𝑌 ) > 𝐻(𝑋̃ ∣𝑌 ) = 𝐻(𝑋̃)− 𝐼(𝑋̃ ;𝑌 ) = 1− 𝐼(𝑃𝑌 ∣𝑋)

3The general case can be reduced to this special case via multilevel coding
[16]. Specifically, for any finite-alphabet random variable 𝑋 , we can write
it in a binary vector form (𝑋′

1,𝑋
′
2, ⋅ ⋅ ⋅ , 𝑋′

𝐿), where 𝑋′
𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝐿,

are all binary. By the chain rule, we can write 𝐻(𝑋∣𝑌 ) = 𝐻(𝑋′
1∣𝑌 ) +

𝐻(𝑋′
2∣𝑋′

1, 𝑌 )+⋅ ⋅ ⋅+𝐻(𝑋′
𝐿∣𝑋′

1, ⋅ ⋅ ⋅ ,𝑋′
𝐿−1, 𝑌 ). Note that the conditional

entropy 𝐻(𝑋′
𝑘 ∣𝑋′

1, ⋅ ⋅ ⋅ , 𝑋′
𝑘−1, 𝑌 ), 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐿, can be interpreted as the

SW limit for compressing source 𝑋′
𝑘 with (𝑋′

1, ⋅ ⋅ ⋅ , 𝑋′
𝑘−1, 𝑌 ) as the side

information at the decoder. Therefore, we can decompose the original SW
coding problem into a sequence of SW coding problems for binary sources.

4Such a conditional probability distribution 𝑃𝑌 ∣𝑋 can be easily con-
structed. Consider the case where 𝒳 = 𝒴 = {0, 1}. Let 𝑃𝑌 ∣𝑋(1∣0) = 0.2,
and 𝑃𝑌 ∣𝑋(0∣1) = 0.3.
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where 𝑋̃ is a binary random variable with the uniform
distribution and 𝑌 is a random variable generated by 𝑋̃
through channel 𝑃𝑌 ∣𝑋 . This example shows that in Wyner’s
linear coding framework, adopting 𝑃𝑌 ∣𝑋 as the equivalent
channel is fundamentally flawed.

It should be noted that in Wyner’s example, Method A
is applied where 𝑃𝑋∣𝑌 , rather than 𝑃𝑌 ∣𝑋 , is identified as
the channel in Step 1. Nevertheless, except for Wyner’s
example, there is also no justification for considering 𝑃𝑋∣𝑌
as a candidate for the equivalent channel; especially when the
size of 𝒳 and 𝒴 are different, linear channel codes designed
for 𝑃𝑋∣𝑌 can not be directly used to encode 𝑋𝑛.

In this paper we address the problem of designing SW codes
based on LDPC coset codes. Our strategy is to convert the SW
code design problem to an equivalent channel code design
problem. The main result in this paper is an explicit construc-
tion of the equivalent channel 𝑃𝑊 ∣𝑈 given the joint distribution
𝑃𝑋𝑌 . Specifically, for any memoryless pair (𝑋,𝑌 ) with
joint distribution 𝑃𝑋𝑌 , our method (hereafter Method C) of
constructing (linear) SW codes works as follows.

Step 1: Given the joint probability distribution 𝑃𝑋𝑌 in SW
coding, identify an equivalent channel 𝑃𝑊 ∣𝑈 ;

Step 2: Design a good linear code 𝒞 for the identified
channel;

Step 3: Use the code 𝒞 (or equivalently its parity check
matrix H) for SW coding.

Contrasting our method with Methods A and B, we see that
the key difference lies in Step 1. It turns out that our equivalent
channel 𝑃𝑊 ∣𝑈 is neither 𝑃𝑌 ∣𝑋 nor 𝑃𝑋∣𝑌 in general. Moreover,
𝑃𝑊 ∣𝑈 is always output-symmetric regardless whether the joint
distribution 𝑃𝑋𝑌 possesses any symmetric structure or not.
Though these properties of 𝑃𝑊 ∣𝑈 seem counter-intuitive at
first sight, they are in fact natural in retrospect: It is well
known that the SW limit is achievable with linear codes [18].
But it is also known that linear codes cannot be used directly
to achieve the capacity of asymmetric channel whose capacity-
achieving input distribution is not uniform. Therefore, it is not
hard to imagine that if the equivalent channel does exist, it
must be a certain symmetric channel. By using the equivalent
channel 𝑃𝑊 ∣𝑈 , our method, in contrast to Methods A and B,
is always optimal in the sense that if 𝒞 achieves the channel
capacity of the channel 𝑃𝑊 ∣𝑈 , it can also be used to achieve
SW limit of (𝑋,𝑌 ).

The rest of this paper is organized as follows. In Sec-
tion II, we develop the belief-propagation algorithm for SW
coding and derive the associated density evolution formula.
An intimate connection between SW coding and channel
coding under density evolution is established in Section III.
Specifically we show that, under density evolution, each SW
coding problem is equivalent to a channel coding problem
for a binary-input output-symmetric channel. We conclude the
paper in Section IV.

II. BELIEF-PROPAGATION ALGORITHM AND DENSITY

EVOLUTION

The literature on LDPC codes is vast (see, for exam-
ple, [19]–[23] for various definitions). Through this paper,
𝒞𝑛(𝑑𝑣, 𝑑𝑐) denotes the ensemble of (𝑑𝑣, 𝑑𝑐)-regular LDPC

codes of length 𝑛 with variable node degree 𝑑𝑣 and check
node degree 𝑑𝑐. More generally, we use 𝒞𝑛(𝜆, 𝜌) to denote
the ensemble of irregular LDPC codes of length 𝑛 with finite
order edge degree distribution polynomials (𝜆, 𝜌).

The belief-propagation algorithm [24] is an iterative
message-passing algorithm, which can be used to decode
LDPC codes. Let 𝑃𝑊 ∣𝑈 be the channel transition probability.

Let 𝑚(𝑙)
𝑣𝑐 denote the message sent from variable node 𝑣 to its

incident check node 𝑐 in the 𝑙th iteration and 𝑚(𝑙)
𝑐𝑣 denote the

message sent from check node 𝑐 to its incident variable node
𝑣 in the 𝑙th iteration. The update equations for the messages
under belief propagation are described below [25]:

𝑚
(𝑙)
𝑣𝑐 =

⎧⎨
⎩
𝑚0, if 𝑙 = 0

𝑚0 +
∑

𝑐′∈𝐶𝑣∖{𝑐}
𝑚

(𝑙)
𝑐′𝑣, if 𝑙 ≥ 1

𝑚
(𝑙)
𝑐𝑣 = 𝛾−1

( ∑
𝑣′∈𝑉𝑐∖{𝑣}

𝛾
(
𝑚

(𝑙−1)
𝑣′𝑐

))

where 𝐶𝑣 is the set of check nodes incident to variable node
𝑣, 𝑉𝑐 is the set of variable nodes incident to check node 𝑐, and
𝑚0 ≜ ln

𝑃𝑊 ∣𝑈 (𝑊𝑖∣0)
𝑃𝑊 ∣𝑈 (𝑊𝑖∣1) is the initial message associated with the

variable node 𝑣. The expression of 𝛾(⋅) can be found in [25].
Given a parity check matrix H, the set of all 𝑛-length

vectors 𝑥𝑛 satisfying 𝑥𝑛H = 𝑠𝑘 for some general syndrome
𝑠𝑘 ∈ {0, 1}𝑛−𝑘 is called a coset 𝒞𝑠𝑘 . Since the Tanner graph
is completely determined by the parity check matrix H, all
the cosets 𝐶𝑠𝑘 are associated with the same Tanner graph. In
order to distinguish different cosets by their Tanner graphs,
we can label check nodes by their corresponding syndrome
values. The belief-propagation algorithm for decoding a coset
code is similar to that for decoding a linear code. The only
difference lies in the operation at check nodes, which becomes

𝑚(𝑙)
𝑐𝑣 = (−1)𝑠𝛾−1

⎛
⎝ ∑

𝑣′∈𝑉𝑐∖{𝑣}
𝛾
(
𝑚

(𝑙−1)
𝑣′𝑐

)⎞⎠ ,
where 𝑠 is the syndrome value associated with check node 𝑐.

The performance of LDPC codes under the belief-
propagation algorithm is relatively well-understood for binary-
input output-symmetric (BIOS) channels.

Definition 1 ([23], Definition 1): A binary-input channel
with transition probability function 𝑃𝑊 ∣𝑈 from 𝒰 to 𝒲 with
𝒰 = {0, 1} is output-symmetric if we have (possibly after
relabelling 𝒲) 𝑃𝑊 ∣𝑈 (𝑤∣0) = 𝑃𝑊 ∣𝑈 (−𝑤∣1) for all 𝑤 ∈ 𝒲 .

An important property of BIOS channel is that under the
belief-propagation algorithm, the decoding error probability
is independent of transmitted codeword. So without loss of
generality, we can assume the all-zero codeword is transmitted.

In order to analyze the asymptotic (in codeword length)
performance of LDPC code ensemble 𝒞𝑛(𝜆, 𝜌), a powerful
technique called density evolution is developed in [23], [25].
The iterative density evolution formula for BIOS channel is
given in the following theorem.

Theorem 1 ([25], Theorem 2): For a given BIOS memo-
ryless channel, let 𝑃 (0) denote the initial message density
of log-likelihood ratios, assuming that the all-zero codeword
was transmitted. If, for a fixed degree distribution pair (𝜆, 𝜌),
𝑃 (𝑙) denotes the density of the messages passed from the the
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variable nodes to the check nodes at the 𝑙th iteration of belief
propagation then, under the independence assumption

𝑃 (𝑙) = 𝑃 (0) ⊗ 𝜆(Γ−1(𝜌(Γ(𝑃 (𝑙−1))))) (1)

where ⊗ is the convolution operation, and Γ is the density
transformation operator induced by 𝛾.
Remark: Let 𝑝(𝑙)𝑒 be the expected number of incorrect mes-
sages passed along an edge with a tree-like directed neighbor-
hood of depth at least 2𝑙 at the 𝑙th iteration. We have

𝑝(𝑙)𝑒 =

∫ 0−

−∞
𝑃 (𝑙)(𝑑𝑚) +

1

2

∫ 0+

0−
𝑃 (𝑙)(𝑑𝑚).

We shall derive a similar density evolution formula for
SW coding and establish an intimate connection between SW
coding and channel coding under density evolution.

It should be noted that in contrast to channel coding
where codewords are assumed be to equally probable, in
SW coding 𝑋 is not necessarily uniformly distributed over
{0, 1} for a general joint distribution 𝑃𝑋𝑌 . Therefore, we
need to incorporate the prior distribution 𝑃𝑋 into the belief
propagation algorithm for SW decoding. The update equations
for the messages in SW decoding are described below:

𝑚(𝑙)
𝑣𝑐 =

⎧⎨
⎩
𝑚0, if 𝑙 = 0

𝑚0 +
∑

𝑐′∈𝐶𝑣∖{𝑐}
𝑚

(𝑙)
𝑐′𝑣, if 𝑙 ≥ 1

𝑚(𝑙)
𝑐𝑣 = (−1)𝑠𝛾−1

⎛
⎝ ∑

𝑣′∈𝑉𝑐∖{𝑣}
𝛾
(
𝑚

(𝑙−1)
𝑣′𝑐

)⎞⎠ . (2)

where 𝑚0 ≜ ln
𝑃𝑋∣𝑌 (0∣𝑌𝑖)

𝑃𝑋∣𝑌 (1∣𝑌𝑖)
= ln 𝑃𝑋𝑌 (0,𝑌𝑖)

𝑃𝑋𝑌 (1,𝑌𝑖)
. It can be verified

that this algorithm produces the exact symbol-by-symbol a
posteriori estimation of 𝑋𝑛 given 𝑌 𝑛 when the underlying
Tanner graph is a tree. We can see that the only difference from
the channel decoding case is the definition of initial message
𝑚0. It will be clear that this small modification has significant
consequences on SW code design.

Now we proceed to develop the density evolution formula
for this belief-propagation algorithm. We use the standard
tree assumption. Let 𝑃 (𝑙)(𝑥) (𝑥 = 0, 1) be the distribution
of message from a variable node to a check node at the 𝑙th
iteration conditioned on that the variable value is 𝑥. Similarly,
let 𝑄(𝑙)(𝑥) (𝑥 = 0, 1) be the distribution of message from a
check node to a variable node at the 𝑙th iteration conditioned
on that the target variable value is 𝑥. Assume 𝑃𝑋(0) = 𝑝. Let
⟨𝑃 (𝑙)⟩ = 𝑝𝑃 (𝑙)(0)+(1−𝑝)𝑃 (𝑙)(1)∘𝐼−1, where 𝐼(𝑚) ≜ −𝑚 is
a parity reversing function, and ∘ is the composition operation.
We have

⟨𝑝(𝑙)𝑒 ⟩ =
∫ 0−

−∞
⟨𝑃 (𝑙)⟩(𝑑𝑚) +

1

2

∫ 0+

0−
⟨𝑃 (𝑙)⟩(𝑑𝑚), (3)

where ⟨𝑝(𝑙)𝑒 ⟩ is the expected number of incorrect messages sent
from a variable node at the 𝑙th iteration.

We shall derive a density-evolution formula for ⟨𝑃 (𝑙)⟩. By
the tree assumption, the iterative equations at variable node
are given by

𝑃 (𝑙)(𝑥) = 𝑃 (0)(𝑥) ⊗ (𝑄𝑙−1(𝑥))⊗(𝑑𝑣−1), 𝑥 = 0, 1.

Let ℰ = {𝑣 : 0 ≤ 𝑣 ≤ 𝑑𝑐 − 1, 𝑣 is even}, and 𝒪 = {𝑣 : 0 ≤
𝑣 ≤ 𝑑𝑐 − 1, 𝑣 is odd}. The iterative equations at check node
are

𝑄(𝑙−1)(0) =
∑
𝑣∈ℰ

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1)))⊗𝑣 +∑
𝑣∈𝒪

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1)))⊗𝑣 ∘ 𝐼−1, (4)

𝑄(𝑙−1)(1) =
∑
𝑣∈ℰ

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1)))⊗𝑣 ∘ 𝐼−1

+
∑
𝑣∈𝒪

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1)))⊗𝑣. (5)

Note that the check node operation depends on its syndrome
value 𝑠 (see (2)). If 𝑠 = 1, then the check node negates the
message, which results in the flip of the message distribution.
This is the reason why the operator 𝐼−1 comes into equations
(4) and (5).

Comparing (4) and (5), we immediately get

𝑄(𝑙−1)(0) = 𝑄(𝑙−1)(1) ∘ 𝐼−1. (6)

The expression of 𝑄(𝑙−1)(0) can be simplified as follows:

𝑄(𝑙−1)(0) =
∑
𝑣∈ℰ

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1)))⊗𝑣 +∑
𝑣∈𝒪

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1)))⊗𝑣 ∘ 𝐼−1

=
∑
𝑣∈ℰ

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1) ∘ 𝐼−1))⊗𝑣 +∑
𝑣∈𝒪

(
𝑑𝑐 − 1

𝑣

)
𝑝𝑑𝑐−1−𝑣(1− 𝑝)𝑣 ×

Γ−1(Γ(𝑃 (𝑙−1)(0)))⊗(𝑑𝑐−1−𝑣) ⊗
(Γ(𝑃 (𝑙−1)(1) ∘ 𝐼−1))⊗𝑣

= Γ−1(Γ(𝑝𝑃 (𝑙−1)(0) +

(1 − 𝑝)𝑃 (𝑙−1)(1) ∘ 𝐼−1))⊗(𝑑𝑐−1)

= Γ−1(Γ(⟨𝑃 (𝑙−1)⟩))⊗(𝑑𝑐−1). (7)
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By (6) and (7), we have

⟨𝑃 (𝑙)⟩ = 𝑝𝑃 (𝑙)(0) + (1− 𝑝)𝑃 (𝑙)(1) ∘ 𝐼−1

= 𝑝𝑃 (0)(0)⊗
(
𝑄(𝑙−1)(0)

)⊗(𝑑𝑣−1)

+(
(1− 𝑝)𝑃 (0)(1)⊗

(
𝑄(𝑙−1)(1)

)⊗(𝑑𝑣−1)
)
∘ 𝐼−1

= 𝑝𝑃 (0)(0)⊗
(
𝑄(𝑙−1)(0)

)⊗(𝑑𝑣−1)

+(
(1− 𝑝)𝑃 (0)(1) ∘ 𝐼−1

)
⊗(

𝑄(𝑙−1)(1) ∘ 𝐼−1
)⊗(𝑑𝑣−1)

= 𝑝𝑃 (0)(0)⊗
(
𝑄(𝑙−1)(0)

)⊗(𝑑𝑣−1)

+(
(1− 𝑝)𝑃 (0)(1) ∘ 𝐼−1

)
⊗
(
𝑄(𝑙−1)(0)

)⊗(𝑑𝑣−1)

= ⟨𝑃 (0)⟩ ⊗
(
𝑄(𝑙−1)(0)

)⊗(𝑑𝑣−1)

= ⟨𝑃 (0)⟩ ⊗
(
Γ−1(Γ(⟨𝑃 (𝑙−1)⟩))⊗(𝑑𝑐−1)

)⊗(𝑑𝑣−1)

.

The above formula can be easily generalized to the irregular
code ensembles 𝒞𝑛(𝜆, 𝜌):

⟨𝑃 (𝑙)⟩ = ⟨𝑃 (0)⟩ ⊗ 𝜆(Γ−1(𝜌(Γ(⟨𝑃 (𝑙−1)⟩)))). (8)

Remark: When 𝑝 = 0.5, the above formula becomes density
evolution for decoding coset codes over channel 𝑃𝑌 ∣𝑋 [26],
which further reduces to (1) when 𝑃𝑌 ∣𝑋 is output-symmetric.

III. SOURCE-CHANNEL EQUIVALENCE

It is easy to see that the density evolution formula (1)
in channel coding and density evolution formula (8) in SW
coding are almost identical; the only difference lies in the
definitions of 𝑃 (𝑙) and ⟨𝑃 (𝑙)⟩. So virtually all results regarding
channel coding density evolution (e.g., the stability condition)
also hold in the SW coding case. But in this paper instead of
restating results from channel coding theory in the SW setting,
we shall mainly use the similarity in two density evolution
formulas to establish connections between SW coding and
channel coding.

In both density evolution formulas, the source or channel
statistics come in only through the initial message distribu-
tion; all the remaining operations depend only on the degree
distribution. So for a fixed degree distribution pair (𝜆, 𝜌), if
𝑃 (0) = ⟨𝑃 (0)⟩, then two density evolutions are completely
identical, i.e., we have 𝑃 (𝑙) = ⟨𝑃 (𝑙)⟩ for all 𝑙. So a natural
question is: For a given SW initial message distribution
⟨𝑃 (0)⟩, does there exist a BIOS channel whose initial message
distribution 𝑃 (0) is the same as ⟨𝑃 (0)⟩? Clearly, such a BIOS
channel, if exists, is the equivalent channel for the joint
distribution 𝑃𝑋𝑌 .

We now proceed to answer this question.
Definition 2 ([25], Definition 1): We call a distribution 𝑄

symmetric if∫
ℎ(𝑚)𝑄(𝑑𝑚) =

∫
𝑒−𝑚ℎ(−𝑚)𝑄(𝑑𝑚)

for any function ℎ(⋅) for which the integral exists.

The concept of symmetric distribution was originated in the
context of channel coding. Specifically, the initial message
distribution of a BIOS channel is always symmetric. The
following lemma says the converse is also true.

Lemma 1: For any symmetric distribution 𝑄, there exists a
BIOS channel 𝑃𝑊 ∣𝑈 whose initial message distribution 𝑃 (0)

is equal to 𝑄. Furthermore, the mapping between the set
of symmetric distributions and the set of BIOS channels is
bijective.

Proof: Suppose 𝑄 is a symmetric distribution with 𝑟
probability mass points. By Definition 2, 𝑄 must be of the
form

𝑄

(
ln

𝑎𝑖
𝑎𝑟−1−𝑖

)
= 𝑎𝑖, 𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑟 − 1,

where 𝑎𝑖 ∈ (0, 1] and
∑𝑟−1

𝑖=0 𝑎𝑖 = 1. The corresponding BIOS
channel 𝑃𝑊 ∣𝑈 is given by

𝑃𝑊 ∣𝑈 (𝑖∣0) = 𝑃𝑊 ∣𝑈 (𝑟 − 1− 𝑖∣1) = 𝑎𝑖, 𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑟 − 1.

Clearly, each symmetric distribution with 𝑟 probability mass
points is associated with a unique BIOS channel with output
alphabet size 𝑟 up to different ways of labelling. If the initial
message distribution of a binary-input 𝑟′-output channel is
symmetric with 𝑟 (𝑟 < 𝑟′) probability mass points, it implies
that there exist 𝑤′ and 𝑤′′ such that

𝑃𝑊 ∣𝑈 (𝑤′∣0)
𝑃𝑊 ∣𝑈 (𝑤′∣1) =

𝑃𝑊 ∣𝑈 (𝑤′′∣0)
𝑃𝑊 ∣𝑈 (𝑤′′∣1) ,

i.e, 𝑤′ and 𝑤′′ can be combined to a single output symbol. So
this channel can be eventually reduced to a BIOS channel with
output alphabet size 𝑟. We shall view the original 𝑟′-output
channel and resulting 𝑟-output channel as the same channel.
In this sense, the mapping between the set of symmetric
distributions and the set of BIOS channels is bijective.

Lemma 2: ⟨𝑃 (0)⟩ is symmetric.
Proof: Note that 𝑃 (0)(0), 𝑃 (0)(1), and ⟨𝑃 (0)⟩ all act on

the random variable 𝑚 given by

𝑚 = 𝑚0 = ln
𝑃𝑋∣𝑌 (0∣𝑌 )

𝑃𝑋∣𝑌 (1∣𝑌 )
.

By a change of measure,∫
ℎ(𝑚)⟨𝑃 (0)⟩(𝑑𝑚)

=

∫
ℎ(𝑚)𝑃𝑋(0)𝑃 (0)(0)(𝑑𝑚) +∫
ℎ(𝑚)𝑃𝑋(1)𝑃 (0)(1) ∘ 𝐼−1(𝑑𝑚)

= 𝔼𝑃𝑌 ∣𝑋 (𝑌 ∣0)

[
𝑃𝑋(0)ℎ

(
ln
𝑃𝑋∣𝑌 (0∣𝑌 )

𝑃𝑋∣𝑌 (1∣𝑌 )

)]
+

𝔼𝑃𝑌 ∣𝑋 (𝑌 ∣1)

[
𝑃𝑋(1)ℎ

(
ln
𝑃𝑋∣𝑌 (1∣𝑌 )

𝑃𝑋∣𝑌 (0∣𝑌 )

)]

= 𝔼𝑃𝑌 ∣𝑋 (𝑌 ∣1)

[
𝑃𝑋(0)𝑃𝑌 ∣𝑋(𝑌 ∣0)
𝑃𝑌 ∣𝑋(𝑌 ∣1) ℎ

(
ln
𝑃𝑋∣𝑌 (0∣𝑌 )
𝑃𝑋∣𝑌 (1∣𝑌 )

)]
+

𝔼𝑃𝑌 ∣𝑋 (𝑌 ∣0)

[
𝑃𝑋(1)𝑃𝑌 ∣𝑋(𝑌 ∣1)
𝑃𝑌 ∣𝑋(𝑌 ∣0) ℎ

(
ln
𝑃𝑋∣𝑌 (1∣𝑌 )
𝑃𝑋∣𝑌 (0∣𝑌 )

)]

= 𝔼𝑃𝑌 ∣𝑋 (𝑌 ∣1)

[
𝑃𝑋(1)𝑃𝑋∣𝑌 (0∣𝑌 )
𝑃𝑋∣𝑌 (1∣𝑌 )

ℎ

(
ln
𝑃𝑋∣𝑌 (0∣𝑌 )
𝑃𝑋∣𝑌 (1∣𝑌 )

)]
+

𝔼𝑃𝑌 ∣𝑋 (𝑌 ∣0)

[
𝑃𝑋(0)𝑃𝑋∣𝑌 (1∣𝑌 )
𝑃𝑋∣𝑌 (0∣𝑌 )

ℎ

(
ln
𝑃𝑋∣𝑌 (1∣𝑌 )
𝑃𝑋∣𝑌 (0∣𝑌 )

)]
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=

∫
𝑒−𝑚ℎ(−𝑚)𝑃𝑋(1)𝑃 (0)(1) ∘ 𝐼−1(𝑑𝑚) +∫
𝑒−𝑚ℎ(−𝑚)𝑃𝑋(0)𝑃 (0)(0)(𝑑𝑚)

=

∫
𝑒−𝑚ℎ(−𝑚)⟨𝑃 (0)⟩(𝑑𝑚).

This completes the proof.
Remark: The above argument can be easily generalized to
show that ⟨𝑃 (𝑙)⟩ is symmetric for all 𝑙. The reason why ⟨𝑃 (𝑙)⟩
is symmetric even when there is no symmetry in the joint
distribution 𝑃𝑋𝑌 is that the cosets used in SW coding have
the symmetrizing effect. This should be contrasted with the
case of using linear codes over asymmetric channels [27].

Theorem 2: For any joint distribution 𝑃𝑋𝑌 on 𝒳 × 𝒴
(𝒳 = {0, 1}) with conditional entropy𝐻(𝑋 ∣𝑌 ), there exists a
unique BIOS channel 𝑃𝑊 ∣𝑈 with capacity 𝐶(𝑃𝑊 ∣𝑈 ) such that
its initial message distribution 𝑃 (0) is the same as the initial
message distribution ⟨𝑃 (0)⟩ induced by 𝑃𝑋𝑌 . Furthermore,
we have 𝐻(𝑋 ∣𝑌 ) + 𝐶(𝑃𝑊 ∣𝑈 ) = 1.

Proof: Since 𝑚0 = ln
𝑃𝑋∣𝑌 (0∣𝑌 )

𝑃𝑋∣𝑌 (1∣𝑌 ) , we have

𝑃𝑋∣𝑌 (0∣𝑌 ) =
𝑒𝑚0

1 + 𝑒𝑚0
,

𝑃𝑋∣𝑌 (1∣𝑌 ) =
1

1 + 𝑒𝑚0
.

It follows that ∑
𝑦∈𝒴

[
𝑃𝑌 ∣𝑋(𝑦∣0)𝐻(𝑋 ∣𝑌 = 𝑦)

]

= 𝔼𝑃 (0)(0)

[
𝐻𝑏

(
𝑒𝑚0

1 + 𝑒𝑚0

)]
,

∑
𝑦∈𝒴

[
𝑃𝑌 ∣𝑋(𝑦∣1)𝐻(𝑋 ∣𝑌 = 𝑦)

]

= 𝔼𝑃 (0)(1)

[
𝐻𝑏

(
𝑒𝑚0

1 + 𝑒𝑚0

)]

= 𝔼𝑃 (0)(1)∘𝐼−1

[
𝐻𝑏

(
𝑒−𝑚0

1 + 𝑒−𝑚0

)]

= 𝔼𝑃 (0)(1)∘𝐼−1

[
𝐻𝑏

(
𝑒𝑚0

1 + 𝑒𝑚0

)]
, (9)

where (9) follows from the fact that 𝐻𝑏(𝑝) = 𝐻𝑏(1 − 𝑝) for
𝑝 ∈ [0, 1]. Therefore,

𝐻(𝑋 ∣𝑌 ) = 𝑃𝑋(0)
∑
𝑦∈𝒴

[
𝑃𝑌 ∣𝑋(𝑦∣0)𝐻(𝑋 ∣𝑌 = 𝑦)

]
+

𝑃𝑋(1)
∑
𝑦∈𝒴

[
𝑃𝑌 ∣𝑋(𝑦∣1)𝐻(𝑋 ∣𝑌 = 𝑦)

]

= 𝑃𝑋(0)𝔼𝑃 (0)(0)

[
𝐻𝑏

(
𝑒𝑚0

1 + 𝑒𝑚0

)]
+

𝑃𝑋(1)𝔼𝑃 (0)(1)∘𝐼−1

[
𝐻𝑏

(
𝑒𝑚0

1 + 𝑒𝑚0

)]

= 𝔼⟨𝑃 (0)⟩

[
𝐻𝑏

(
𝑒𝑚0

1 + 𝑒𝑚0

)]

So if two distributions 𝑃𝑋𝑌 and 𝑃𝑋′𝑌 ′ induce the same initial
message distribution ⟨𝑃 (0)⟩, then we must have 𝐻(𝑋 ∣𝑌 ) =
𝐻(𝑋 ′∣𝑌 ′).

𝑝0

𝑝1

𝑞0,0

𝑞1,0
𝑞0,1

𝑞1,1

𝑞0,𝑟−2

𝑞1,𝑟−2

𝑞0,𝑟−1

𝑞1,𝑟−1

𝑝0𝑞0,0

𝑝0𝑞0,0

𝑝1𝑞1,0

𝑝1𝑞1,0

𝑝0𝑞0,1

𝑝0𝑞0,1

𝑝1𝑞1,1

𝑝1𝑞1,1

𝑝0𝑞0,𝑟−1

𝑝0𝑞0,𝑟−1

𝑝1𝑞1,𝑟−1

𝑝1𝑞1,𝑟−1

...

...

...

Fig. 2. Source-to-channel conversion.

For any joint distribution 𝑃𝑋𝑌 , by Lemmas 1 and 2, there
exists a unique BIOS channel 𝑃𝑊 ∣𝑈 whose initial message
distribution is the same as the one induced by 𝑃𝑋𝑌 . We
can also view the initial message distribution associated with
channel 𝑃𝑊 ∣𝑈 as the one induced by joint distribution 𝑃𝑈𝑊

where 𝑃𝑈 (0) = 𝑃𝑈 (1) = 0.5. By the argument in the previous
paragraph, we must have 𝐻(𝑋 ∣𝑌 ) = 𝐻(𝑈 ∣𝑊 ). Note that
𝐶(𝑃𝑊 ∣𝑈 ) = 1 −𝐻(𝑈 ∣𝑊 ). Therefore, the proof is complete.

Given the initial message distribution ⟨𝑃 (0)⟩ induced by the
joint distribution 𝑃𝑋𝑌 , one can write down the corresponding
BIOS channel 𝑃𝑊 ∣𝑈 explicitly (cf. the proof of Lemma 1).
Actually it is possible to directly convert 𝑃𝑋𝑌 to 𝑃𝑊 ∣𝑈
without computing ⟨𝑃 (0)⟩. This conversion is given in Fig. 2.
It should be noted that although a joint distribution 𝑃𝑋𝑌 with
∣𝒳 ∣ = 2 and ∣𝒴∣ = 𝑟 can always be converted into a BIOS
channel with output alphabet size 2𝑟, some output symbols of
that channel might be equivalent5 and thus can be combined.
With the equivalent output symbols all combined, the output
alphabet size of the resulting BIOS channel should be equal to
the number of probability mass points of ⟨𝑃 (0)⟩. In particular,
if 𝑃𝑋(0) = 𝑃𝑋(1) = 0.5 and 𝑃𝑌 ∣𝑋 is output-symmetric, then
𝑃𝑊 ∣𝑈 degenerates to 𝑃𝑌 ∣𝑋 .

It is clear now that each joint distribution 𝑃𝑋𝑌 is associated
with a unique initial message distribution, and thus a unique
BIOS channel, which is denoted by Ch(𝑃𝑋𝑌 ). As it turns out,
the mapping Ch(⋅) is not invertible. This leads to the following
definition.

Definition 3 (Equivalence): Two joint distributions, 𝑃𝑋𝑌

and 𝑃𝑋′𝑌 ′ , are equivalent if they induce the same initial
message distribution ⟨𝑃 (0)⟩ (i.e., if Ch(𝑃𝑋𝑌 ) = Ch(𝑃𝑋′𝑌 ′)).

5For a BIOS channel 𝑃𝑊 ∣𝑈 , we say two channel output symbols 𝑤′

and 𝑤′′ are equivalent if
𝑃𝑊 ∣𝑈 (𝑤′ ∣0)
𝑃𝑊 ∣𝑈 (𝑤′ ∣1) =

𝑃𝑊 ∣𝑈 (𝑤′′ ∣0)
𝑃𝑊 ∣𝑈 (𝑤′′ ∣1) . Generally, for a

joint distribution 𝑃𝑋𝑌 , we say 𝑦′ and 𝑦′′ are equivalent if
𝑃𝑋∣𝑌 (0∣𝑦′)
𝑃𝑋∣𝑌 (1∣𝑦′) =

𝑃𝑋∣𝑌 (0∣𝑦′′)
𝑃𝑋∣𝑌 (1∣𝑦′′) . If 𝑃𝑋(0) = 𝑃𝑋(1) = 0.5, this definition reduces to that in

the channel case. Here “equivalent" means that the a posteriori distributions
of 𝑋 given 𝑌 = 𝑦′ and 𝑌 = 𝑦′′ are the same.
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Remark: Equivalent joint distributions are not distinguishable
under density evolution.

IV. CONCLUSION

We have studied the problem of designing SW codes by
leveraging its connection to designing LDPC channel codes.
Specifically we have shown that, under density evolution,
each SW coding problem is equivalent to a channel coding
problem for a binary-input output-symmetric channel. Note
that this channel is often different from the channel between
the source and the side information in the original SW coding
problem. This is in sharp contrast to the practice in the existing
works where the two channels are assumed the same. It should
be emphasized that the connection between SW coding and
channel coding depends critically on the type of codes and
decoding methods, and therefore, should be used with great
caution.
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