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Successive Wyner-Ziv Coding for the Binary CEO
Problem Under Logarithmic Loss

Mahdi Nangir, Reza Asvadi , Member, IEEE, Jun Chen, Senior Member, IEEE,

Mahmoud Ahmadian-Attari, and Tad Matsumoto , Fellow, IEEE

Abstract— The L-link binary Chief Executive Officer (CEO)
problem under logarithmic loss is investigated in this paper.
A quantization splitting technique is applied to convert the prob-
lem under consideration to a (2L−1)-step successive Wyner-Ziv
(WZ) problem, for which a practical coding scheme is proposed.
In the proposed scheme, Low-Density Generator-Matrix (LDGM)
codes are used for binary quantization while Low-Density Parity-
Check (LDPC) codes are used for syndrome generation; the
decoder performs successive decoding based on the received
syndromes and produces a soft reconstruction of the remote
source. The simulation results indicate that the rate-distortion
performance of the proposed scheme can approach the the-
oretical inner bound based on binary-symmetric test-channel
models.

Index Terms— Binary CEO problem, binary quantization,
successive decoding, syndrome decoding, Wyner-Ziv problem,
quantization splitting, logarithmic loss.

I. INTRODUCTION

MULTITERMINAL source coding is an important sub-
ject of network information theory. Research on this

subject has yielded insights and techniques that are useful for
a wide range of applications, including, among other things,
cooperative communications [2], distributed storage [3], and
sensor networks [4]. A particular formulation of multiterminal
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source coding, known as the Chief Executive Officer (CEO)
problem, has received significant attention [5]. In this problem,
there are L encoders (also called agents), which observe
independently corrupted versions of a source; these encoders
compress their respective observations and forward the com-
pressed data separately to a central decoder (also called CEO),
which then produces a (lossy) reconstruction of the target
source.

The quadratic Gaussian setting of the CEO problem has
been studied extensively, for which the rate-distortion region
is characterized completely in the scalar case and partially in
the vector case. Extending these results beyond the quadratic
Gaussian setting turns out to be highly non-trivial; there are
some results in [6]–[8]. Indeed, even for many seemingly
simple sources and distortion measures, the understanding
of the relevant information-theoretic limits is rather limited.
A remarkable exception is a somewhat under-appreciated
distortion measure called logarithmic loss (log-loss). As shown
by Courtade and Weissman [9], the rate-distortion region
of the CEO problem under log-loss admits a single-letter
characterization for arbitrary finite-alphabet sources and noisy
observations. Different from the conventional distortion mea-
sures which are typically imposed on “hard” reconstructions
defined over the given source alphabet, log-loss is tailored
to “soft” reconstructions in the form of probability distri-
butions. Specifically, in the context of the CEO problem,
the most favorable “soft” reconstruction is essentially the a
posteriori distribution of the source given the compressed
data received from the encoders (which is a sufficient sta-
tistic); it is more informative than its “hard” counterparts
and more suitable for many downstream statistical inference
tasks.

Recent years have seen significant interests in a new
paradigm of wireless communications called Cloud-Radio
Access Network (C-RAN). It has been recognized that the
information-theoretic and coding-theoretic aspect of C-RAN is
closely related to that of the CEO problem under log-loss [10].
This intriguing connection greatly enriches the implication of
the latter problem and provides further motivations for the
relevant research.

A main contribution of the present paper is a practical
coding scheme for the CEO problem under log-loss. We adopt
a hierarchical approach by decomposing the CEO problem
into a set of simpler problems upon which the existing
coding techniques can be directly brought to bear and then
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TABLE I

LIST OF SOME SYMBOLS USED IN THIS PAPER

combining these small pieces to find the solution to the original
problem. Two most basic problems in information theory are
point-to-point channel coding and (lossy) source coding (also
known as quantization). It is well known that the fundamen-
tal limits of these two problems can be approached using
graph-based codes (e.g., Low-Density Parity-Check (LDPC)
codes for channel coding [11] and Low-Density Generator-
Matrix (LDGM) codes for (lossy) source coding [12]) in
conjunction with iterative message-passing algorithms (e.g.,
the Sum-Product (SP) algorithm for channel decoding [11]
and the Bias-Propagation (BiP) algorithm for (lossy) source
encoding [13], [14]). These basic coding components can serve
as the building blocks of more sophisticated schemes for the
problems at the second level of the hierarchy. Notable exam-
ples include the Gelfand-Pinsker problem and the Wyner-Ziv
problem, which are solved via proper combination of source
codes and channel codes [15], [16]. With these solutions in
hand, one can then tackle the problems at the third level or
even higher. From this perspective, our proposed scheme for
the CEO problem can be interpreted as successive implemen-
tation of Wyner-Ziv coding.

The conversion of the CEO problem to the Wyner-Ziv
problem is realized using quantization splitting. The idea of
quantization splitting is by no means new. Indeed, it has
been applied to the multiterminal source coding problem [17]
and multiple description problem [18] among others [19],
particularly in the quadratic Gaussian setting. However, to the
best of our knowledge, the application of quantization splitting
is mainly restricted in the theoretical domain as a concep-
tual apparatus, and its practical implementation has not been
addressed in the literature, at least for the problem under
consideration (namely, the CEO problem under log-loss).
In this work we mainly focus on the setting where the source
is binary-symmetric and is corrupted by independent Bernoulli
noises. It is worth emphasizing that this simple setting captures
the essential features of the CEO problem and the method-
ology underlying our proposed scheme is in fact broadly
applicable.

The organization of this paper is as follows. The problem
definition and the concept of quantization splitting are pre-
sented in Section II. The proposed scheme is described in
Section III. Sections IV and V contain associated analytical
and numerical results, respectively. We conclude the paper in
Section VI.

II. THE CEO PROBLEM AND QUANTIZATION SPLITTING

A. Notations

Throughout this paper, the logarithm is to the base 2.
Random variables and their realizations are shown by capital
letters and lowercase letters in italics, respectively. Sets and
alphabet set of random variables are depicted by calligraphic
letters. Furthermore, matrices are shown by bold-faced letters.
The binary entropy function is hb(x) = −x log x − (1 −
x) log(1 − x), B � {0, 1}, and p ∗ d = p(1 − d) + (1 − p)d
shows the binary convolution of p and d. The list of some
symbols used in the paper is represented in Table I.

B. System Model

Let Xn = (X1, · · · , Xn) be an independent and identically
distributed (i.i.d.) remote source. L noisy observations of Xn

are available in L links that are mutually independent without
any communication among them. These noisy observations,
Y n

l for l ∈ IL � {1, · · · , L}, are generated by Xn through
independent memoryless channels. The block diagram of an
L-link CEO problem is depicted in Fig. 1. In each link,
an encoder maps its noisy observation to a codeword Cl by
using a function fl, as follows:

Cl = fl(Y n
l ), where Y n

l ∈ Yn
l and Cl ∈ Cl, for l ∈ IL.

(1)

The codewords Cl, for l ∈ IL, are sent to a joint CEO decoder
via noiseless channels. The CEO decoder produces a soft
reconstruction X̂n = (X̂1, · · · , X̂n) of the original remote
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Fig. 1. Configuration of an L-link CEO problem.

source Xn by using a function g, as follows:

X̂n = g(C1, · · · , CL), where (C1, · · · , CL) ∈ C1 · · · × CL.

(2)

Definition 1: The log-loss induced by a symbol x ∈ X and
a probability distribution x̂ on X is defined as

d(x, x̂) = log
( 1
x̂(x)

)
. (3)

More generally, for a sequence of symbols xn = (x1, · · · , xn)
and a sequence of distributions x̂n = (x̂1, · · · , x̂n), let

d(xn, x̂n) =
1
n

n∑
t=1

log
( 1
x̂t(xt)

)
. (4)

Definition 2: A rate-distortion vector (R1, · · · , RL, D) is
called strict-sense achievable under log-loss, if for all suf-
ficiently large n, there exist functions f1,f2,...,fL, and g
respectively according to (1) and (2) such that

Rl ≥ 1
n

log
∣∣Cl

∣∣, for l ∈ IL;

D ≥ E(d(Xn, X̂n)), (5)

where E(·) denotes expectation function. The closure of the
set of all strict-sense achievable vectors (R1, · · · , RL, D) is
called the rate-distortion region of the CEO problem under
log-loss and is denoted by RD�

CEO.
Definition 3 ( [9, Definition 7]): Let RDi

CEO be the set of
all (R1, · · · , RL, D) satisfying∑

l∈A
Rl ≥ I(YA; UA|UAc , Q), ∅ ⊂ A ⊆ IL, (6a)

D ≥ H(X |UIL , Q), (6b)

for some joint distribution

pQ(q)pX(x)
L∏

l=1

pYl|X(yl|x)pUl|Yl,Q(ul|yl, q), (7)

where in (6a), YA = {Yl : l ∈ A} and Ac = IL\A.
Definition 4 ( [9, Definition 8]): Let RDo

CEO be the set of
all (R1, · · · , RL, D) satisfying∑
l∈A

Rl ≥ [
∑
l∈A

I(Yl; Ul|X, Q) + H(X |UAc , Q) − D]+,

∅ ⊂ A ⊆ IL, (8)

and (6b), for some joint distribution (7), where [x]+ =
max{0, x} and UA ↔ YA ↔ X ↔ YAc ↔ UAc forms a
Markov chain for any A ⊆ IL.

It is shown in [9] that

RD�

CEO = RDi
CEO = RDo

CEO; (9)

moreover, there is no loss of generality in imposing the
cardinality bounds |Ul| ≤ |Yl|, l ∈ IL and |Q| ≤ L + 2
on the alphabet sizes of auxiliary random variables Ul and
timesharing variable Q, respectively.

Given test channels pUl|Yl
, l ∈ IL, we define

RDCEO(pUl|Yl
, l ∈ IL) as the set of all (R1, · · · , RL, D)

satisfying ∑
l∈A

Rl ≥ I(YA; UA|UAc), ∅ ⊂ A ⊆ IL, (10)

D ≥ H(X |UIL), (11)

where X , YIL , and UIL are jointly distributed according to
pX(x)

∏L
l=1 pYl|X(yl|x)pUl|Yl

(ul|yl).
Note that (10) and (11) respectively correspond to (6a)

and (6b) with timesharing variable Q set to be a con-
stant. Therefore, RDi

CEO (as well as RDo
CEO and RD�

CEO
in light of (9)) can be expressed as the convex hull of
the union of RDCEO(pUl|Yl

, l ∈ IL) over all (pUl|Yl
, l ∈

IL). Moreover, we define RCEO(pUl|Yl
, l ∈ IL) to be

the set of all (R1, · · · , RL) satisfying (10) and define
its dominant face, denoted by FCEO(pUl|Yl

, l ∈ IL),
to be the set of (R1, · · · , RL) ∈ RCEO(pUl|Yl

, l ∈
IL) satisfying

∑L
l=1 Rl = I(YIL ; UIL). Due to the

contra-polymatroid structure of RCEO(pUl|Yl
, l ∈ IL) [17],

[19], FCEO(pUl|Yl
, l ∈ IL) is non-empty and every

(R1, · · · , RL, D) in RDCEO(pUl|Yl
, l ∈ IL) is dominated,

in a component-wise manner, by (R′
1, · · · , R′

L, H(X |UIL))
for some (R′

1, · · · , R′
L) ∈ FCEO(pUl|Yl

, l ∈ IL).

C. Quantization Splitting

FCEO(pUl|Yl
, l ∈ IL) has L! corner points. Specifically,

each permutation π on IL is associated with a corner point
(R1(π), · · · , RL(π)) of FCEO(pUl|Yl

, l ∈ IL) as follows:

Rπ(l)(π) = I(Yπ(l); Uπ(l)|Uπ(l+1), · · · , Uπ(L)), l ∈ IL−1,

Rπ(L)(π) = I(Yπ(L); Uπ(L)).

These corner points can be achieved via successive Wyner-Ziv
coding with decoding order Uπ(L) → Uπ(L−1) → · · · → Uπ(1)

(an implementation of this scheme for the case L = 2 can be
found in [20]).

To achieve non-corner points of FCEO(pUl|Yl
, l ∈ IL),

we employ the quantization splitting technique introduced
in [17], which is a generalization of the source splitting
technique [21] and a counterpart of the rate splitting technique
in channel coding [22], [23]. Roughly speaking, the basic
idea underlying the quantization splitting technique is that
each non-corner point in the L-dimensional space can be
projected to a corner point in the (2L−1)-dimensional space.
Specifically, it is known [17, Theorem 2.1] that, for any
rate tuple (R1, · · · , RL) ∈ FCEO(pUl|Yl

, l ∈ IL), there exist
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random variables Wl, l ∈ IL, and a well-ordered permutation
ρ1 on the set {W1, · · · , WL, U1, · · · , UL} such that

Rl = I(Yl; Wl|{Wl}−σ ) + I(Yl; Ul|{Ul}−σ ), l ∈ IL, (12)

where {Wl}−σ and {Ul}−σ represent the set of random variables
that respectively appear before Wl and Ul in the well-ordered
permutation ρ; moreover, Wl is a physically degraded version
Ul, l ∈ IL, and at least one Wl is independent of Ul (and thus
can be eliminated).

It is instructive to view Ul as a fine-description of Yl

and view Wl as a coarse-description split from Ul, l ∈ IL.
Eq. (12) suggests that the given rate tuple (R1, · · · , RL) can be
achieved via successive Wyner-Ziv coding with decoding order
specified by ρ. It should be emphasized that the successive
Wyner-Ziv coding scheme for non-corner points is in general
more complicated than that for corner points. First of all,
the scheme for non-corner points involves more encoding and
decoding steps. Secondly and more importantly, to realize the
splitting effect, one needs to generate a coarse-description
codebook and then, for each of its codewords, generate a
fine-description codebook; as a consequence, the number
of fine-description codebooks grows exponentially with the
codeword length, causing a serious problem in practice. In this
work we circumvent this problem by using a codebook con-
struction technique inspired by the functional representation
lemma [24], [25]. Successive refinement coding scheme is
also a multi-terminal encoding problem for, basically, down-
link, where terminals are classified into several groups, each
having different distortion requirements. The remote source is
encoded such that the description for the groups having higher
distortion requirement can help recover another groups hav-
ing lower distortion requirement. Alternatively, our proposed
coding scheme successively decodes binary observations and
then softly reconstructs the remote source with a single value
of distortion under the log-loss criterion.

III. DESCRIPTION OF THE PROPOSED SCHEME

Consider an L-link binary CEO problem, where a remote
Binary-Symmetric Source (BSS) is corrupted by independent
Bernoulli noises with parameters p1, p2, ..., and pL, i.e.,

X ∼ Ber(
1
2
), Yl = X ⊕ Nl, Nl ∼ Ber(pl), l ∈ IL. (13)

We make the following two assumptions.

1) A binary-symmetric test channel model is adopted for
each encoder. More specifically, it is assumed that pUl|Yl

is a Binary-Symmetric Channel (BSC) with crossover
probability dl, l ∈ IL. Hence, we can write Ul = Yl⊕Zl,
l ∈ IL, where Zl ∼ Ber(dl), l ∈ IL, are mutually
independent and are independent of (X, YIL) as well.
This assumption is justified by the numerical results
in [20].

2) A BSC model is adopted for each splitter. More specifi-
cally, it is assumed that pWl|Ul

is a BSC with crossover
probability δl, l ∈ IL. Hence, we can write Wl = Ul ⊕

1A well-ordered permutation is an arbitrary ordering of the set
{W1, · · · , WL, U1, · · · , UL} with Wl appearing before Ul for all l ∈ IL.

Vl, l ∈ IL, where Vl ∼ Ber(δl), l ∈ IL, are mutually
independent and are independent of (X, YIL , UIL) as
well. According to [23, Definition 2], this assumption
incurs no loss of generality.

Since the coding schemes associated with different
well-ordered permutations are conceptually similar, for ease
of exposition, we focus on a specific permutation ρ =
(W1, · · · , WL−1, UL, UL−1, · · · , U1) (we eliminate WL by
setting δL = 1

2 ). Each conditional mutual information
in (12) can be written as the difference of two terms,
one associated with quantization and the other with bin-
ning. As an example, consider the second term of R1,
i.e., I(Y1; U1|W1, · · · , WL−1, U2, · · · , UL). We have

I(Y1; U1|W1, · · · , WL−1, U2, · · · , UL)
= I(Y1; U1|W1, U2, · · · , UL) (14)

= I(U2, · · · , UL, Y1; U1|W1) − I(U2, · · · , UL; U1|W1)
= I(Y1; U1|W1) − I(U2, · · · , UL; U1|W1), (15)

where (14) is due to the degradeness of Wl with respect to
Ul, l ∈ [2 : L − 1], where [j : k] � {j, · · · , k}, and (15)
is because of the fact that (U1, W1) and (U2, · · · , UL) are
conditionally independent given Y1. The term I(Y1; U1|W1)
specifies the quantization rate needed to generate the
fine-description U1 given the coarse description W1 while
the term I(U2, · · · , UL; U1|W1) specifies the amount of rate
reduction achievable through binning.

We use a binary quantizer to map the outputs of a BSS to
the codewords of an LDGM code with the minimum Hamming
distance. These quantizers are utilized in the encoders of our
proposed coding scheme. Practically, binary quantization can
be realized by using some iterative message passing algorithms
such as the BiP algorithm [13] or the survey-propagation
algorithm [12]. Presence of side information can further reduce
the compression rate required for a prescribed distortion con-
straint. Actually, this lossless source coding scenario can be
practically realized by a binning operation based on channel
coding schemes [4]. In our proposed coding scheme, binning
is implemented by using LDPC codes with the syndrome
generation scheme. This binning scheme is also used for the
asymmetric Slepian-Wolf coding problem. In practice, the SP
algorithm can be used to iteratively decode the LDPC coset
code specified by the given syndrome.

A. The Proposed Coding Scheme: An Information-Theoretic
Description

To elucidate the overall structure of the proposed scheme,
we first give a short description using the information-theoretic
terminology. First, let WL � UL. In the following description,
all the � quantities are small positive real numbers.

Codebook Generation:

1) For l ∈ IL, a codebook CWl
of rate I(Yl; Wl) + �l,1

should be constructed with each codeword generated
independently according to

∏n
t=1 pWl

(·).
2) For i ∈ IL−1 and each codeword wn

i ∈ CWi , a codebook
CUi(wn

i ) of rate I(Yi; Ui|Wi) + �i,2 is required with
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each codeword generated independently according to∏n
t=1 pUi|Wi

( · |wi,t

)
.

3) For i ∈ [2 : L], the CWi should be partitioned into
2n[I(Yi;Wi|W1,··· ,Wi−1)+εi,3] bins, where each bin con-
tains 2n[I(W1,··· ,Wi−1;Wi)−εi,3] codewords.

4) For i ∈ IL−1 and each codeword wn
i ∈

CWi , CUi(wn
i ) should be partitioned into

2n[I(Yi;Ui|W1,··· ,Wi,Ui+1,··· ,UL)+εi,4] bins, where each
bin contains 2n[I(W1,··· ,Wi−1,Ui+1,··· ,UL;Ui|Wi)−εi,4]

codewords.
Encoding:
1) For l ∈ IL and a given yn

l , the l-th encoder finds a
codeword wn

l ∈ CWl
that is jointly typical with yn

l .
Note that the Hamming distance between wn

l and yn
l

is approximately n(dl ∗ δl).
2) For i ∈ IL−1, the i-th encoder finds a codeword

un
i ∈ CUi(wn

i ) that is jointly typical with (yn
i , wn

i ).
Note that the Hamming distance between un

i and yn
i is

approximately ndi while the Hamming distance between
un

i and wn
i is approximately nδi.

3) For l ∈ IL, the l-th encoder sends the index b(wn
l ) of the

bin that contains wn
l (for l = 1, it only sends the index

i(wn
1 ) of wn

1 , and for l = L nothing is sent), and the
index b(un

l ) of the bin that contains un
l to the decoder.

Decoding:
1) The decoder first decodes wn

1 based on i(wn
1 ).

2) For i ∈ [2 : L], it decodes wn
i by searching in the bin

with index b(wn
i ) for the unique codeword that is jointly

typical with (wn
1 , wn

2 , · · · , wn
i−1).

3) For j ∈ [L − 1 : 1], it decodes un
j by searching in the

bin with index b(un
j ) for the unique codeword that is

jointly typical with (wn
1 , · · · , wn

j , un
j+1, · · · , un

L).
4) Finally, it uses (ûn

1 , · · · , ûn
L) to produce a soft recon-

struction of xn by the following rule:

x̂t = pX|UIL
(·|û1,t, · · · , ûL,t), t ∈ In. (16)

The conditional probability function
pX|UIL

(·|û1,t, · · · , ûL,t) depends on the binary values of ûl,t,
for l ∈ IL. This function can be determined based on the joint
distribution diagram of the CEO problem. As an example
for L = 3, we calculate pX|U1,U2,U3(xj |û1,j , û2,j, û3,j) for
(xj = 0, û1,j = 1, û2,j = 0, û3,j = 1). The other 15 cases
can be calculated similarly.

x̂j = pX|U1,U2,U3(0|1, 0, 1) =
pX,U1,U2,U3(0, 1, 0, 1)

pU1,U2,U3(1, 0, 1)

=
pU1,U2,U3|X(1, 0, 1|0)× 0.5

pU1,U2,U3|X(1, 0, 1|0)×0.5+pU1,U2,U3|X(1, 0, 1|1)×0.5

=
τ1

τ1 + τ2
, (17)

where τ1 = (p1 ∗ d1)(1− p2 ∗ d2)(p3 ∗ d3) and τ2 = (1− p1 ∗
d1)(p2 ∗ d2)(1 − p3 ∗ d3).

B. The Proposed Coding Scheme: A Coding-Theoretic
Description

Now we translate the above information-theoretic descrip-
tion of the proposed scheme to a coding-theoretic description.

Along the way, we address certain practical issues encoun-
tered in codebook generation using a construction tech-
nique inspired by the functional representation lemma.
For notational simplicity, the description is given for the
case L = 3; the extension to the general case is
straightforward.

Codebook Generation:

1) For l ∈ I3, an LDGM codebook CWl
should be gener-

ated with the rate of I(Yl; Wl)+ �l,1 = 1−hb(dl ∗ δl)+
�l,1.2

2) For i ∈ I2 and each codeword wn
i , a codebook CUi(w

n
i )

is constructed as follows3:
Firstly, an LDGM code C′

i should be considered with
2n[I(Yi;Ui|Wi)+εi,2] codewords with each of length nKi,
where Ki is a fixed integer. Let φi(·) be a mapping4

from B
Ki → B such that

|S0| ≈ 2Ki(1 − δi) and |S1| ≈ 2Kiδi, (18)

where Sb � {sKi ∈ B
Ki : φi(sKi) = b}, b ∈ B. Note

that the approximation in (18) can be made arbitrarily
precise when Ki → ∞. For each codeword cnKi �(
c1, · · · , cnKi

) ∈ C′
i, the cnKi is mapped to a codeword

of length n by using φi(·) as below:

(
φi

(
c1, · · · , cKi

)
, · · · , φi

(
c(n−1)Ki+1, · · · , cnKi

))
.

(19)

By doing this for all codewords in C′
i, a new codebook

φi(C′
i) is obtained with 2n[I(Yi;Ui|Wi)+εi,2] codewords,

each of length n. Hence, the codebook CUi(wn
i ) can be

defined as wn
i ⊕φi(C′

i), which is a codebook obtained by
adding wn

i to each codeword in φi(C′
i). Now consider

the backward channels Yi = Ui⊕Z ′
i and Ui = Wi⊕V ′

i ,5

where Z ′
i ∼ Ber(di), V ′

i ∼ Ber(δi), and Wi are mutually
independent. It can be verified that

I(Yi; Ui|Wi) = I(V ′
i ⊕ Z ′

i; V
′
i ) = hb(δi ∗ di) − hb(di).

(20)

3) For i = 2, 3, to partition CWi into
2n[I(Yi;Wi|W1,··· ,Wi−1)+εi,3] bins with each bin
containing 2n[I(W1,··· ,Wi−1;Wi)−εi,3] codewords,
an LDPC code of rate I(W1, · · · , Wi−1; Wi) − �i,3 is
used with parity-check matrix Hi = (H̃i, Ĥi), where
H̃i is the parity-check matrix of CWi . It can be verified

2Note that δ3 = 0.
3This construction is inspired by the functional representation lemma.
4This is known as Gallager’s mapping [26], which is widely used to con-

struct source or channel codes with non-uniform empirical distribution [27],
[28].

5The representation of such backward channels can be viewed as a man-
ifestation of the functional representation lemma. Moreover, it is instructive
to view φi(C′

i) as a codebook generated by V ′
i .



NANGIR et al.: SUCCESSIVE WYNER-ZIV CODING FOR THE BINARY CEO PROBLEM UNDER LOG-LOSS 7517

that

I(Y2; W2|W1)
= I(V ′

1⊕Z ′
1⊕N ′

1⊕N2; V ′
1⊕Z ′

1⊕N ′
1⊕N2⊕Z2⊕V2)

= H(V ′
1⊕Z ′

1⊕N ′
1⊕N2⊕Z2⊕V2) − H(Z2⊕V2)

= hb(δ1 ∗ d1 ∗ p1 ∗ p2 ∗ d2 ∗ δ2) − hb(d2 ∗ δ2),
I(W1; W2) = 1 − H(V ′

1⊕Z ′
1⊕N ′

1⊕N2⊕Z2⊕V2)
= 1 − hb(δ1 ∗ d1 ∗ p1 ∗ p2 ∗ d2 ∗ δ2),
I(W1, W2; U3) = H(W1, W2) − H(W1, W2|U3)
= 1 + hb(δ1 ∗ d1 ∗ p1 ∗ p2 ∗ d2 ∗ δ2)
− H(Z ′

3⊕N ′
3⊕N1⊕Z1⊕V1, Z

′
3⊕N ′

3⊕N2⊕Z2⊕V2)
= H(W1, W2) − H(W1, W2, U3) + 1,

I(Y3; U3|W1, W2) = I(Y3; U3) − I(W1, W2; U3)
= 1 − hb(d3) − I(W1, W2; U3). (21)

4) For i ∈ I2, to partition C′
i into

2n[I(Yi;Ui|W1,··· ,Wi,Ui+1,··· ,U3)+εi,4] bins6 with each bin
containing 2n[I(W1,··· ,Wi−1,Ui+1,··· ,U3;Ui|Wi)−εi,4]

codewords, an LDPC code is used with
2n(I(W1,··· ,Wi−1,Ui+1,··· ,U3;Ui|Wi)−εi,4) codewords,
each of length nKi. The parity-check matrix of
this LDPC code is H1 = (H̃1, Ĥ1) for i = 1 and
H′

2 = (H̃′
2, Ĥ

′
2) for i = 2, where H̃1 and H̃′

2 are the
parity-check matrices of C′

1 and C′
2, respectively. Thus,

we have

I(U2, U3; U1|W1)
= I(V ′

1 ⊕ Z ′
1 ⊕ N ′

1 ⊕ N2 ⊕ Z2, V
′
1 ⊕ Z ′

1

⊕N ′
1 ⊕ N3 ⊕ Z3; V ′

1)
= H(V ′

1 ⊕ Z ′
1 ⊕ N ′

1 ⊕ N2 ⊕ Z2, V
′
1 ⊕ Z ′

1

⊕N ′
1 ⊕ N3 ⊕ Z3)

−H(Z ′
1 ⊕ N ′

1 ⊕ N2 ⊕ Z2, Z
′
1 ⊕ N ′

1 ⊕ N3 ⊕ Z3),
I(Y1; U1|W1, U2, U3) = I(Y1; U1|W1)

− I(U2, U3; U1|W1),
I(W1, U3; U2|W2)
= I(V ′

2 ⊕ Z ′
2 ⊕ N ′

2 ⊕ N1 ⊕ Z1

⊕V1, V
′
2 ⊕ Z ′

2 ⊕ N ′
2 ⊕ N3 ⊕ Z3; V ′

2)
= H(V ′

2 ⊕ Z ′
2 ⊕ N ′

2 ⊕ N1 ⊕ Z1

⊕V1, V
′
2 ⊕ Z ′

2 ⊕ N ′
2 ⊕ N3 ⊕ Z3)

−H(Z ′
2 ⊕ N ′

2 ⊕ N1 ⊕ Z1 ⊕ V1, Z
′
2

⊕N ′
2 ⊕ N3 ⊕ Z3),

I(Y2; U2|W1, W2, U3)
= I(Y2; U2|W2) − I(W1, U3; U2|W2). (22)

Encoding: Different from the information-theoretic descrip-
tion in Section III-A, we shall interpret joint typicality encod-
ing as the minimum Hamming distance encoding, which is
then implemented using the BiP algorithm.

1) For l ∈ I3 and a given yn
l , the l-th encoder finds a

codeword wn
l ∈ CWl

from an LDGM code that is the
closest (in the Hamming distance) to yn

l .

6This induces a partition of CUi
(wn

i ) .

Fig. 2. The proposed encoding scheme.

2) For i ∈ I2, find a codeword cnKi

i ∈ C′
i such that

φi(cnKi

i ) is the closest (in the Hamming distance) to
yn

i ⊕ wn
i .

3) Send the index of wn
1 and the syndrome cnK1

1 Ĥ1

from the first link to the decoder; note that wn
1 =

i(wn
1 )GW1 , where GW1 is the generator matrix of

LDGM code CW1 . Also, send the syndromes wn
2 Ĥ2 and

cnK2
2 Ĥ′

2 from the second link to the decoder. Finally,
send the syndrome un

3Ĥ3 from the third link to the
decoder.

The block diagram of the proposed encoding scheme is
depicted in Fig. 2.

Decoding: Different from the information-theoretic descrip-
tion in Section III-A, we shall interpret joint typicality decod-
ing as maximum a posteriori decoding, which is then imple-
mented using the SP algorithm.

1) The decoder first sets ŵn
1 = wn

1 .
2) It then finds the most likely choice of wn

2 , denoted
by ŵn

2 , based on ŵn
1 and wn

2 H2 (which can be
deduced from wn

2 Ĥ2 and the fact that wn
2 H̃2 is a

zero vector). This can be realized via conventional
Slepian-Wolf decoding with H2 defining the fac-
tor graph and ŵn

1 serving as side information (see,
e.g., [29]).

3) It then finds the most likely choice of un
3 , denoted by

ûn
3 , based on ŵn

1 , ŵn
2 , and un

3H3 (which can be deduced
from un

3 Ĥ3 and the fact that un
2 H̃3 is a zero vector). This

can be realized via conventional Slepian-Wolf decoding
with H3 defining the factor graph and (ŵn

1 , ŵn
2 ) serving

as side information.
4) It then finds the most likely choice of cnK2

2 , denoted by
ĉnK2
2 , based on ŵn

1 , ŵn
2 , ûn

3 , and cnK2
2 H′

2 (which can
be deduced from cnK2

2 Ĥ′
2 and the fact that cnK2

2 H̃′
2 is

a zero vector). This can be realized via joint demapping
and decoding with (H′

2, φ2) defining the factor graph
and (ŵn

1 , ŵn
2 , ûn

3 ) serving as the channel output (see,
e.g., [30]). Set ûn

2 = ŵn
2 ⊕ φ2(ĉnK2

2 ).
5) It then finds the most likely cnK1

1 , denoted by ĉnK1
1 ,

based on ŵn
1 , ûn

2 , ûn
3 , and cnK1

1 H1 (which can be
deduced from cnK1

1 Ĥ1 and the fact that cnK1
1 H̃1 is a

zero vector). This can be realized via joint demapping
and decoding with (H1, φ1) defining the factor graph
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Fig. 3. The proposed successive decoding scheme.

Fig. 4. Joint distribution diagram of the binary CEO problem.

and (ŵn
1 , ûn

2 , ûn
3 ) serving as the channel output. Set

ûn
1 = ŵn

1 ⊕ φ1(ĉnK1
1 ).

6) Finally, it produces a soft reconstruction x̂n based on
ûn

1 , ûn
2 , and ûn

3 (see (16)).
The block diagram of the proposed decoding scheme is

depicted in Fig. 3.

C. Analysis of the Proposed Coding Scheme

Now we proceed to specify the sizes of generator
matrices and parity-check matrices used in the proposed
scheme and other relevant parameters, assuming that d1,
d2, d3, δ1, and δ2 are given according to the joint
distribution of a 3-link binary CEO problem depicted
in Fig. 4.

For the LDGM codes CWl
, as shown in Fig. 2, their

generator matrices are of size ml × n, l ∈ I3, respectively,
where

mi

n
= 1 − hb(di ∗ δi) + �i,1, i ∈ I2,

m3

n
= 1 − hb(d3) + �3,1. (23)

Furthermore, size of the generator matrix of the LDGM code
C′

i is Mi×nKi, for i ∈ I2. By properly designing these LDGM
codes and increasing the block length n, one can ensure
that

E(
1
n

n∑
j=1

[yi,j ⊕ wi,j ]) ≈ di ∗ δi, i ∈ I2,

E(
1
n

n∑
j=1

[yl,j ⊕ ul,j ]) ≈ dl, �l,1 ≈ 0, l ∈ I3. (24)

For the LDPC codes shown in Fig. 2, the sizes of their
parity-check matrices are given as follows:

H1 : nK1 × (nK1 − M1 + k1), H2 : n×(n−m2+k2),
H′

2 : nK2 × (nK2 − M2 + k′
2), H3 : n×(n −m3+k3).

(25)

All of the LDPC codes in the decoder performs an SP
algorithm. Basically, each SP algorithm is an iterative
message-passing algorithm which passes LLR values between
variable nodes and check nodes of the LDPC code. In each
iteration, we have LLR-updating equations in both variable
nodes and check nodes. Generally, there are two types of
inputs in this algorithm: (1) Syndrome, (2) Side informa-
tion. In the SP algorithm, initial LLR values for the vari-
able nodes are calculated based on the joint distribution
diagram parameters. For instance, the initial LLR values of
the SP algorithm by using parity-check matrix H3 are as
follows:

LLRt,0 = log
pU3|W1,W2(0|ŵ1,t, ŵ2,t)
pU3|W1,W2(1|ŵ1,t, ŵ2,t)

,

for t ∈ In or t ∈ InKi . (26)

There are four possible cases for the LLRt,0 based on the
values of (ŵ1,t, ŵ2,t) ∈ B

2, and all of them can be calculated
from the joint distribution diagram.

In the syndrome-decoding part of our proposed scheme,
which is implemented by successive SP algorithms, if the
optimized degree distributions for the BSC are used with
sufficiently long LDPC codes, the Bit Error Rate (BER) for the
reconstruction of {U1, U2, U3} can be made very close to zero,
i.e., BERl ≈ 0 for l ∈ I3. In such a case, the total distortion of
the l-th link approximately equals dl. In designing procedure
of LDPC codes that are employed for the syndrome-generation
and the syndrome-decoding, the following relations are con-
sidered in their code rates,

H2 :
m2 − k2

n
= I(W1; W2) − �2,3

= 1 − hb(P1 ∗ δ1 ∗ P2 ∗ δ2) − �2,3,

H3 :
m3 − k3

n
= I(W1, W2; U3) − �3,3
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= 2 + hb(P1 ∗ δ1 ∗ P2 ∗ δ2)
−H(W1, W2, U3) − �3,3,

H′
2 :

M2 − k′
2

nK2
= I(W1, U3; U2|W2) − �2,4

= H(W1, W2, U3) − H(W1, U2, U3) − �2,4,

H1 :
M1 − k1

nK1
= I(U2, U3; U1|W1) − �1,4

= H(W1, U2, U3) − H(U1, U2, U3) − �1,4,

(27)

where Pl = pl ∗ dl for l ∈ I3. Note that, there are four
compound LDGM-LDPC codes7 in the proposed scheme for a
3-link binary CEO problem. They comprise the LDGM codes
CW2 , CU3 , C′

1, and C′
2, respectively with the LDPC codes of

parity-check matrices H2, H3, H1, and H′
2.

IV. ANALYTICAL RESULTS

It is clear that, for the proposed scheme, there is free-
dom in choosing (d1, · · · , dL) and (δ1, · · · , δL). The role of
(d1, · · · , dL) is to specify the dominant face FCEO(pUl|Yl

, l ∈
IL) (and consequently the sum rate) while the role of
(δ1, · · · , δL) is to specify the location of the target rate
tuple (R1, · · · , RL) on the dominant face. Note that for
any (R1, · · · , RL, D) ∈ RDCEO(pUl|Yl

, l ∈ IL), we have
L∑

l=1

Rl ≥ Rth and D ≥ Dth, where Rth = I(YIL ; UIL),

and Dth = H(X |UIL). One can interpret Rth and Dth as
the minimum achievable sum rate and distortion associated
with a given (d1, · · · , dL). Therefore, it is natural to choose
(d1, · · · , dL) that achieves an optimal tradeoff between Rth

and Dth, which motivates the following definition.
Definition 5: An L-tuple (d∗1, · · · , d∗L) is called an optimal

d-allocation if it is a minimizer of F for a certain μ ≥ 0,
where

F = Dth + μRth. (28)

We shall derive several analytical results surrounding Defi-
nition 5. An investigation along this line was initiated in [20]
for the case L = 2.

Note that

Rth = H(UIL) − H(UIL |YIL)
= H(UIL) − H(ZIL)

= H(UIL) −
L∑

l=1

hb(dl),

and

Dth = H(X, UIL) − H(UIL)
= H(X) + H(UIL |X) − H(UIL)
= H(X) + H(NIL ⊕ ZIL) − H(UIL)

= 1 +
L∑

l=1

hb(Pl) − H(UIL),

7Generally, there is a compound LDGM-LDPC code in the first and the L-
th link; and there are two compound codes in the i-th link, for i ∈ [2 : L−1].
Thus, there are totally 2L − 2 compound codes in an L-link case.

where Pl = pl ∗ dl, l ∈ IL. Define Qj =
L∏

l=1

η(Pl, bl(j)) for

j ∈ [0 : 2L − 1], where bl(j) denotes the l-th digit in the
binary expansion of j, and

η(Pl, bl(j)) =
{

Pl, bl(j) = 0,
1 − Pl, bl(j) = 1.

For example, when L = 3, we have

Q0 = P1P2P3, Q4 = (1 − P1)P2P3,

Q1 = P1P2(1 − P3), Q5 = (1 − P1)P2(1 − P3),
Q2 = P1(1 − P2)P3, Q6 = (1 − P1)(1 − P2)P3,

Q3 = P1(1−P2)(1−P3), Q7 = (1−P1)(1−P2)(1−P3).
(29)

It can be verified that

H(UIL) = −
2L−1∑
j=0

[Qj + Q2L−1−j

2
]
log

[Qj + Q2L−1−j

2
]
.

(30)

Lemma 1: For the objective function F defined in (28), its
minimum value is equal to 1 when μ ≥ 1.

Proof: It is clear that F = 1 when (d1, · · · , dL) =
(0.5, · · · , 0.5). Now assume that a certain choice of
(d1, · · · , dL) gives F < 1. As a consequence, we have

μ <
1 − Dth

Rth
=

H(UIL) − ∑L
l=1 hb(pl ∗ dl)

H(UIL) − ∑L
l=1 hb(dl)

≤ 1, (31)

which is contradictory with the fact that μ ≥ 1.
Lemma 2: Let p1 ≤ p2 and d1 > d2. If P1 = p1 ∗ d1,

P2 = p2 ∗ d2, P ′
1 = p1 ∗ d2, and P ′

2 = p2 ∗ d1, then

P1 + P2 > P ′
1 + P ′

2,

P1P2 > P ′
1P

′
2,

2[P1P2 − P ′
1P

′
2] = [P1 + P2] − [P ′

1 + P ′
2]. (32)

Proof: The proof is straightforward.
Lemma 3: Let p1 ≤ p2 ≤ · · · ≤ pL. If d1 > d2 in the

L-tuple (d1, · · · , dL), then by swapping d1 and d2, the value
of H(UIL) will increase.

Proof: See Appendix A.
Lemma 4: If p1 ≤ p2 ≤ · · · ≤ pL, then d∗1 ≤ d∗2 ≤ · · ·

≤ d∗L.
Proof: Assume that this is not true, and thus there exits i

such that d∗i > d∗i+1. We prove that by swapping d∗i and d∗i+1,
the objective function F = Dth + μRth will decrease, which
is a contradiction. Note that

F = 1 +
L∑

l=1

hb(pl ∗ d∗l ) − μ

L∑
l=1

hb(d∗l ) + (μ − 1)H(UIL).

(33)

Based on Lemmas 1 and 2, term (μ − 1)H(UIL) decreases
by swapping d∗i and d∗i+1. Also, the term −μ

∑L
l=1 hb(d∗l )

clearly remains unchanged by this replacement. Without loss
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Fig. 5. Sum-rate vs. distortion curves under the BSC assumption for the test channels.

of generality, let us assume i = 1. Therefore, it is enough to
show that

hb(p1 ∗ d∗2) + hb(p2 ∗ d∗1) < hb(p1 ∗ d∗1) + hb(p2 ∗ d∗2).
(34)

By defining the following variables z1 and z2, we have:

z1 � p1 ∗ d∗1 ⇒ p1 ∗ d∗2 < z1 < p2 ∗ d∗1,
z2 � p1 ∗ d∗2 + p2 ∗ d∗1 − p1 ∗ d∗1

⇒ p1 ∗ d∗2 < z2 < p2 ∗ d∗2 < p2 ∗ d∗1,
⇒ z1 + z2 = p1 ∗ d∗2 + p2 ∗ d∗1. (35)

Since, hb(x) is a concave function in x, from (35)

hb(p1 ∗ d∗2) + hb(p2 ∗ d∗1) < hb(z1) + hb(z2). (36)

Furthermore, hb(x) is an increasing function in the interval
[0, 0.5]. Thus,

hb(z1) + hb(z2) < hb(p1 ∗ d∗1) + hb(p2 ∗ d∗2). (37)

From (36) and (37), the inequality (34) is concluded. Hence,
the proof is completed.

V. NUMERICAL RESULTS

Now we provide some numerical examples of optimal d-
allocations. Without loss of generality, we assume p1 ≤ p2 ≤
· · · ≤ pL. It follows by Lemma 4 that d∗1 ≤ d∗2 ≤ · · · ≤ d∗L
for the resulting optimal d-allocation. Obviously, d∗l equals
0 for all l’s when μ = 0. There exists a μ0 > 0 such that
for 0 ≤ μ < μ0, all L links are involved in information
sending, i.e., d∗l < 0.5 for l ∈ IL, while d∗L = 0.5
for μ = μ0. Therefore, the L-th link becomes inactive for
μ ≥ μ0. Accordingly, the problem is reduced to an (L − 1)-
link case. By increasing μ, the noisy links are eliminated
one-by-one. Finally, it is reduced to the case of L = 2.
We illustrate this phenomenon through the following simple
example.

Example 1: Let L = 3 and p1 = p2 = p3 = 0.1. Based
on the numerical results, if 0 ≤ μ < μ0 ≈ 0.3923, then the
straight line 0 ≤ d∗1 = d∗2 = d∗3 < 0.125 determines the
location of the optimal points. For μ0 ≤ μ < μ1 ≈ 0.42,

we have d∗1 = d∗2 ≤ 0.125 and 0.125 < d∗3 < 0.5. If μ = μ1,
then d∗1 = d∗2 = 0.089 and d∗3 = 0.5. Similarly, if μ1 <
μ < μ2 ≈ 0.4245, then d∗1 < d∗2 < 0.5 and d∗3 = 0.5.
Next, for μ2 ≤ μ < μmax = 0.64, the first link is only
involved in sending the information, i.e., 0.023 < d∗1 < 0.5
and d∗2 = d∗3 = 0.5. Finally, d∗1 = d∗2 = d∗3 = 0.5 for
μ ≥ μmax.

The next example illustrates the sum-rate-distortion trade-
offs under equal d-allocation (i.e., d1 = d2 = · · · = dL).

Example 2: Let L = 3 and p1 = p2 = p3. The sum-rate dis-
tortion curves under equal d-allocation are depicted in Fig. 5(a)
for various noise parameters. In Fig. 5(b), the sum-rate distor-
tion curves under equal d-allocation are shown for the case of
pl = 0.25 with L = 3, 5, 7, 9.

Example 3: Based on the numerical and the analytical
results presented in [20], for a two-link binary CEO problem,
the equal allocation, i.e., d∗1 = d∗2, is not an optimal d-
allocation for some values of sum-rate and distortion, even in
the case of equal noise parameters p1 = p2. Here, it is shown
that this surprising result is also authentic for the multi-link
case. In Fig. 6, the sum-rate distortion curves are shown for
some cases. As it is seen, involving all the links does not
necessarily provide minimum values of the sum-rate and the
distortion.

Example 4: In this example, a 3-link binary CEO problem
is considered with almost prominent differences between the
values of the noise parameters. As an example, let p1 = 0.01,
p2 = 0.1, and p3 = 0.2. The sum-rate versus the distortion
curves are presented in Fig. 7. It is assumed that the binary
quantizers in each link are the same, when more than one link
are involved in sending the information. Clearly, utilizing low
noise links provides better results.

Now we proceed to present some experimental results
for the proposed coding scheme. In our implementation,
the degree distributions of the LDPC codes are provided
in Appendix B; furthermore, the degree distributions of the
LDGM codes are designed based on the method proposed
in [16], where the degrees of check nodes are regular and
those of variable nodes follow a Poisson distribution. The
relevant parameters of the proposed scheme are presented
in Tables II and III. In particular, each choice of (d1, · · · , dL)
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Fig. 6. Sum-rate vs. distortion curves under the BSC assumption for the test channels. L = 3 and p1 = p2 = p3 = 0.1 in different allocation scenarios.

TABLE II

PARAMETERS AND NUMERICAL RESULTS OF THE PROPOSED CODING SCHEME, (EXAMPLE 5)

TABLE III

PARAMETERS AND NUMERICAL RESULTS OF THE PROPOSED CODING SCHEME, (EXAMPLE 6)

corresponds to an optimal d-allocation. The rate of each
encoder is calculated as follows:

R1 =
(m1

n

)
+

(
I(Y1; U1|W1)

) × k1

n

≈ (
1 − hb(d1 ∗ δ1)

)
+

(
hb(d1 ∗ δ1) − hb(d1)

) × k1

n
,

Rl =
(kl

n

)
+

(
I(Yl; Ul|Wl)

) × k′
l

n

=
(ml

n
− ml − kl

n

)
+

(
I(Yl; Ul|Wl)

) × k′
l

n
≈ (

1 − hb(dl ∗ δl)
) − (

I(W1, · · · , Wl−1; Wl)
)

+
(
hb(dl ∗ δl) − hb(dl)

) × k′
l

n
, l ∈ [2 : L − 1],

RL =
(kL

n

)
=

(mL

n

) − (mL − kL

n

)
≈ (

1 − hb(dL)
) − (

I(W1, · · · , WL−1; UL)
)
. (38)

Example 5: Consider a 3-link case. Let p1 = 0.2, p2 =
0.205, and p3 = 0.21 as well. For μ = 0.25, the optimal
d-allocation is given by d∗1 = 0.1, d∗2 = 0.164, and d∗3 =
0.377; as consequence, we have Rth = 0.9091 and Dth =
0.7243. The performance of the proposed coding scheme is
presented for the corner and the intermediate points separately.
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Fig. 7. Sum-rate vs. distortion curves under the BSC assumption for the test
channels (Example 4). The number of involved links are given in the legend.

Fig. 8. Performance of the sum-rate vs. the distortion for the implemented
codes, (Example 5).

The block lengths are equal to n = 104, n = 5 × 104, and
n = 105. First, to achieve a corner point, we set δ1 = δ2 =
0. However, in order to achieve an intermediate point, any
choice of δ1 ∈ (0, 0.5) and δ2 ∈ (0, 0.5) gives a specific
intermediate point on the dominant face. In this example,
we set K1 = 7, K2 = 6, M1 = 0.22 nK1, and M2 =
0.19 nK2 for the intermediate point. The results are presented
in Table II and Fig. 8. The gap values for the code lengths
n = 104, 5 × 104, and 105 are about 0.029, 0.023, and 0.02,
respectively.

Example 6: Consider a 4-link case and let pl = 0.1 for
l ∈ I4. For μ = 0.27, the optimal d-allocation is given by
d∗l = 0.1, for l ∈ I4; as a consequence, we have Rth = 1.591
and Dth = 0.2534. The block lengths are set to n = 104,
n = 5 × 104, and n = 105. In order to achieve a corner
point, we set δ1 = δ2 = δ3 = 0. However, to achieve an
intermediate point, any choice of δi ∈ (0, 0.5) for i ∈ I3,
gives a specific intermediate point. In this example, we set
Ki = 9 and Mi = 0.12 nKi, i ∈ I3, for the intermediate
point. The results are shown in Table III and Fig. 9. The gap
values for the code lengths n = 104, 5 × 104, and 105 are
about 0.021, 0.015, and 0.01, respectively. According to the
results of Examples 5 and 6, by decreasing the noise parameter
or increasing the number of links, the gap values from the

Fig. 9. Performance of the sum-rate vs. distortion for the implemented codes,
(Example 6).

theoretical bounds are reduced. Moreover, larger block length
n causes smaller gap values.

VI. CONCLUSION

We have proposed a practical coding scheme for the binary
CEO problem under the log-loss criterion based on the idea
of quantization splitting. The underlying methodology is in
fact quite general and is applicable to the non-binary case as
well. It should be emphasized that, to implement the proposed
scheme, one needs to first specify the test channel model for
each encoder. In general, it is preferable for the system to
operate in a mode that corresponds to a certain boundary point
of the rate-distortion region. Identifying the boundary-attaining
test channel models is an interesting research problem worthy
of further investigation.

APPENDIX A
PROOF OF LEMMA 3

Since H(UIL) is a function of Pl for l ∈ IL, we shall
denote it by HP (P1, · · · , PL). It suffices to show that

HP (P ′
1, P

′
2, P3, · · · , PL) > HP (P1, P2, P3, · · · , PL), (39)

where P ′
1 = p1 ∗ d2 and P ′

2 = p2 ∗ d1. From (30),

HP (P1, P2, · · · , PL) = −
2L−1∑
j=0

qj log(qj), (40)

where qj =
Qj+Q2L−1−j

2 . Hence, (39) can be written as
follows:

−
2L−1∑
j=0

q′j log(q′j) > −
2L−1∑
j=0

qj log(qj). (41)

Partition (qj)’s and (q′j)’s in some groups with four members
as follows:

qa =
P1P2Ψ + (1 − P1)(1 − P2)Ψ′

2
,

qb =
P1(1 − P2)Ψ + (1 − P1)P2Ψ′

2
,

qc =
(1 − P1)P2Ψ + P1(1 − P2)Ψ′

2
,
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qd =
(1 − P1)(1 − P2)Ψ + P1P2Ψ′

2
, (42)

and

q′a =
P ′

1P
′
2Ψ + (1 − P ′

1)(1 − P ′
2)Ψ′

2
,

q′b =
P ′

1(1 − P ′
2)Ψ + (1 − P ′

1)P
′
2Ψ

′

2
,

q′c =
(1 − P ′

1)P ′
2Ψ + P ′

1(1 − P ′
2)Ψ′

2
,

q′d =
(1 − P ′

1)(1 − P ′
2)Ψ + P ′

1P
′
2Ψ

′

2
, (43)

where Ψ is an arbitrary product of Pi or (1−Pi), for i ∈ [3 :
L], and

Ψ′ =
P3 · · ·PL × (1 − P3) · · · (1 − PL)

Ψ
. (44)

Without loss of generality, it can be assumed that Ψ ≤
Ψ′. Therefore, qa > qd and q′a > q′d. By applying
Lemma 2,

2(qa−q′a)
= Ψ[P1P2−P ′

1P
′
2]+Ψ′[P1P2−P1−P2−P ′

1P
′
2+P ′

1+P ′
2]

= Ψ[P1P2 − P ′
1P

′
2] + Ψ′[0] > 0 ⇒ qa > q′a. (45)

Similarly, we can show q′d > qd. Thus, qa > q′a > q′d > qd.
Now consider two following cases:

1) P1 ≥ P2:

P1 ≥ P2 ⇒ qc ≥ qb, q′c ≥ q′b.
2(qc − q′c) = Ψ[P ′

1P
′
2 − P ′

2 + P2 − P1P2]
+ Ψ′[P ′

1P
′
2 − P ′

1 + P1 − P1P2]
> Ψ[P ′

1P
′
2 − P ′

2 + P2 − P1P2]
+ Ψ[P ′

1P
′
2 − P ′

1 + P1 − P1P2] = 0
⇒ qc > q′c. (46)

Note that in this case, P ′
1 P ′

2 − P ′
1 + P1 − P1 P2 =

P ′
2−P ′

1+P1−P2
2 ≥ 0. Similarly, we can show q′b > qb.

Thus, qc > q′c > q′b > qb.
2) P1 < P2:

P1 < P2 ⇒ qc < qb, q′c < q′b.
2(qc − q′c) = Ψ[P ′

1P
′
2 − P ′

2 + P2 − P1P2]
+ Ψ′[P ′

1P
′
2 − P ′

1 + P1 − P1P2]
< Ψ′[P ′

1P
′
2 − P ′

2 + P2 − P1P2]
+ Ψ′[P ′

1P
′
2 − P ′

1 + P1 − P1P2] = 0
⇒ qc < q′c. (47)

Note that in this case, P ′
1 P ′

2 − P ′
2 + P2 − P1 P2 =

P ′
1−P ′

2+P2−P1
2 ≥ 0. Similarly, we can show qb > q′b.

Thus, qb > q′b > q′c > qc.
Finally, note that

qa + qb + qc + qd = q′a + q′b + q′c + q′d =
Ψ + Ψ′

2
. (48)

Due to the concavity of the function f(x) = −x log(x), it is
concluded that

− qa log(qa) − qb log(qb) − qc log(qc) − qd log(qd)

< −q′a log(q′a) − q′b log(q′b) − q′c log(q′c) − q′d log(q′d). (49)

By doing a summation over all possible values of Ψ in the
mentioned 4-tuple groups, (39) is proved.

APPENDIX B
DEGREE DISTRIBUTIONS

In example 5, the employed degree distribution of
parity-check matrices are as follows, which were obtained
based on the degree distributions available in [31].

H2: λ(x) = 0.4145x+0.1667x2 +0.0571x4 +0.0737x5 +
0.0022x8+0.0118x9 +0.0751x11 +0.0575x19 +0.0063x26+
0.0046x35 + 0.0171x43 + 0.0443x62 +0.051x82 + 0.0165x99,
and ρ(x) = 0.5x2 + 0.5x3.

H3: λ(x) = 0.2911 x + 0.19x2 + 0.0408x4 + 0.0874x5 +
0.0074x6 + 0.1125x7 + 0.0925x15 + 0.0186x20 + 0.124x32 +
0.016x39 + 0.02x44, and ρ(x) = x3.

H1: λ(x) = 0.41 x + 0.1724 x2 + 0.0995x4 + 0.0546x5 +
0.0379x6+0.0312x10+0.0288x14+0.0432x16+0.0217x20+
0.0385x28+0.0375x50+0.0023x52+0.0158x62+0.0066x71,
and ρ(x) = 0.4 x2 + 0.6 x3.

H′
2: λ(x) = 0.3424x + 0.165x2 + 0.12x4 + 0.0191x5 +

0.012x6 +0.1416x10 +0.0211x25 +0.0202x26 +0.0185x34 +
0.0429x36+0.0133x38+0.0022x39+0.0104x40+0.0704x99,
and ρ(x) = 0.5x2 + 0.5x4.

In example 6, the employed degree distribution of
parity-check matrices are as follows, which were obtained
based on the degree distributions available in [31].

H2: λ(x) = 0.3585x+0.1664x2 +0.0487x4 +0.1205x5 +
0.0006x6 + 0.04x10 + 0.0744x13 + 0.0339x25 + 0.0076x30 +
0.0564x34 + 0.0918x99, and ρ(x) = x3.

H3: λ(x) = 0.3151x+0.1902x2 +0.0449x4 +0.1706x6 +
0.1405x17 + 0.0082x37 + 0.044x41 + 0.0863x66, and ρ(x) =
0.5x3 + 0.5x4.

H4: λ(x) = 0.292x + 0.174x2 + 0.0523x4 + 0.0257x5 +
0.122x6 + 0.0218x8 + 0.021x10 + 0.0322x14 + 0.1128x23 +
0.0328x31+0.0274x44+0.0048x53+0.0126x59+0.0681x99,
and ρ(x) = x4.

H1, H′
2, and H′

3: λ(x) = 0.3037x+0.1731x2+0.0671x4+
0.0123x5 + 0.1341x6 + 0.0314x12 + 0.011x14 + 0.0257x16 +
0.091x19 + 0.04x39 + 0.0117x51 + 0.0189x57 + 0.0112x62 +
0.0684x76, and ρ(x) = 0.4x2 + 0.6x4.
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