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On the Sum Rate of Gaussian Multiterminal Source
Coding: New Proofs and Results
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Abstract—We show that the lower bound on the sum rate of
the direct and indirect Gaussian multiterminal source coding
problems can be derived in a unified manner by exploiting the
semidefinite partial order of the distortion covariance matrices
associated with the minimum mean squared error (MMSE)
estimation and the so-called reduced optimal linear estimation,
through which an intimate connection between the lower bound
and the Berger-Tung upper bound is revealed. We give a new proof
of the minimum sum rate of the indirect Gaussian multiterminal
source coding problem (i.e., the Gaussian CEO problem). For the
direct Gaussian multiterminal source coding problem, we derive
a general lower bound on the sum rate and establish a set of suffi-
cient conditions under which the lower bound coincides with the
Berger-Tung upper bound. We show that the sufficient conditions
are satisfied for a class of sources and distortion constraints; in
particular, they hold for arbitrary positive definite source co-
variance matrices in the high-resolution regime. In contrast with
the existing proofs, the new method does not rely on Shannon’s
entropy power inequality.

Index Terms—CEO problem, entropy power inequality, min-
imum mean squared error (MMSE), multiterminal source coding,
semidefinite programming.

I. INTRODUCTION

D IRECT and indirect multiterminal source coding are two
fundamental problems in network information theory.

The indirect version, also known as the CEO problem
(see Fig. 1), was formulated in [2]. The quadratic Gaussian case
of the CEO problem, first studied by Viswanathan and Berger
[21], has received particular attention. Major progress on this
problem was made by Oohama in [6]. The rate-distortion re-
gion of the Gaussian CEO problem was completely character-
ized in [7] and [13]. The main technique developed in [6] and
later refined in [7] and [13] is the application of Shannon’s en-
tropy power inequality to relate various information quantities.
A short survey on the Gaussian CEO problem can be found in
[10].

Direct multiterminal source coding (see Fig. 2), which will
be referred to simply as multiterminal source coding, is a lossy
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extension of the Slepian-Wolf coding problem [16]. Significant
effort has been devoted to characterizing the rate-distortion re-
gion for this problem. The best inner bound, given in [1] and
[20], is often referred to as the Berger-Tung bound. For the
Gaussian two-terminal case, Wagner et al. [22], building upon
the work by Oohama [5], proved that the Berger-Tung inner
bound is tight. Notably, they derived the minimum sum rate of
the Gaussian two-terminal source coding problem by coupling
it to a Gaussian CEO problem, therefore, made an implicit use
of Shannon’s entropy power inequality.

There are several extensions [8], [9], [11], [12], [18], [19]
to the aforementioned results. In particular, Tavilder et al. ob-
served in [18] that Shannon’s entropy power inequality can be
partially replaced by the worst additive noise lemma by Diggavi
and Cover [4] in the derivation of the minimum sum rate of the
Gaussian CEO problem.

We shall present a new approach for deriving the lower bound
on the sum rate of the Gaussian multiterminal source coding
problems. The key ingredient is a simple fact about the semidefi-
nite partial order of the distortion covariance matrices associated
with the MMSE estimation and the so-called reduced optimal
linear estimation. Due to its estimation-theoretic nature, the new
approach does not require Shannon’s entropy power inequality.
In addition to its technical simplicity, the new approach is also
conceptually appealing in the sense that it makes the connec-
tion between the lower bound and the Berger-Tung upper bound
transparent. As a consequence, we are able to give an alternative
proof of the minimum sum rate of the Gaussian CEO problem.
The new approach also leads to a general lower bound on the
sum rate of the Gaussian multiterminal source coding problem.

The remainder of this paper is organized as follows. In
Section II, we introduce the MMSE estimation and the reduced
optimal linear estimation with an emphasis on the semidefinite
partial order of the distortion covariance matrices associated
with them. A new proof of the minimum sum rate of the
Gaussian CEO problem is given in Section III. In Section IV,
we derive a general lower bound on the sum rate of the Gaussian
multiterminal source coding problem and establish a set of
sufficient conditions under which the lower bound is tight. We
show that the sufficient conditions are satisfied for a class of
sources and distortion constraints; in particular, they hold for
arbitrary positive definite source covariance matrices in the
high-resolution regime. Section V contains some concluding
remarks.

We typically use uppercase letters for random variables and
boldfaced letters for matrices. There are a few exceptions, which
should be clear from the context. We use , and to denote the
identity matrix, the all-zero matrix (not necessarily a square ma-
trix), and the all-one column vector, respectively. For simplicity,
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Fig. 1. Indirect multiterminal source coding (the CEO problem).

Fig. 2. Direct multiterminal source coding.

sometimes we write the row vector as
. Throughout this paper, we assume the logarithm function

is to base .

II. PRELIMINARIES

Throughout this section, we assume that the random objects
are of mean zero.

Let be an random matrix. Note that the covariance
matrix of has totally elements. It turns out that the
following notion of reduced covariance matrix suffices for our
purpose. Specifically, we define the reduced covariance matrix
of as

It is clear that is an positive semidefinite matrix. Al-
ternatively, we can write

where is the th column of . Therefore, the reduced co-
variance matrix of is given by averaging the covariance ma-
trices of the column vectors of ; in particular, it coincides with
the conventional covariance matrix when is a column vector.
More generally, we define

for any random matrices and with the same column di-
mension .

The following lemma states a well-known fact about the
MMSE estimation (i.e., the conditional expectation) [17].

Lemma 1: For any random objects and , we have

where is an arbitrary measurable function of .
We use to denote positive semidefinite (definite) par-

tial ordering. Specifically, for two matrices and
means is positive semidefinite (definite). Note that

degrades to if and are 1 1
matrices.

The following result is a simple consequence of Lemma 1.

Lemma 2: For any random object and an random
matrix , we have

where is an arbitrary matrix determined by .
Define . We shall refer to as

the distortion covariance matrix of the MMSE estimation for
given .

For an random matrix and an random matrix ,
we denote the th row of and by and , respectively.
The reduced optimal linear estimation of given is ,
where is an matrix specified by the solution
to the following optimization problem:
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Define . We shall refer to as the
distortion covariance matrix of the reduced optimal linear esti-
mation for given . It is easy to verify that

More generally, given random matrices with
dimensions , we define

where is a random matrix constructed by
juxtaposing , i.e.,

...

The following result is a direct consequence of Lemma 2. It
reveals the semidefinite partial order of the distortion covariance
matrices associated with the MMSE estimation and the reduced
optimal linear estimation.

Lemma 3: .
It will be seen that Lemma 3 induces the constraints in the

semidefinite programming bounds for the indirect and direct
Gaussian multiterminal source coding problems, which, in a
sense, provides a unified framework for proving the converse
theorem of both problems.

III. THE GAUSSIAN CEO PROBLEM

We shall first use the Gaussian CEO problem as a simple ex-
ample to illustrate the new method. Consider a remote Gaussian
source with mean zero and positive variance . Let

, where , are zero-
mean Gaussian random variables with positive variances

, respectively. We assume are
independent. It is known that can be expressed as

where

and is a zero-mean Gaussian random variable independent of
with variance

Let be i.i.d.
copies of .

Definition 1: We say sum rate is achievable with respect
to distortion constraint if there exist encoding functions

, such that

where with
. The minimum sum rate is the infimum of all

achievable sum rates with respect to distortion constraint .

Remark: It is clear that we can restrict our attention to
.

A. Lower Bound

Let , be encoding
functions such that . Define and

. Without loss of generality,
we assume and for .

First we shall derive a lower bound on the sum rate and ex-
press it as a function of . Specifically, we have

(1)

where (1) follows from the fact that
form a Markov chain for each .

Now we proceed to establish a connection between and
. To this end, we shall examine the following

two distortions: and , where
.

1) : Observe that

Furthermore, for

where the last equality follows from Lemma 1. Therefore,
we have

(2)

2) : Note that
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which implies

Since is independent of , we have

Therefore, the reduced covariance matrix of , and
(by juxtaposing them into a random matrix) is

given by

Now it can be readily verified that

(3)

By Lemma 2 and Lemma 3

which, in view of (2) and (3), implies that

(4)

Therefore, we have

where

B. Upper Bound

We shall proceed to derive a matching upper bound on .
Let be auxiliary random variables jointly dis-
tributed with the generic source variables such
that such that form a Markov
chain for . The well-known Berger-Tung upper
bound [1], [20] states that

if , where . Now let
, where is a constant and is a

zero-mean unit-variance Gaussian random variable independent
of everything else. With a slight abuse of notation, we define

and . It is clear
that can take any value in . In view of
the derivation that leads to (2) and (3), we must have

where . By invoking the fact that is a suf-
ficient statistic of for estimating and the fact that
linear MMSE estimation coincides with MMSE estimation for
joint Gaussian distributions, it can be shown that

Therefore, we have

(5)

which implies if we restrict in
.

Note that

Therefore, we have

where

It can be seen that the minimization problem associated with
is almost identical with the one associated with

except that “ ” in (4) is replaced by “ ” in (5). Since
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is a strictly monotone decreasing function of , it follows that
any optimal solution to must satisfy

(6)

Therefore, and are equivalent. As a consequence, we
have

IV. THE GAUSSIAN MULTITERMINAL SOURCE

CODING PROBLEM

Now we shall apply the new method to the Gaussian multi-
terminal source coding problem, which is still largely an open
problem. Let be a Gaussian source with
mean zero and positive definite covariance matrix . For the
reason which will be clear later, we shall augment the prob-
ability space by introducing additional random variables. Let

be the set of positive definite covariance matrices
such that is a diagonal matrix. Note that
is nonempty since for any positive
definite diagonal matrix with sufficiently large diagonal en-
tries. Let be a Gaussian random vector with
mean zero and covariance matrix . We assume

is independent of and
define .
Note that are independent conditioned
on . This follows from the fact that

is jointly Gaussian with
and the fact that the distortion covariance matrix of the
linear MMSE estimation for given

is , which is a diagonal
matrix. Intuitively, one may view as a remote
source. However, it should be noted that due to its vector nature,

is different from the remote source in the
standard scalar Gaussian CEO problem.

Let
be i.i.d. copies of

.

Definition 2: We say sum rate is achievable with respect
to distortion constraint if there exist
encoding functions ,
such that

where with
. The minimum sum rate is the infimum of all

achievable sum rates with respect to distortion constraint .

Remark: It is clear that we can restrict our attention to the
distortion constraints satisfying ,
where is the th diagonal entry of .

A. Lower Bound

Let , be
encoding functions such that .
We shall denote

by , and , respectively.
Define . It is easy to see that

are the diagonal entries of .
Moreover, define and

. Note that and , satisfy
, and ,

where is the th diagonal entry of .
First we shall derive a lower bound on the sum rate and ex-

press it as a function of . Specifically, we have

(7)

where (7) follows from the fact that
form a Markov chain for each .

Now we proceed to establish a connection between and
. To this end, we shall examine the following

two distortion covariance matrices: and ,
where .

1) : Note that

Moreover, for

where the last equality follows from Lemma 1. Therefore,
we have

...
...

. . .
...
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(8)2) : Note that

which implies

Since is independent of , we have

Therefore, the reduced covariance matrix of , and
(by juxtaposing them into a random matrix) is given
by

Now it can be readily verified that

(9)

By Lemma 2 and Lemma 3, we have

which, in view of (8) and (9), implies that

(10)

Therefore, we have obtained the following lower bound.
Theorem 1: For any , we have

, where

B. Upper Bound

Now we proceed to derive an upper bound on . We
shall denote and by and

, respectively. Let be auxiliary random
variables jointly distributed with and such that such
that form a Markov chain for

. For the Gaussian multiterminal source coding
problem, the Berger-Tung upper bound [1], [20] states that

if , where
. Now let be generated by through

parallelled Gaussian test channels, i.e.,
, where is a constant and

is a zero-mean unit-variance Gaussian random variable
independent of everything else. With a slight abuse of
notation, we define and

. It is clear that can take any value in
. Moreover, is equivalent to

. In view of the derivation that leads
to (8) and (9), we must have

where .
By invoking the fact that is a sufficient statistic of for

estimating and the fact that linear MMSE estimation
coincides with MMSE estimation for joint Gaussian distribu-
tions, it can be readily shown that

Therefore, we have

(11)

It is clear that must satisfy if we restrict in
.

Note that

Therefore, we have obtained the following upper bound.

Theorem 2: For any , we have
, where
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Remark: It is worth noting that does not depend
on if we restrict in . This is because

and the construction of implies that can be any positive
definite matrix with the properties that ,
and is a positive semidefinite diagonal matrix; as a
consequence, we can write alternatively as

where is the set of positive definite matrices such that
is a positive semidefinite diagonal matrix.

It can be seen that and are almost identical except
that “ ” in (10) is replaced by “ ” in (11). Therefore, we im-
mediately obtain the following result.

Corollary 1: If there exists such that an op-
timal solution to satisfies

(12)

then we have

C. On the Tightness of the Lower and Upper Bounds

In the sequel we shall establish a set of sufficient conditions
under which (12) in Corollary 1 can be verified analytically.

Define
. Note that is nonempty if and only if

, for some generated by
through parallelled Gaussian test channels. Although it is

easy to compute the resulting distortions given the parallelled
Gaussian test channels, the reverse direction turns out to be
much more difficult. As a consequence, it is a nontrivial task
to verify whether is empty or not for a given .
Fortunately, the following result indicates that is
always nonempty in the high-resolution regime (i.e., when the
entries of are sufficiently small).

Theorem 3: The set is nonempty if
.

Proof: See Appendix A.

Theorem 3: The set is a singleton if it is nonempty.

Proof: See Appendix B.

Lemma 4: If for some and ,
there exists a diagonal matrix such
that is a positive semidefinite matrix
with its diagonal entries the same as those of ,
then we have

Remark:
1) is positive semidefinite if and only

if is positive semidefinite. Moreover,
if is positive semidefinite, then is
positive definite.

2) It follows by the Woodbury matrix identity that

Therefore, the diagonal entries of
are the same as those of if and only if the
diagonal entries of are the same as those of , i.e.,

(13)

Since for all if , we can write
(13) compactly as

where is the Hadamard product and
. In view of the fact that the

Hadamard product of two positive definite matrices is also
positive definite, we have

Note that is uniquely determined by and does not de-
pend on . However, is not guaran-
teed to be positive semidefinite. Therefore, if possible, we
should choose such that
is positive semidefinite.

Proof: See Appendix C.

The following result shows that in the high-resolution regime,
the desired always exists.

Theorem 5: There exists an such that if , then

for .

Remark: It was shown in [25] that the Berger-Tung upper
bound is asymptotically tight in the high-resolution regime
for general sources. Our result indicates that if the source is
Gaussian with a positive definite covariance matrix, then the
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Berger-Tung upper bound is tight when the distortion constraint
is set below a certain threshold.

Proof: See Appendix D.
Now we shall impose some constraints so that and

can be solved explicitly.

Lemma 5: If there exist and
satisfying the following properties:

1) is a diagonal matrix,
2) there exists a positive semidefinite diagonal matrix such

that the diagonal entries of are the same as those of
,

then we have

Proof: If is a diagonal matrix, then the existence
of a diagonal matrix such that is a
positive semidefinite matrix with the diagonal entries the same
as those of is equivalent to the existence of a
positive semidefinite diagonal matrix such that the diagonal
entries of are the same as those of . The
proof is complete by invoking Lemma 4.

The following result was first derived in [22] by cou-
pling the Gaussian two-terminal source coding problem to a
Gaussian CEO problem. Here we give an alternative proof
using Lemma 5.

Theorem 6: For of the form

with , we have

if .

Remark: It is easy to show that
if the condition

is not satisfied.

Proof: It can be shown that is nonempty if
; specifically,

we have

where

Note that implies that is a positive
semidefinite diagonal matrix.

Now we choose

It can be verified that

Since both and are diagonal matrices,
it follows that .

Let be a diagonal matrix such that the diagonal entries of
are the same as those of . We must have

It is easy to see that is positive semidefinite. The proof is
complete by invoking Lemma 5.

Note that is a diagonal matrix if
and . Moreover, Lemma 5 requires that

is also a diagonal matrix. Although this is possible in the
two-terminal case as shown in the proof of Theorem 6, the ex-
istence of such kind of matrices is not obvious when . The
following result shows that this kind of matrices do exist; how-
ever, they must satisfy certain structural constraints.

Lemma 6: For a positive definite matrix that cannot be
converted to a block diagonal matrix (with more than one block)
via permutation,1 if there exists a positive definite matrix
such that both and are diagonal matrices,
then can be written as

(14)

for some positive definite diagonal matrix , unitary matrix ,
positive number , and integer . Here we use

to denote a diagonal matrix such that the first diagonal
entries are equal to and the rest of diagonal entries are equal
to .

Conversely, if can be written in the form of (14), then there
exists a positive definite matrix such that both and

are diagonal matrices.

Proof: See Appendix E.

Theorem 7: If there exists satisfying the
following properties:

1) can be written as

1That is to say, there does not exist a permutation matrix � such that
�� � is a block diagonal matrix. Note that if � � �� � and � can
be converted to a block diagonal matrix via permutation, then � itself can
also be converted to a block diagonal matrix via permutation. This implies that
the source contains several groups of independent components, which can be
treated separately.
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for some positive definite diagonal matrix , unitary ma-
trix , positive number , and integer ,

2) there exists a positive semidefinite diagonal matrix such
that the diagonal entries of

are all equal to one,
then we have

Proof: See Appendix F.

Now we proceed to characterize for with certain
special structures. First we need the following result, which is
known as the Sherman-Morrison formula.

Lemma 7: Let , where
, and with

. We have

(15)

if , where

and with .
Furthermore, the determinant of is given by

(16)

Consider of the form

(17)

where is a positive definite
diagonal matrix and is a column vector.
It follows by (15) in Lemma 7 that

where with

For , since is a positive semidefinite
diagonal matrix, it follows that we can write in the form of

(18)

where is a positive definite
diagonal matrix.

Similarly, for of the form

(19)

we have

where with

Note that is well defined since by (16) and (19), we must have
. For , we can write

in the form of

where is a positive definite
diagonal matrix.

Note that for with covariance matrix
of the form (17), one can write

, where are independent zero-mean
unit-variance Gaussian random variables. However, this inter-
pretation does not apply to of the form (19) in general.

Now we are ready to state the following result.

Theorem 8:
1) For of the form of (17), we have

if there exists such that

(20)

where

2) For of the form of (19), we have

if there exists such that

(21)

(22)
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where

Remark: The conditions (20), (21), and (22) in Theorem 8 are
not always satisfied. Consider the following example. For of
the form (17), set and with

and . We have ,

where and . Now let

, where
with . Furthermore, let .

It is clear that . Note that

, and . Therefore, we have

which converges to as .

Proof: See Appendix G.

Corollary 2: For of the form

...
...

. . .
...

with and with , we
have

where

with being the unique nonnegative solution to

Remark: The case was first solved in [22].

Proof: Consider of the form

where . It is clear that . It can be verified that

Note that for each , there exists a unique such
that for all . Moreover, we have

where

Since can be written in the form of (17) when
and in the form of (19) when , the proof can be
readily completed by verifying that the conditions in Theorem
8 are satisfied.

V. CONCLUSION

A unified method for deriving the lower bound on the sum rate
of the direct and indirect Gaussian multiterminal source coding
problems is presented. In contrast with the existing proofs, the
estimation-theoretic nature of this new method allows us to cir-
cumvent Shannon’s entropy power inequality. Note that the ap-
plication of this method is not restricted to scalar sources studied
in this work. Indeed, it is not hard to see that the new method
is equally suitable for vector Gaussian sources. In fact, the ad-
vantage of the new method becomes more evident in the vector
case since in that setting Shannon’s entropy power inequality
either yields suboptimal bounds or requires the enhancement
technique introduced in [23].

APPENDIX A
PROOF OF THEOREM 3

We need the following result from [14], [15], which is a gen-
eralization of the well-known intermediate value theorem.

Lemma 8: If are continuous in an -dimen-
sional rectangle

and satisfy the following conditions:
1) for each with ,
2) for each with ,

then there exists at least one point such that
for all .

Now we proceed to prove Theorem 3. Let be generated
by through parallelled Gaussian test channels, i.e.,

, where and is a
zero-mean unit-variance Gaussian random variable independent
of everything else. Define

It is clear that are continuous functions of . We
set
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Note that

if and . Moreover,
we have

if . The proof is complete by invoking
Lemma 8.

APPENDIX B
PROOF OF THEOREM 4

The following lemma is easy to verify.

Lemma 9: Let and
. For any matrices and , we

have

where is the th diagonal entry of
is the th entry of , and is

the Hadamard product.
Theorem 4 is a simple consequence of the following result.

Lemma 10: Let be an positive definite matrix. For
any diagonal matrix , if is positive definite and

for all , then .

Proof: Suppose there exists a nonzero diagonal matrix
such that is positive definite and

for all . First consider the case where is nonsin-
gular. Since

it follows that

(23)

In view of the fact that

we have

(24)

Substituting (24) into (23) yields

(25)

It follows by Lemma 9 that

Therefore, we can write (25) alternatively as

which can be further written as

due to the fact that .
Since the Hadamard product of two positive definite matrices is
also positive definite, we must have , which results in a
contradiction.

Now consider the case where is singular. Without loss of
generality, we shall write , where

. Moreover, we write in a partitioned
form

where is an submatrix. Let .
Note that

where . Therefore, we have
for all . It can be readily shown that

by invoking the previous argument.

Now we proceed to prove Theorem 4. If there exist noniden-
tical , then one can find a nonzero diagonal
matrix such that the diagonal entries of
are the same as those of , which is contradictory with Lemma
10. The proof is complete.

APPENDIX C
PROOF OF LEMMA 4

Consider the following convex semidefinite programming
problem2

which is essentially a relaxed version of . Note that the
constraint can be written as , where

2To see the convexity of the function ������ � � � � � � � � � �

�� �� � in the first constraint, one can write �� �� � 	
� �� ���� � � and invoke the fact that ���� � is matrix
convex in � [3].
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is an all-zero matrix except that the th diagonal entry is equal
to one. The Lagrangian of is given by

where are positive semidefinite matrices.
Therefore, is an optimal solution to
if it satisfies the following KKT conditions [24]:

These KKT conditions can be rewritten as

(26)

(27)

(28)

(29)

(30)

(31)

(32)

where is the th diagonal entry of .
It is easy to see that is a positive definite diagonal

matrix if and . Therefore, the
conditions (28)–(32) are automatically satisfied if we choose
from and set

Furthermore, it is easy to see that is a di-
agonal matrix. As a consequence, the existence of positive
semidefinite matrices that satisfy (26)
and (27) is equivalent to the existence of a diagonal matrix

such that
is a positive semidefinite matrix with the diagonal entries the
same as those of .

Note that given , the map-
ping
induces a one-to-one correspondence between

and
. Therefore, our choice of

guarantees that the conditions and
, are satisfied. As a consequence, if
is an optimal solution to , then it

is also an optimal solution to . The proof is complete by
invoking Corollary 1.

APPENDIX D
PROOF OF THEOREM 5

First note that Theorem 3 implies that is nonempty
when is sufficiently small. Now we choose

and set

It is clear that is a positive definite diagonal matrix and we
have as . Using the Woodbury matrix identity,
it can be readily verified that

where

Note that we have as .
In view of Lemma 4 and its remark, we need to find a diagonal

matrix such that is positive semidefinite
and the diagonal entries of are the same as those of .
Let . It is easy to see
that the diagonal entries of are the same as those of
if and only if the diagonal entries of are the
same as those of . To obtain , we need to solve the linear
equations

which can be written compactly as

where and .
Since and as , it
follows that as . Therefore,

is positive definite when is
sufficiently small. The proof is complete.
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APPENDIX E
PROOF OF LEMMA 6

Suppose both and are diagonal matrices, where

It is clear that and are positive definite. Let
and . We have

Now let . Note that

which implies that is positive definite. Moreover, we have

(33)

where is a diagonal matrix. Let
be the eigenvalue decomposition of , where is a

unitary matrix and is a positive defi-
nite diagonal matrix. It follows by (33) that

Since the eigenvalues of a diagonal matrix are its diagonal en-
tries, there must exist a permutation matrix such that

. Therefore, we have

(34)

where is a unitary matrix. Denote
by . It follows by (34) that

(35)

Now partition into disjoint equivalent classes
such that and for some if

and only if . In view of (35), we must have if
and with . As a consequence, if ,

then can be converted to a block diagonal matrix (with more
than one block) via permutation, which is impossible under
our assumption. Therefore, contains only one
equivalent class, which implies for some . So
we have or , where is a solution to

It is clear that we need in order for to be positive. Let
be a permutation matrix such that .
We have

where is a unitary matrix.
Conversely, if can be written in the form of (14), then we

can choose

It is clear that and are positive definite. Moreover, it can
be verified that both and are diagonal
matrices. The proof is complete.

APPENDIX F
PROOF OF THEOREM 7

In view of Lemma 6, if satisfies Property 1), then there
exists a positive definite matrix such that both and

are diagonal matrices. Indeed, setting

we can verify that

and both of them are diagonal matrices. Moreover,
is a diagonal matrix due to the fact that . As a
consequence, is also a diagonal matrix since it can
be written as

Therefore, we have .
In view of Lemma 5, we just need to find a positive semidefi-

nite diagonal matrix such that the diagonal entries of
are the same as those of . Note that

Therefore, after scaling, it suffices to find a positive semidefinite
diagonal matrix such that the diagonal entries of

are all equal to one. The proof is complete.
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APPENDIX G
PROOF OF THEOREM 8

Here we only prove Part 1) since Part 2) is similar.
We shall show that can be written in the form of (14) with

. It suffices to show that can be written as

(36)

for some positive definite diagonal matrix
, unitary matrix , and

positive number .
Note that

where is the first column of . In
view of (18), we can set

As a consequence, we have

Since has to be a unitary matrix, we must have

which implies

In view of (16) and (18), one can readily show that .3
Since the right-hand side (RHS) of (36) depends on only
through its first column, our construction shows that can
indeed be written in the form of (36).

Now by Theorem 7, it suffices to have a positive semidefinite
diagonal matrix such that the diagonal entries of

are all equal to one. Note that

where with

3If � � �, then� can be an arbitary unitary matrix. Note that � � � if and
only if � � � for all �.

Therefore, we just need to have a positive semidefinite diagonal
matrix such that the diagonal entries
of are all equal to one, i.e., the solution

to the linear equations

(37)

satisfies . Note that (37) can be rewritten
as

where and
. It follows by (15) in Lemma 7 that

where . As a consequence,
we have

It is clear that if and only if

The proof is complete.
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