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Gaussian Multiple Description Coding with
Low-Density Generator Matrix Codes

Jun Chen, Ying Zhang, and Sorina Dumitrescu

Abstract—It is shown that the coding problem for an arbitrary
point on the dominant face of an L-description El Gamal-Cover
(EGC) region can be converted to that for a vertex of a K-
description EGC region for some K ≤ 2L− 1, where the latter
problem can be solved via successive coding. A practical scheme
is proposed for the quadratic Gaussian case by reducing each
step in successive coding to a Gaussian quantization operation
and implementing such an operation using low-density generator
matrix codes. The effectiveness of this scheme is verified through
extensive simulation experiments.

Index Terms—Lossy source coding, low-density generator
matrix, message-passing algorithm, multiple description coding,
quantization splitting.

I. INTRODUCTION

MULTIPLE description coding is a classic problem in
network information theory. El Gamal and Cover [1]

established a general inner bound of the 2-description rate
region, commonly referred to as the EGC region. Ozarow [2]
proved that the EGC region is tight in the quadratic Gaussian
case. In fact, it has been shown, by refining and generalizing
Ozarow’s proof technique, that a natural extension of the EGC
region to the L-description case is tight for Gaussian multi-
ple description coding with individual and central distortion
constraints [3]–[5].

Driven by a wide range of potential applications (say,
multimedia data transmission over lossy networks), the code
design aspect of multiple description coding has also received
considerable attention. Indeed, a number of practical mul-
tiple description coding schemes have been proposed over
the last two decades by leveraging various quantization and
signal processing techniques, e.g., scalar quantization [6]–
[12], trellis-coded quantization [13], lattice vector quantization
[14]–[19], correlating transforms [20], [21], and Delta-Sigma
quantization [22]. It is worth noting that research work on code
design has been largely focused on the quadratic Gaussian
case, which is the only case where the 2-description rate
region has been completely characterized. However, this is
not a severe limitation since coding schemes developed for
Gaussian sources often have certain performance guarantee
when adopted for other continuous-valued sources due to the
extremal properties of the Gaussian distribution [23].
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In view of the recent success of low-density generator
matrix (LDGM) codes for lossy source coding [24]–[27], it
is natural to investigate the application of these codes to
multiple description coding. As a first step in this direction,
we shall explore an alternative implementation of the Gaussian
2-description coding scheme proposed in [19] with lattice
codes replaced by LDGM codes as well as the extension
to the general L-description case. Although we shall follow
the general strategy of [19], [28] by reducing the Gaussian
multiple description problem to a sequence of Gaussian quan-
tization problems via Gram-Schmidt orthogonalization, there
are several noteworthy conceptual differences.

1) A direct calculation of the coefficients in Gram-Schmidt
orthogonalization, though possible for the 2-description
case [19], appears to be cumbersome in the general
setting. Instead, we shall exploit the special structure
of the covariance matrix associated with the sum-rate
optimal EGC region, which not only simplifies the
calculation, but also leads to an efficient implementation
of Gram-Schmidt orthogonalization.

2) We give a new interpretation of the quantization splitting
method developed in [19], [28] by eliminating the use
of conditional codebooks.

The remainder of this paper is organized as follows. In
Section II we show that the coding problem for an arbitrary
point on the dominant face of an L-description EGC region
can be converted to that for a vertex of a K-description EGC
region for some K ≤ 2L − 1, where the latter problem can
be solved via successive coding; moreover, in the quadratic
Gaussian case each step in successive coding can be reduced
to a Gaussian quantization operation. In Section III we propose
a practical Gaussian multiple description coding scheme by
implementing each Gaussian quantization operation using
LDGM codes. The effectiveness of this scheme is verified
through extensive simulation experiments. We conclude the
paper in Section IV.

II. EGC REGION, SUCCESSIVE CODING, AND

QUANTIZATION SPLITTING

Let {X(t)}∞t=1 be a stationary and memoryless process with
marginal distribution pX on X and d : X × X̂ → [0,∞) be
a distortion measure, where X and X̂ are respectively the
source alphabet and the reconstruction alphabet. We say a
rate tuple (R1, · · · , RL) is achievable subject to individual
distortion constraints d{�}, � = 1, · · · , L, and central distortion
constraint d{1,··· ,L} if given any ε > 0 there exist, for

all sufficiently large n, encoding functions f
(n)
� : Xn →

{1, · · · , �2n(R�+ε)�}, � = 1, · · · , L, and decoding functions
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g
(n)
{�} : {1, · · · , �2n(R�+ε)�} → X̂n, � = 1, · · · , L, and

g
(n)
{1,··· ,L} :

∏L
�=1{1, · · · , �2n(R�+ε)�} → X̂n such that

1

n

n∑
t=1

E[d(X(t), X̂{�}(t))] ≤ d{�} + ε, � = 1, · · · , L,

1

n

n∑
t=1

E[d(X(t), X̂{1,··· ,L}(t))] ≤ d{1,··· ,L} + ε,

where X̂n
{�} = g

(n)
{�}(f

(n)
� (Xn)), � = 1, · · · , L, and

X̂n
{1,··· ,L} = g

(n)
{1,··· ,L}(f

(n)
1 (Xn), · · · , f (n)

L (Xn)). The union
of such rate tuples, denoted as R(d{1}, · · · , d{L}, d{1,··· ,L}),
is called the L-description rate region subject to individual
distortion constraints d{�}, � = 1, · · · , L, and central dis-
tortion constraint d{1,··· ,L}. Note that more generally one
can impose a distortion constraint for each non-empty subset
of {1, · · · , L}. We choose the current definition of the L-
description rate region for the following reasons: 1) the
L-description rate region subject to individual and central
distortion constraints has been completely characterized in the
quadratic Gaussian case; 2) the current definition is suitable for
the case where the distortion constraints are only imposed for
the worst case scenario (i.e., reconstruction based on a single
description) and the best case scenario (i.e., reconstruction
based on the complete set of descriptions).

A. EGC Region and Successive Coding

For any L auxiliary random variables U{1}, · · · , U{L}
jointly distributed with the generic source variable X , we de-
fine R(pU{1},··· ,U{L}|X) as the set of rate tuples (R1, · · · , RL)
satisfying∑

�∈A
R� ≥

∑
�∈A

H(U{�})−H(U{�}, � ∈ A|X),

∅ ⊂ A ⊆ {1, · · · , L}.
Let P(d{1}, · · · , d{L}, d{1,··· ,L}) be the set of conditional
distributions pU{1},··· ,U{L}|X such that

E[d(X, g{�}(U{�}))] ≤ d{�}, � = 1, · · · , L, (1)

E[d(X, g{1,··· ,L}(U{1}, · · · , U{L}))] ≤ d{1,··· ,L} (2)

for some functions g{�}, � = 1, · · · , L, and g{1,··· ,L}. The
EGC region REGC(d{1}, · · · , d{L}, d{1,··· ,L}) is defined1 as
the convex closure of⋃
pU{1},··· ,U{L}|X∈P(d{1},··· ,d{L},d{1,··· ,L})

R(pU{1},··· ,U{L}|X).

It is known [3] that

REGC(d{1}, · · · , d{L}, d{1,··· ,L})
⊆ R(d{1}, · · · , d{L}, d{1,··· ,L}).

Roughly speaking, one may view U{�}, � = 1, · · · , L, as L
descriptions of source X ; moreover, g{1}(U{�}), � = 1, · · · , L,

1Note that REGC(d{1}, · · · , d{L}, d{1,··· ,L}) is consistent with the
standard definition of the EGC region for the 2-description case [1]. More
precisely, REGC(d{1}, · · · , d{L}, d{1,··· ,L}) becomes the EGC* region
(an antecedent version of the EGC region) when L = 2, which is known to
be equivalent to the EGC region [29].

can be interpreted as the reconstructions based on individual
descriptions while g{1,··· ,L}(U{1}, · · · , U{L}) can be inter-
preted as the reconstruction based on the complete set of
descriptions.

Henceforth we shall primarily focus on R(pU{1},··· ,U{L}|X)
and simply refer to it as the EGC region when no confusion
can arise. As observed in [4], [28], R(pU{1},··· ,U{L}|X) is
a contra-polymatroid and its vertices can be easily char-
acterized. Specifically, (R1(π), · · · , RL(π)) is a vertex of
R(pU{1},··· ,U{L}|X) for every permutation π on {1, · · · , L},
where

Rπ(1)(π) = I(X ;U{π(1)}), (3)

Rπ(�)(π) = I(X,U{π(1)}, · · · , U{π(�−1)};U{π(�)}),
� = 2, · · · , L. (4)

The dominant face of R(pU{1},··· ,U{L}|X), denoted
as D(pU{1},··· ,U{L}|X), is the set of rate tuples in
R(pU{1},··· ,U{L}|X) satisfying

L∑
�=1

R� =

L∑
�=1

H(U{�})−H(U{1}, · · · , U{L}|X).

It can be readily verified by leveraging (3) and (4) that all the
vertices are on the dominant face.

Note that the vertices of R(pU{1},··· ,U{L}|X) are of partic-
ular importance since every rate tuple in R(pU{1},··· ,U{L}|X)
is dominated in a component-wise manner by some rate tuple
in D(pU{1},··· ,U{L}|X) and the latter can be expressed as a
convex combination of no more than L vertices. As pointed
out in [19], [28], the expression of the vertices (see (3) and (4))
suggests a successive coding scheme which can be roughly
described as follows2: for vertex (R1(π), · · · , RL(π)), one
first uses X to produce U{π(1)}, then successively from
� = 2 to L, uses (X,U{π(1)}, · · · , U{π(�−1)}) to produce
U{π(�)}. Furthermore, every rate tuple in D(pU{1},··· ,U{L}|X) is
achievable via suitable timesharing of such successive coding
schemes.

Now we proceed to propose an efficient implementa-
tion of the aforementioned successive coding scheme in the
quadratic Gaussian case, where pX is a Gaussian distribu-
tion with mean zero and variance σ2

X , and d(·, ·) is the
standard squared error distortion measure. In this setting
it is known [5] that REGC(d{1}, · · · , d{L}, d{1,··· ,L}) =
R(d{1}, · · · , d{L}, d{1,··· ,L}); moreover, it suffices to assume
that U{1}, · · · , U{L} are zero-mean and jointly Gaussian with
the generic source variable X . By exploiting the properties
of the Gaussian distribution, the following simplified version
of the successive coding scheme, referred to as the successive
quantization scheme, was developed in [19], [28]. Without loss
of generality, we shall assume π(�) = �, � = 1, · · · , L. Using
the Gram-Schmidt orthogonalization procedure, we can write

U{�} = Û{�} +Δ�, � = 1, · · · , L,
where

Û{1} = E[U{1}|X ],

2For simplicity, here we describe the scheme in the form of single-letter
operation. However, it should be noted that to approach the information-
theoretic limits, one has to implement such a scheme over long blocks.
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Û{�} = E[U{�}|X,U{1}, · · · , U{�−1}], � = 2, · · · , L,
and X,Δ1, · · · ,ΔL are jointly independent and Gaussian.
Now (3) and (4) can be rewritten as

R�(π) = I(Û{�};U{�}) = I(Û{�}; Û{�} +Δ�),

� = 1, · · · , L. (5)

As observed in [19], [28], one can readily obtain an L-
step successive quantization scheme by interpreting Û{�},
U{�}, and Δ� in (5) respectively as the quantization input,
the quantization output, and the quantization error at step �.
Note that the explicit expressions of Û{1}, · · · , Û{L} in terms
of (X,U{1}, · · · , U{L}) depend on the covariance matrix of
(X,U{1}, · · · , U{L}), which in turn depends on distortion
constraints d{1}, · · · , d{L}, and d{1,··· ,L}. A direct derivation
of such expression, though possible for the case L = 2 [19],
appears to be cumbersome for general L. Fortunately, it turns
out that the special structure of the optimal covariance matrix
of (X,U{1}, · · · , U{L}) allows for an efficient implementa-
tion of Gram-Schmidt orthogonalization as well as a simple
calculation of the relevant coefficients.

Without loss of generality, we shall assume 0 < d{�} ≤ σ2
X ,

� = 1, · · · , L, and 0 < d{1,··· ,L} ≤ σ2
X . Define

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) = min
{ L∑

�=1

R� :

(R1, · · · , RL) ∈ R(d{1}, · · · , d{L}, d{1,··· ,L})
}
.

It is known [4], [5] that

RΣ(d{1}, · · · , d{L}, d{1,··· ,L}) =

max
a∈[0,σ2

X ]

1

2
log

(
σ4L−2
X (σ2

Xd{1,··· ,L} − ad{1,··· ,L} + aσ2
X)

d{1,··· ,L}
∏L

�=1(σ
2
Xd{�} − ad{�} + aσ2

X)

)
.

In particular,

RΣ(d{1}, · · · , d{L}, d{1,··· ,L})

=

⎧⎪⎨
⎪⎩

1
2

L∑
�=1

log(
σ2
X

d{�}
), d{1,··· ,L} ≥ d{1,··· ,L}

1
2 log(

σ2
X

d{1,··· ,L}
), d{1,··· ,L} ≤ d{1,··· ,L}

,

where

d{1,··· ,L} =
( L∑

�=1

1

d{�}
− L− 1

σ2
X

)−1

,

d{1,··· ,L} =

L∑
�=1

d� − (L− 1)σ2
X .

Therefore, if d{1,··· ,L} ≥ d{1,··· ,L}, then one can de-
crease d{1,··· ,L} until d{1,··· ,L} = d{1,··· ,L} without affect-
ing RΣ(d{1}, · · · , d{L}, d{1,··· ,L}); similarly, if d{1,··· ,L} ≤
d{1,··· ,L}, then one can decrease one of d{�}, � =
1, · · · , L, until d{1,··· ,L} = d{1,··· ,L} without affecting
RΣ(d{1}, · · · , d{L}, d{1,··· ,L}). As a consequence, there is
no loss of generality in assuming d{1,··· ,L} ≤ d{1,··· ,L} ≤
d{1,··· ,L}. In this case we have

RΣ(d{1}, · · · , d{L}, d{1,··· ,L})

=
1

2
log
(σ4L−2

X (σ2
Xd{1,··· ,L} − âd{1,··· ,L} + âσ2

X)

d{1,··· ,L}
∏L

�=1(σ
2
Xd{�} − âd{�} + âσ2

X)

)
,

where â ∈ [0, σ2
X ] is the solution to the following equation

( σ2
Xd{1,··· ,L}

σ2
X − d{1,··· ,L}

+ a
)−1

=

L∑
�=1

( σ2
Xd{�}

σ2
X − d{�}

+ a
)−1

.

In particular, when d{1} = · · · = d{L} = d, we have

â =
σ4
Xd− Lσ4

Xd{1,··· ,L} − σ2
Xdd{1,··· ,L} + Lσ2

Xdd{1,··· ,L}
(L− 1)(σ2

X − d)(σ2
X − d{1,··· ,L})

and

RΣ(d, · · · , d, d{1,··· ,L})

=
1

2
log
( (L − 1)L−1σ2

X(σ2
X − d{1,··· ,L})L

LLd{1,··· ,L}(σ2
X − d)(d− d{1,··· ,L})L−1

)
.

Note that in the current setting (1) and (2) can be rewritten
as

E[(X − E[X |U{�}])2] ≤ d{�}, � = 1, · · · , L, (6)

E[(X − E[X |U{1}, · · · , U{L}])2] ≤ d{1,··· ,L}. (7)

It is known [4], [5] that if U{1}, · · · , U{L} are zero-mean and
jointly Gaussian with X such that

E[XU{�}] = σ2
X , � = 1, · · · , L, (8)

E[U{�}U{�′}] =
{

σ2
X + σ2

{�}, � = �′

σ2
X − â, � �= �′

, (9)

where σ2
{�} =

σ2
Xd{�}

σ2
X−d{�}

, then rate tuples in D(pU{1},··· ,U{L}|X)

achieve the minimum sum rate RΣ(d{1}, · · · , d{L}, d{1,··· ,L})
and distortion constraints (6) and (7) are satisfied; the corre-
sponding R(pU{1},··· ,U{L}|X) will be referred to as the sum-
rate optimal Gaussian EGC region. Now we proceed to give
an explicit construction of such (U{1}, · · · , U{L}). Let

σ2
{1,··· ,�} =

(
�∑

i=1

(
σ2
{i} + â

)−1
)−1

− â, � = 2, · · · , L.

Note that

â =
√
(σ2

{1,··· ,�−1} − σ2
{1,··· ,�})(σ

2
{�} − σ2

{1,··· ,�})− σ2
{1,··· ,�},

� = 2, · · · , L.
Let N{1,··· ,L} and N ′

{1,··· ,�}, � = 2, · · · , L, be L zero-mean
Gaussian random variables, where the variance of N{1,··· ,L}
is σ2

{1,··· ,L} and the rest have unit variance. We assume
that X , N{1,··· ,L}, and N ′

{1,··· ,�}, � = 2, · · · , L, are jointly
independent. One can successively construct

N{1,··· ,�}

= N{1,··· ,�+1} +
√
σ2
{1,··· ,�} − σ2

{1,··· ,�+1}N
′
{1,··· ,�+1}

from � = L− 1 to 1. Now let

U{1,··· ,�} = X +N{1,··· ,�}, � = 1, · · · , L,
U{�} = U{1,··· ,�} −

√
σ2
{�} − σ2

{1,··· ,�}N
′
{1,··· ,�},

� = 2, · · · , L.
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It can be verified that the constructed (U{1}, · · · , U{L}) sat-
isfies (8) and (9). Note that (U1, · · · , U{�}) − U{1,··· ,�} −
(X,U{�+1}, · · · , U{L}) form a Markov chain, � = 2, · · · , L.
Therefore, we have

Û{1} = X,

Û{�} = E[U{�}|X,U{1,··· ,�−1}] = γ�−1X + β�−1U{1,··· ,�−1},
� = 2, · · · , L, (10)

where

γ�−1 = 1 +
â

σ2
{1,··· ,�−1}

,

β�−1 = − â

σ2
{1,··· ,�−1}

.

It is easy to see that

U{1,··· ,�} = η�−1U{1,··· ,�−1} + η̄�−1U{�}, � = 2, · · · , L,
(11)

where

η�−1 = 1− η̄�−1

=

√
σ2
{�} − σ2

{1,··· ,�}√
σ2
{1,··· ,�−1} − σ2

{1,··· ,�} +
√
σ2
{�} − σ2

{1,··· ,�}
.

This recurrence relation leads to an efficient implementation
of Gram-Schmidt orthogonalization (see Fig. 1). It can also
be verified that

E[X |U{�}] = α{�}U{�}, � = 1, · · · , L, (12)

E[X |U{1}, · · · , U{�}] = E[X |U{1,··· ,�}] = α{1,··· ,�}U{1,··· ,�},
� = 2, · · · , L, (13)

E[Δ2
1] = σ2

{1},

E[Δ2
� ] = σ2

{�} −
â2

σ2
{1,··· ,�−1}

, � = 2, · · · , L,

where

α{�} =
σ2
X

σ2
X + σ2

{�}
,

α{1,··· ,�} =
σ2
X

σ2
X + σ2

{1,··· ,�}
.

In particular, when d{1} = · · · = d{�} = d, we have

σ2
{1} = · · · = σ2

{L} =
σ2
Xd

σ2
X − d

� σ2,

σ2
{1,··· ,�} =

1

�
σ2 − �− 1

�
â =

σ2
Xd

�(σ2
X − d)

− �− 1

�
â,

� = 2, · · · , L,

U{1,··· ,�} =
�− 1

�
U{1,··· ,�−1} +

1

�
U{�} =

1

�

�∑
i=1

U{i},

� = 2, · · · , L,
E[Δ2

1] = σ2,

E[Δ2
� ] = σ2 − (�− 1)â2

σ2 − (�− 2)â
, � = 2, · · · , L.

It should be pointed out that although we have mainly
focused on the minimum sum rate, one can obtain similar
results in a more general setting. Indeed, it can be shown
by leveraging the construction in [5] that the Gram-Schmidt
orthogonalization procedure can be simplified in essentially
the same manner for a vertex that achieves a general minimum
weighted sum rate. The details are left to the interested reader.

B. Quantization Splitting

As mentioned earlier, every rate tuple on the dominant
face of an EGC region is achievable via timesharing of the
successive coding schemes for vertices. Alternatively, one can
use the splitting method developed in [19], [28].

Given (X,U{1}, · · · , U{L}), we say (U{1},1, · · · , U{L},1)
is split from (U{1}, · · · , U{L}) if U{�},1 − U{�} −
(X,U{�′},1, U{�′}, �′ �= �) form a Markov chain for all �. Let
U = {U{1},1, U{1}, · · · , U{L},1, U{L}}. We say μ is a well-
ordered permutation on U if U{�},1 is placed before U{�} for
all �. For any U ∈ U , let {U}−μ denote the set of random
variables placed before U in μ.

It is known [19], [28] that for any (R1, · · · , RL) ∈
D(pU{1},··· ,U{L}|X), one can find (U{1},1, · · · , U{L},1) split
from (U{1}, · · · , U{L}) and a well-ordered permutation μ such
that

R� = R�,1 +R�,2, � = 1, · · · , L,
where

R�,1 = I(X, {U{�},1}−μ ;U{�},1),

R�,2 = I(X, {U{�}}−μ ;U{�}|U{�},1);

moreover, at least one U{�},1 can be set to zero3 and removed
from μ.

Note that R�,2 is expressed as a conditional mutual in-
formation. This is why in [19], [28] conditional codebooks
are used in the random coding argument for the splitting
method. In fact, an inspection of the random coding argument
in [19], [28] reveals that the resulting scheme requires one
to construct and store 2nR�,1 conditional codebooks, each of
size 2nR�,2 , for the �-th description. Here we shall give a
new interpretation of the splitting method by converting the
expression of R�,2 from a conditional form to an uncondi-
tional form and consequently eliminating the use of condi-
tional codebooks4. In view of Lemma 1 in [29], there exist
random variables U{1},2, · · · , U{L},2 jointly distributed with
(X,U{1},1, U{1}, · · · , U{L},1, U{L}) such that the following
properties are satisfied for all �:

P1) U{�},2 is independent of U{�},1;
P2) U{�} is a deterministic function of U{�},1 and U{�},2;
P3) U{�},2− (U{�},1, U{�})− (X,U{�′},1, U{�′},2, U{�′}, �′ �=

�) form a Markov chain.

Let U ′ = {U{1},1, U{1},2, · · · , U{L},1, U{L},2} and μ′ be a
permutation on U ′ induced by μ with U{�} replaced by U{�},2
at the corresponding positions. For any U ∈ U ′, let {U}−μ′

3In this case we have R�,1 = 0 and R� = R�,2 = I(X, {U{�}}−μ ;U{�}).
4More precisely, the new interpretation allows one to replace those 2nR�,1

conditional codebooks with a single codebook of size 2nR�,2 .
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ˆX U {1}U

{1}X̂

{2}Û
{2}X̂{2}U

{1,2}U

{3}Û
{3}X̂

{1,2,3}U

{1,2, , 1}LU

L
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ˆ
LU { }LU
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ˆ
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ˆ

LX

{1}
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{3}

{1,2,..., }L

1

2

1L
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Fig. 1. Successive quantization scheme for a vertex of the sum-rate optimal Gaussian EGC region.

denote the set of random variables placed before U in μ′. By
P2) and P3), we can rewrite R�,1 as

R�,1 = I(X, {U{�},1}−μ′ ;U{�},1).

Moreover, it follows by P1), P2), and P3) that

I(X, {U{�},2}−μ′ ;U{�},2)

= I(X, {U{�},2}−μ′ ;U{�},2|U{�},1) + I(U{�},1;U{�},2)

= I(X, {U{�},2}−μ′ ;U{�},2|U{�},1)

= I(X, {U{�}}−μ ;U{�}|U{�},1).

Therefore, we have

R�,2 = I(X, {U{�},2}−μ′ ;U{�},2).

Now by ordering R1,1, R1,2, · · · , RL,1, RL,2 according to μ′,
one can readily see that the coding problem for an arbitrary
point on the dominant face of an L-description EGC region
can be converted to that for a vertex of a K-description
EGC region for some K ≤ 2L − 1 (due to the fact that at
least one U{�},1 can be set to zero and removed from μ and
μ′), where the latter problem can be solved via successive
coding. Note that we essentially split each description into two
coarse descriptions; moreover, according to P2), the original
description can be recovered from the two coarse descriptions.

More concrete results can be obtained in the quadratic
Gaussian case. In this setting there is no loss of generality
in assuming that U{1},1, U{1},2, · · · , U{L},1, U{L},2 are zero-
mean and jointly Gaussian with (X,U{1}, · · · , U{L}). Specifi-
cally, we can let U{�},1 = U{�}+Z� and U{�},2 = U{�}−b�Z�,
� = 1, · · · , L, where Z� is a Gaussian random variable with

mean zero and variance σ2
Z�

, and b� =
E[U2

{�}]
σ2
Z�

; moreover,

Z1, · · · , ZL, and (X,U{1}, · · · , U{L}) are jointly independent.
The values of σ2

Z1
, · · · , σ2

ZL
are determined by (R1, · · · , RL).

Note that in the extreme case when σ2
Z�

= ∞, we let
U{�},1 = 0 and U{�},2 = U{�}; similarly, when σ2

Z�
= 0,

we let U{�},1 = U{�} and U{�},2 = 0. It is easy to verify
that P1), P2), and P3) are satisfied; in particular, we have
U{�} = τ�U{�},1 + τ̄�U{�},2, � = 1, · · · , L, where τ� =

1−τ̄� = b�
b�+1 . To obtain a successive quantization scheme, one

can apply the Gram-Schmidt orthogonalization procedure to
(U{1},1, U{1},2, · · · , U{L},1, U{L},2) with the projection order
specified by μ′.

Now we proceed to give a detailed treatment of the case L =
2. It is known [2], [4], [5] that there is no loss of generality in
assuming d{1,2} ≤ d{1,2} ≤ d{1,2}; moreover, in this setting
R(d{1}, d{2}, d{1,2}) = R(pU{1},U{2}|X), where pU{1},U{2}|X
is the conditional Gaussian distribution specified by (8) and
(9) with

σ2
{�} =

σ2
Xd{�}

σ2
X − d{�}

, � = 1, 2,

â =

√√√√ 2∏
�=1

( σ2
Xd{�}

σ2
X − d{�}

− σ2
Xd{1,2}

σ2
X − d{1,2}

)
− σ2

Xd{1,2}
σ2
X − d{1,2}

.

Note that for any (R1, R2) ∈ D(pU{1},U{2}|X), we can set
U{2},1 = 0, U{2},2 = U{2}, and write

R1 = R1,1 +R1,2,

R2 = I(X,U{1},1;U{2}), (14)

where

R1,1 = I(X ;U{1},1), (15)
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R1,2 = I(X,U{1},1, U{2};U{1},2). (16)

The Gram-Schmidt orthogonalization procedure yields

U{1},1 = E[U{1},1|X ] + Δ̃1,

U{2} = E[U{2}|X,U{1},1] + Δ̃2,

U{1},2 = E[U{1},2|X,U{1},1, U{2}] + Δ̃3,

where X, Δ̃1, Δ̃2, Δ̃3 are jointly independent. Therefore, we
can rewrite R1,1, R2, and R1,2 as

R1,1 = I(E[U{1},1|X ];U{1},1)

= I(E[U{1},1|X ];E[U{1},1|X ] + Δ̃1),

R2 = I(E[U{2}|X,U{1},1];U{2})

= I(E[U{2}|X,U{1},1];E[U{2}|X,U{1},1] + Δ̃2),

R1,2 = I(E[U{1},2|X,U{1},1, U{2}];U{1},2)
= I(E[U{1},2|X,U{1},1, U{2}];E[U{1},2|X,U{1},1, U{2}]

+ Δ̃3).

It can be verified that

E[U{1},1|X ] = X,

E[U{2}|X,U{1},1]
= X + E[U{2} −X |U{1},1 −X ]

= X − â

σ2
{1} + σ2

Z1

(U{1},1 −X)

= ν1X + ν2U{1},1, (17)

E[U{1},2|X,U{1},1, U{2}]
= X + E[U{1},2 −X |U{1},1 −X,U{2} −X ]

= X −
σ2
Xσ2

{2} + â2

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
(U{1},1 −X)

−
σ2
X â+ (σ2

{1} + σ2
Z1
)â

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
(U{2} −X)

= ν3X + ν4U{1},1 + ν5U{2}, (18)

and

E[Δ̃2
1] = σ2

{1} + σ2
Z1
,

E[Δ̃2
2] = σ2

{2} −
â2

σ2
{1} + σ2

Z1

,

E[Δ̃2
3] = σ2

{1} +
(σ2

X + σ2
{1})

2

σ2
Z1

−
σ4
Xσ2

{2} + 2σ2
X â2 + (σ2

{1} + σ2
Z1
)â2

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
,

where

ν1 =
σ2
{1} + σ2

Z1
+ â

σ2
{1} + σ2

Z1

,

ν2 = − â

σ2
{1} + σ2

Z1

,

ν3 =
(σ2

X + σ2
{1} + σ2

Z1
)(σ2

{2} + â)

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
,

ν4 = −
σ2
Xσ2

{2} + â2

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
,

ν5 = −
σ2
X â+ (σ2

{1} + σ2
Z1
)â

(σ2
{1} + σ2

Z1
)σ2

{2} − â2
.

Note that

R2 = h(U{2})− h(Δ̃2) =
1

2
log
( σ2

X + σ2
{2}

σ2
{2} − â2

σ2
{1}+σ2

Z1

)
,

which implies

σ2
Z1

=
â2

σ2
{2} − 2−2R2(σ2

X + σ2
{2})
− σ2

{1}.

In particular, when d{1} = d{2} = d and R1 = R2 = R, we
have

R =
1

4
log
((σ2

X + σ2)2

σ4 − â2

)
,

and consequently,

σ2
Z1

=
â2

σ2 − 2−2R(σ2
X + σ2)

− σ2 =
√
σ4 − â2,

where

σ2 =
σ2
Xd

σ2
X − d

,

â =
σ2
Xd

σ2
X − d

− 2σ2
Xd{1,2}

σ2
X − d{1,2}

.

The quantization splitting system for the 2-description case
is depicted in Fig. 2.

III. A PRACTICAL SCHEME BASED ON LDGM CODES

A. Gaussian Quantization with LDGM Codes

As discussed previously, each stage � in the successive
quantization scheme reduces to a Gaussian quantization op-
eration interpreted as the forward channel U{�} = Û{�} +Δ�,
which we implement based on LDGM codes. Therefore, let
us first describe the proposed Gaussian quantization scheme
in a general setting.

Consider an i.i.d. Gaussian source Û ∼ N (0, σ2
Û
) and

an additive Gaussian noise channel U = Û + Δ, where
Δ ∼ N (0, σ2) denotes the noise. Our goal is to construct
an n-block quantizer of rate R = I(Û ;U) + ε and codebook
C = {un

i : 1 ≤ i ≤ 2nR}, to approximate this Gaussian
channel. To this end we need first to construct a finite random
variable Ũ over some finite alphabet Ũ , to approximate U .
An additional requirement on Ũ , to be explained shortly, is
that a positive integer ω exists such that 2ωpŨ (ũ) is a positive
integer for every ũ ∈ Ũ . Next we design a multilevel LDGM
code [27] to generate the codebook C ⊆ Ũn, such that the
marginal distribution of the codewords approximates Ũ , and
thus approximates U as well; finally, given an input sequence
ûn = û(1) · · · û(n), the quantizer output un = u(1) · · ·u(n)
is selected from C using a message passing algorithm.

The multilevel LDGM code is best described by means
of its associated factor graph (Fig. 3). The factor graph
is composed of n source nodes {S1, · · · , Sn}, m variable
nodes {V1, · · · , Vm}, where m = nR, nω check nodes
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Fig. 2. Quantization splitting scheme for the Gaussian 2-description case.

{C1, · · · , Cnω}, and n network nodes {N1, · · · , Nn}. Every
variable node Vk is associated to information bit v(k) and
is connected by an edge to every check node Ch such that
G(h, k) = 1, where G is some low-density generator matrix of
dimension nω×m over GF (2). Each network node Nl is con-
nected by an edge to check nodes Cl, Cl+n, · · · , Cl+(ω−1)n,
and to source node Sl. Source node Sl is associated to the l-
th symbol û(l) in the input sequence, and Nl is associated to
the l-th symbol u(l) of the output sequence (i.e., codeword).
Given an assignment of bit values to the variable nodes, the
bit value c(h) assigned to the check node Ch is computed as
the modulo 2 addition of the values in neighboring variable
nodes. The value u(l) in the network node is computed via
a mapping applied to the neighboring check nodes. In other
words, u(l) = φ(c(l), c(n + l), · · · , c(n(ω − 1) + l)), where
φ : {0, 1}ω → Ũ is chosen such that |φ−1(ũ)|

2ω = pŨ (ũ)

for every ũ ∈ Ũ . Such a mapping is guaranteed to exist
since 2ωpŨ (ũ), ũ ∈ Ũ , are positive integers. Finally, the
codebook consists of all possible sequences un constructed at
the network nodes for all possible assignments of bit values
to the variable nodes.

Notice that the MMSE estimator of Û given the variable

U is E[Û |U ] = αU , where α =
σ2
Û

σ2
Û
+σ2 . Thus, if the

quantizer output is un then the optimal source reconstruction
is αun. Therefore, given the quantizer input sequence ûn, we

formulate the quantizer encoder problem as the problem of
selecting the output sequence un ∈ C such that the mean
squared error between ûn and αun to be minimized.

As a heuristic algorithm to solve the encoder problem we
use the belief propagation with decimation. The algorithm is
similar to the message passing algorithm described in [30],
[31]. The algorithm description is presented in Fig. 5, and the
equations to compute the messages in Fig. 4. The notation
MA→B is for the message passed by node A to node B.
All messages have two components, except for messages sent
by the source nodes, which have |Ũ | components, one for
each symbol ũ ∈ Ũ . Finally, any check node, whose adjacent
variable nodes are all fixed, computes the message to send,
using:

M(b) =
1

exp(δ) + exp(−δ) (c exp((−1)
1−bδ)

+ (1− c) exp((−1)bδ)), (19)

for b ∈ {0, 1}, where c equals the fixed value of the check
node.

B. A Note on Optimal Ũ

The performance of aforedescribed scheme depends on
how well the message passing algorithm solves the encoder
problem, but also on the choice of random variable Ũ . The
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Fig. 3. Factor graph associated to the multilevel LDGM code.

MSl→Nl
(ũ) = exp(−λ(û(l)− αũ)2),

for all ũ ∈ Ũ , 1 ≤ l ≤ n,

MNl→Cl+sn
(b) =

∑
ũ∈Ũ

MSl→Nl
(ũ)

∑
bω∈{0,1}ω
b(s+1)=b
φ(bω)=ũ

∏
j=0
j �=s

ω−1
MCl+jn→Nl

(b(j + 1))

MCl+sn→Nl
(b) =

1

2
+

(−1)b
2

∏
k∈Bv(l+sn)

(MVk→Cl+sn
(0)−MVk→Cl+sn

(1))

for all b ∈ {0, 1}, 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1,

MCl+sn→Vk
(b) =

1

2
+

(−1)b
2

(MNl→Cl+sn
(0)−MNl→Cl+sn

(1))
∏

i∈Bv(l+sn)\{k}
(MVi→Cl+sn

(0)−MVi→Cl+sn
(1))

MVk→Cl+sn
(b) =

∏
q∈Ac(k)\{l+sn}

MCq→Vk
(b)

for all b ∈ {0, 1}, k ∈ Bv(l + sn), 1 ≤ l ≤ n, 0 ≤ s ≤ ω − 1.

Fig. 4. Message passing equations. After applying these equations, the components of each message are normalized to sum up to 1. Ac(k) denotes the set
of indices q such that Cq is adjacent to node Vk , and Bv(q) denotes the set of of indices k such that Vk is adjacent to Cq .

choice of Ũ is constrained by the requirement that a positive
integer ω exists such that 2ωpŨ (ũ) is a positive integer for
every ũ ∈ Ũ . Notice that this condition also constrains the size
of the alphabet Ũ to be at most 2ω. Therefore it is interesting
to consider the problem of optimizing Ũ subject to fixed
ω. In order to formulate this problem we will disregard the
dependence on the particular behavior of the message passing
algorithm. Moreover, we will assume that the LDGM encoder
approximates a theoretical random coding scheme5. Then the
problem of optimizing Ũ is equivalent to optimizing the
alphabet Ũ and the conditional probability pŨ|Û , formulated
as follows

min
Ũ ,pŨ|Û

E[(Û − αŨ)2] (20)

subject to I(Û ; Ũ) = I(Û ;U), Ũ ⊆ R, and 2ωpŨ (ũ) ∈ N for
all ũ ∈ Ũ . This optimization problem has similar flavor to the

5Such an assumption is supported by the results of [27]. Although the
argument in [27] is for discrete-valued sources and bounded distortion
measures, it can be extended to cover the quadratic Gaussian case using
standard techniques.

problems considered in the context of alphabet constrained
rate-distortion theory for continuous-valued sources in [35],
[36], but appears to be more difficult due to the additional
integer constraint. On the other hand, as a practical solution
to LDGM code design, one can modify the requirements to
fit the problems solved in [35], [36]. Specifically, one can
replace first Û by the output Ŭ of a fine scalar quantizer; then
drop the last constraint of problem (20), impose instead the
condition that pŨ (ũ) are equal to some fixed values, and use
the algorithm of [36] to determine the optimal alphabet Ũ .
Alternatively, upon replacing Û by Ŭ , one can fix only the
size of the alphabet Ũ and determine the probabilities pŨ (ũ)
via the algorithm of [35]; then choose an integer ω such that
2ωpŨ (ũ) are close to some integer values.

We leave the quest for a solution algorithm to problem
(20) and/or the investigation of the performance of the afore-
mentioned strategies for future work. In our experiments we
confine ourselves to a simple heuristic for the selection of
Ũ , inspired by the central limit theorem and by the intu-
ition that Ũ has to be a good approximation of variable
U . Let W1, · · · ,Wω be ω independent random variables,
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1: maxiter ← 100, η ← 0.9
2: Ac(k)← {q|G(q, k) = 1}, for all k = 1, · · · ,m
3: Bv(q)← {k|G(q, k) = 1}, for all q = 1, · · · , nω
4: NV ← {1, · · · ,m}
5: for l = 1 to n do
6: Compute MSl→Nl

as in Fig. 4
7: for s = 0 to ω − 1 do
8: MCl+sn→Nl

← (12 ,
1
2 )

9: for k ∈ Bv(l + sn) do
10: MCl+sn→Vk

← (12 ,
1
2 )

11: end for
12: end for
13: end for
14: while NV �= ∅ do
15: for i = 1 to maxiter do
16: Compute MNl→Cl+sn

, MVk→Cl+sn
as in Fig. 4

17: for all l = 1, · · · , n, s = 0, · · · , ω − 1,
k ∈ Bv(l + sn) ∩ NV .

18: for l = 1 to n do
19: for s = 0 to ω − 1 do
20: if Bv(l + sn) ∩NV �= ∅ then
21: Compute MCl+sn→Nl

as in Fig. 4
22: for k ∈ Bv(l + sn) ∩ NV do
23: Compute MCl+sn→Vk

as in Fig. 4
24: end for
25: else
26: Compute MCl+sn→Nl

as in Eq. (19)
27: end if
28: end for
29: end for
30: if MCq→Vk

converge for all q = 1, · · · , nω,
k ∈ Bv(q) ∩NV then

31: Break
32: end if
33: end for
34: for k ∈ NV do
35: p(Vk = b)←∏

q∈Ac(k)
MCq→Vk

(b), for b ∈ {0, 1}
36: p(Vk = b)← p(Vk=b)

p(Vk=0)+p(Vk=1) , for b ∈ {0, 1}
37: if |p(Vk = 0)− p(Vk = 1)| > η then
38: NV ← NV − {k}
39: b̂← argmaxb∈{0,1}p(Vk = b), Vk ← b̂

40: MVk→Cq (b̂) ← 1, MVk→Cq (1 − b̂) ← 0, for all
q ∈ Ac(k)

41: end if
42: end for
43: end while

Fig. 5. Message passing algorithm. NV denotes the set of indices k of
currently non-decimated variable nodes Vk .

uniformly distributed over the alphabet {−1, 1}. Define W̄ω =∑ω
j=1 Wi

√
σ2
Û
+σ2

√
ω

. According to the central limit theorem, the
sequence of random variables W̄ω converges to N (0, σ2

Û
+σ2)

as ω →∞. Therefore, we choose Ũ = W̄ω.

C. Successive Quantization

As discussed in Section II-A, the successive quantization
scheme for vertices of the sum-rate optimal Gaussian EGC

region follows the block diagram in Fig. 1. The operation
U{�} = Û{�} + Δ�, at the �-th step, � = 1, · · · , L, is
implemented using an n-block multilevel LDGM code as
described in Fig. 5, for U = U{�}, Û = Û{�}, and Δ = Δ�.
The input sequence ûn

{�} = û{�}(1), · · · , û{�}(n) coincides
with the source sequence xn = x(1) · · ·x(n) for � = 1, and
for � > 1, it is computed based on xn and the sequences
un
{κ} output at all previous stages 1 ≤ κ ≤ � − 1, according

to the recursive equations (10) and (11), applied symbol by
symbol. The sequence un

{�} output by the quantizer at stage �
is found using the belief propagation algorithm described in
Fig. 5. The index i� formed out of the nR� information bits
corresponding to the selected output is transmitted as the �-th
description.

The decoder corresponding to the �-th description receives
index i� and constructs the corresponding codeword un

{�} using
the factor graph for the �-th stage LDGM code. The source
reconstruction x̂n

{�} is formed by x̂{�}(l) = α{�}u{�}(l), 1 ≤
l ≤ n, according to (12).

Finally, the central decoder receives all indices i1, · · · , iL,
recovers un

{1}, · · · , un
{L}, and based on them constructs the

sequence un
{1,··· ,L} using (11) recursively. Then the source

reconstruction is generated according to (13).

D. Quantization Splitting

The procedure of quantization splitting for the 2-description
case is illustrated in the block diagram of Fig. 2. It con-
sists of three successive n-block quantizers implemented us-
ing multilevel LDGM codes, as described in Section III-A.
Specifically, the first quantizer models the forward channel
U{1},1 = X + Δ̃1. Its input is the source sequence xn

and its output is denoted by un
{1},1. The second quantizer

approximates the channel U{2} = Û{2} + Δ̃2. Its n-block
input sequence ûn

{2} is constructed based on xn and un
{1},1

according to (17) as shown in the block diagram. Its output
is denoted by un

{2}. Finally, the third quantizer models the

channel U{1},2 = Û{1},2 + Δ̃3, with input ûn
{1},2 generated

from xn, un
{1},1, and un

{2} using (18). Its output is denoted by
un
{1},2.
Let i1, i2, i3 denote the information bit sequences corre-

sponding to the outputs of the three quantizers, respectively.
Then indices i1 and i3 form the first description, while i2
constitutes the second description. The decoder of the first
description receives i1 and i3, recovers un

{1},1 and un
{1},2,

based on which it generates un
{1}, and further x̂n

{1} as the
source reconstruction, using the operations described in Fig.
2. The decoder of the second description receives index i2,
recovers un

{2}, and generates the source reconstruction x̂n
{2}

according to Fig. 2. When both descriptions are received at the
decoder, the sequence un

{1,2} is generated from un
{1} and un

{2},
which is used to further generate the source reconstruction
x̂n
{1,2} as in Fig. 2.

E. Experimental Results

We have tested the proposed successive quantization and
quantization splitting scheme for an i.i.d. zero-mean unit-
variance Gaussian source. We have considered input sequences
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TABLE I
PARAMETERS AND RESULTS FOR A 2-DESCRIPTION CASE WITH SYMMETRIC DISTORTIONS.

n (R1, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1 λ2 δ1 δ2
10000 (1, 1.015) (0.25, 0.25, 0.125) 0.267 0.262 0.135 1.7 1.7 1.9 1.9
1000 (1, 1.015) (0.25, 0.25, 0.125) 0.267 0.264 0.136 1.6 1.6 1.8 1.8
100 (1, 1.015) (0.25, 0.25, 0.125) 0.270 0.272 0.148 1.6 1.6 1.8 1.8

TABLE II
PARAMETERS AND RESULTS FOR A 2-DESCRIPTION CASE WITH ASYMMETRIC DISTORTIONS.

n (R1, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1 λ2 δ1 δ2
10000 (1.161, 0.914) (0.2, 0.25, 0.1) 0.211 0.266 0.111 2.6 1.7 2.8 1.9
10000 (1, 1.075) (0.25, 0.2, 0.1) 0.262 0.219 0.111 1.7 2.5 1.9 2.7
1000 (1.161, 0.914) (0.2, 0.25, 0.1) 0.212 0.269 0.113 2.8 1.7 2.8 1.9
1000 (1, 1.075) (0.25, 0.2, 0.1) 0.265 0.220 0.114 1.8 2.6 1.9 2.8
100 (1.161, 0.914) (0.2, 0.25, 0.1) 0.219 0.277 0.121 2.8 1.7 2.8 1.8
100 (1, 1.075) (0.25, 0.2, 0.1) 0.271 0.225 0.122 1.8 2.6 1.9 2.8

TABLE III
PARAMETERS AND RESULTS FOR A 3-DESCRIPTION CASE WITH SYMMETRIC DISTORTIONS.

n (R1, R2, R3) (d{1}, d{2}, d{3}, d{1,2,3}) d̂{1} d̂{2} d̂{3} d̂{1,2,3} λ1 λ2 λ3 δ1 δ2 δ3
10000 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.210 0.210 0.212 0.076 1.7 1.7 1.7 1.9 1.9 1.9
1000 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.212 0.214 0.217 0.079 1.6 1.6 1.7 1.8 1.9 1.9
100 (1.161, 1.165, 1.169) (0.2, 0.2, 0.2, 0.067) 0.219 0.222 0.226 0.088 1.6 1.6 1.7 1.8 1.9 1.9

TABLE IV
RESULTS FOR A 4-DESCRIPTION CASE WITH SYMMETRIC DISTORTIONS.

n (R1, R2, R3, R4) (d{1}, d{2}, d{3}, d{4}, d{1,2,3,4}) d̂{1} d̂{2} d̂{3} d̂{4} d̂{1,2,3,4}
10000 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.209 0.209 0.211 0.213 0.059
1000 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.210 0.211 0.213 0.214 0.061
100 (1.161, 1.163, 1.165, 1.168) (0.2, 0.2, 0.2, 0.2, 0.05) 0.218 0.219 0.222 0.227 0.075

of various lengths n = 100, 1000 and 10000. In all our tests we
set η = 0.9, and ω = 4. The degree distributions of the low-
density generator matrices used in our simulations are obtained
from the website (http://lthcwww.epfl.ch.research/ldpcopt) or
by implementing the algorithm in [32]. We use damping as in
[25], [31] in our message passing algorithm, if the messages
do not converge after 30 iterations.

Tables I and II present the simulation results of the LDGM-
based successive quantization scheme for a 2-description sym-
metric and asymmetric distortion tuples, respectively. Tables
III and IV exhibit the results of the proposed scheme for an L-
description symmetric distortion tuple with L = 3 and L = 4,
respectively. In each table (d{1}, · · · , d{L}, d{1,··· ,L}) denotes
the target distortion tuple, while d̂{1}, · · · , d̂{L}, and d̂{1,··· ,L}
denote the empirical distortions; (R1, · · · , RL) denotes the
rate pair used in the experiments, which corresponds to a
vertex of the sum-rate optimal Gaussian EGC region, defined
by (5); λi and δi are for the parameters λ and δ, respectively,
used in the message passing algorithm at the encoding stage
i, i = 1, · · · , L. Next we list the values of the parameters
for L = 4, which did not fit in Table IV. For n = 10000,
we have λ1 = · · · = λ4 = 1.7 and δ1 = · · · = δ4 = 1.9,
while for n = 1000 and n = 100, we have λ1 = λ2 = 1.6,
λ3 = λ4 = 1.7, δ1 = δ2 = 1.8 and δ3 = δ4 = 1.9.

Table V presents the result obtained using the proposed
quantization splitting scheme for a 2-description problem with

symmetric rates and symmetric distortions: (d{1}, d{2}, d{1,2})
denotes the target distortion triple and d̂{1}, d̂{2}, d̂{1,2} are
the empirical distortions; R1,1, R1,2, R2 represent the rates
defined in (15), (16), and (14); λ1,1, δ1,1 and λ1,2, δ1,2 are the
parameters of the LDGM codes used for the first description,
in other words for encoder of stage 1 and encoder of stage 3,
respectively; λ2 and δ2 are the parameters of the LDGM code
used for the second description, i.e., for encoder of stage 2.

From the results showed in the tables, we can observe
that the empirical distortions are very close to the theoretical
distortion bounds.

Notice that the results in Tables III and IV show a tendency
for the gap between the empirical and the target distortion to
increase with the index of the description. This increase could
be due to the error propagation from an encoding stage to
the subsequent one in the successive coding scheme. Another
possible reason could be the suboptimal choice of the LDGM
code or of the parameters involved in the message passing
algorithm. However, in the event that error propagation is the
real cause, it is worth discussing methods to reduce its effect.

Some error propagation from an encoding stage to the
subsequent one is expected to appear in any successive cod-
ing scheme, be it practical or theoretical (based on random
codebooks), not only when using LDGM codes. In theoretical
schemes, as n → ∞, the error in each encoding stage,
and thus, in each description, should go to 0. This suggests
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TABLE V
PARAMETERS AND RESULTS FOR A 2-DESCRIPTION CASE WITH SYMMETRIC RATES AND SYMMETRIC DISTORTIONS, USING QUANTIZATION SPLITTING.

n (R1,1, R1,2, R2) (d{1}, d{2}, d{1,2}) d̂{1} d̂{2} d̂{1,2} λ1,1 λ1,2 λ2 δ1,1 δ1,2 δ2
10000 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.268 0.269 0.138 1.0 0.3 1.5 1.2 0.6 1.7
1000 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.272 0.271 0.141 1.0 0.3 1.5 1.2 0.6 1.7
100 (0.661, 0.346, 1.007) (0.25, 0.25, 0.125) 0.278 0.276 0.147 1.0 0.3 1.5 1.2 0.6 1.7

increasing n as a practical solution to keep the errors in all
descriptions as well as the error in the central reconstruction
below some desired value. The fact that indeed in practice
the errors in all descriptions can go down as n increases, is
validated in our experiments - see the results in Tables I-V. On
the other hand, if increasing the value of n is not an option,
then another practical solution to limit the errors at higher
descriptions, is to slightly increase the rates at later encoding
stages.

We would also like to mention that the “pure” successive
coding scheme is applied only at the corner points of the rate
region, while for rate tuples inside the dominant face of the
rate region time-sharing of successive codes for corner points
or quantization splitting have to be used. Both latter techniques
lessen the effect of error propagation by distributing errors
more evenly among descriptions. In particular, for the case of
symmetric rates and symmetric distortion constraints, which
is the most common case in practice and is also the most
addressed case in the literature, the errors in all descriptions
will be approximately equal as a consequence of equal time-
sharing of the codes for corner points.

IV. CONCLUSION

We have proposed a practical Gaussian multiple description
coding scheme based on LDGM codes for the scenario where
the distortion constraints are only imposed on individual
descriptions and the complete set of descriptions. The effec-
tiveness of the proposed scheme is verified through simulation.
It is worth noting for the more general scenario studied in
[33], [34], the Gaussian multiple description problem has both
a source coding aspect (in the form of quantization) and a
channel coding aspect (in the form of binning). In a certain
sense, only the source coding aspect is addressed in the present
work. Therefore, it is of considerable interest to develop more
advanced multiple description techniques by incorporating
practical binning methods into the proposed scheme.
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