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Abstract—We address the problem of communication through

a finite-state machine with Markov property. The techniques Encoder 1% Channel Vi ,@_,
from the theory of Markov decision processes are used to W . QY[ X Vi) W

determine of the feedback capacity of this type of machines. ~ Mess%e Estimate of
We also consider the scenario that several users share a machine Vi message

via TDMA. The capacity region for this scenario is established.
Moreover, we adopt a game-theoretic viewpoint to interpret the
operational meaning of the rate vectors in the capacity region. Fig. 2. Model 2.

Index Terms— Game theory, Nash equilibrium, Markov deci-
sion processes, finite-state machine, feedback, TDMA.
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I. INTRODUCTION W P w

Message t Estimate of
Model 1 (Fig. 1) was first studied in [1]. It was shown in (Y S) L message
[1] that its feedback capacity and the optimal input policy 2]
can be computed via dynamic programming. Model 2 (Fig. 2)
was first introduced in [2], in which, among other things, the Fig. 3. Model 3.

feedback capacity was shown to be attainable by Markov input
policy. The feedback capacity of Model 2 was determined in
[3] for the binary output case and in [4] for the general case.andVzy, s, Pi(Yy = c| Xy = x1, Sk = s1) = 1 where c is a
was realized in [4] that Model 1 can be converted to Model 2onstant. u
So the results in [2-4] are applicable to Model 1. Here we showlLet ., yx, si be the realization ofX,, Y, and Sy respec-
that Model 2 can also be converted to Model 1, i.e., Modélely. Throughout this paper, we assumge X, y, € Y and
1 and Model 2 are equivalent. To facilitate the demonstratios, € S where|X|, || and|S| are finite. Without loss of gener-
we introduce a third model: Model 3 (Fig. 3) and show thality, we supposest = {1,2,...,|X|}, Y = {1,2,..., )|}
all these three models are equivalent. andS = {1,2,...,|S|}. Also, we only consider stationary
machines, i.e.,P;(:|-,-) and Py(:|-,-) (Model 1), Q(:|-,-)
(Model 2) andP(-,|-,-,-) (Model 3) do not depend oh.
W In this paper, we mainly focus on Model 1 since it reveals
Estimate of more inner structure of finite-state machines.

essage The paper is organized as follows. In the next section, we
State S, give a detailed discussion of single user system. We determine
Y, Py (Sl XiS:) its feedback capacity on the basis of the classification of
Markov decision processes. We show that under a very general
condition, the optimal information transmission scheme can be
decomposed in two steps: 1. Control, 2. Communication; and
we only need to design coding scheme for one initial state
instead of developing different coding schemes for different
initial states. In section Ill, we consider the scenario that
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H (Yk ‘Xk ’ Sk )
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Fig. 1. Model 1.

Proposition 1: Model 1, 2 and 3 are equivalent.
Proof: Model 3 contains Model 1 since we

(I:Dan Slet Péy’ﬂs’,s"’*:\lle’“ly’“zfl’ Skt) — MPld( }lfk |3X"".S’“) " several users share a finite-state machine via TDMA. We show
2 ( ]I€+tl|V ks _’“)' YO ; con;uns v oXe v smce_wethat there exists a tradeoff among the information transmission
can let Vi = (Yi,Sk1) and Q(Vio| Xk, Vio1) = \aiec of different users. We establish the capacity region for

P(Y’“’SI’“E |X’“’7Y€/‘1’S’“‘3' '\)/l(Od;l 1 Cojtg'n; MOOAL?I ZSS'ncethis multi-user TDMA system. A game-theoretic viewpoint
we can letSy1 = Vi, Q(Vi| Xi, Vio1) = P (Skr1 [ Xe, Sk), g adopted to interpret the operational meaning of the rate

This work is supported in part by NSF CCR-0330059, NSF CCR-lQSOGi’@Ct_OrS _in the capacity region_- Finally we discuss the bic?IOgical
and ARO P-40116-PH-MUR. implication of our model, which serves as the conclusion.



Definition 1: An (n, M, ¢, s;) feedback code function for
Model 1 consists of

THE FEEDBACK CAPACITY OF SINGLE-USERSYSTEM

which we rewrite as

h(P.) + I(W; Yy, Sith)
n(l —P,)

1
—log M <
n

1) An encoding functiory,, that maps the set of messages

W = {1,2,..., M} to machine input words of block-
length » through a sequence of functionss, »}7_;
that depend only on the messaigé € VW, the machine

outputs up to timek — 1 and the machine states up to

time k, i.e.,

Xk' = f51,k(W7Y1k_1aS§) (1)

2)
message sets, : [[(¥ xS) — W such that the
average probability (1)f decoding error satisfies

M
1 A
i Y PW #wW=w,5 =s)<e, (2

w=1

P2

whereW = g, (Y, S3+1).
Note: Both the encoding functiofy, and decoding function
gs, depend on the initial sta¢g. Although it may seem to

be more general to let the encoding function and decoding

functions also depend op® _,s" ., we will see later that
this does not increases the capacity singeis a sufficient
statistic.

Definition 2: R, is anc-achievable rate given the initial
states; if for every § > 0 there exists, for all sufficiently
large n, an (n, M, ¢, s;) code function such that log M >
Rs, — 6. R,, is achievable if it iss-achievable for ale > 0.
The supremum of all achievable rat&s, is defined as the
feedback capacity’/ given the initial states; .

Theorem 1 (Converse Coding Theorer@iven the initial

A decoding functiory,, that maps a received sequence
of n pairs of machine output and machine state to the

As n — oo, P, — 0. Hence, the feedback capacity

1
C'.Zld = limsup — log M

n—oo TN

1
< limsup max —I(W;Y®, S7+1).
= n— 00 P(Xil)n ( 0 ! )

We have

I(W3Yg, Sp) = H(Yg, S77Y)
—H(Y5", STHHW)

[H(Yka SkJrl |Y0k717 Sf)

M=

b
Il
_

—H(Yy, Sp1|W, Y1, SP)]

<
3

N

[H(Yka Sk+1|Sk)

ke
=

—H (Y3, Sp1|W, X, Yo, ST)]

O
(]

[H(Yy, Sk+1|Sk)

b
Il
_

—H (Y, Skq1| Xk, Si)]

M=

I(X}y; Yi, Sky1]Sk) 3)

b
Il
—

where (a) holds because, when conditioned on the idgut
and the current statsy, the outputY, and next statesy
become independent of the messddfe the earlier outputs
Yy~! and the earlier state$}~'. Hence we have

state s;, information transmission with an arbitrary small 4 < lim sup max 1 I(W; Y, S+
S1 I I

expected frequency of errors is not possible Af >
lim sup ==

n
n—oo

Here, Cs,,, =

max [[(X1;Y7,52]51 = s1) +
p(XT)EP*(XT)

> I(Xk; Yk, Sg+1]Sk)] and P*(X7) is the set of Markov

k=2
input policy, i.e., the conditional distribution oX{" of the
form P(X|XF1 vF=1 8F) = P(X3|Sk), k=1,2,...,n.

Proof: Throughout the proof we implicitly assume thak.g. [5].

P(S; = s1) =1 and thus use instead ofs;.

n—oo p(X{L) n

< lim sup max
n—oo P(X{l)

1 n
EZI(Xk§YkaSk+1|Sk)
k=1

®) . 1 ¢
= lims a — I(Xy; Y, Ski1|Se) (4
1ﬂ£pp(X{L§2P}S(X{L)nk§:1 (Xk; Yi, Skt1]Sk)(4)

where (b) follows by the dominance of Markov policy, see
[
Note: From the above theorem, we can see that there is no

Let W be the message random variable. By Fano's inequadss of generality to search for the optimal input policy inside

i HW|Yg, ST < h(P,) + P.log M.
Since
H(WIYP, 8771 = H(W) — I(W: Yy, S77)
=log M — I(W; Yy, ST+,
we have

(1 - P.)log M < h(P.) + I(W; Yy, Sy,

the set of Markov policies, i.e X} only needs to depend only
on S. The feedback’, is thus useless.
Now we begin to computim sup % on the basis of the

classification of Markov decision processes. See [5] for the
detailed discussion of the classification schemes.

(i) Weak communicatin@here exists a closed set of states
S’ C S, with each state inS’ accessible from every
other state in that set under some deterministic stationary
input policy, plus a possibly empty set of states which



is transient under every input policy): independent of the input and output processes,

limsup@: Cfd:ilu max I(X;Y[|S=s), VsieS (6)
nooo M e ¥ p(X|5=s) ’ ’

max Z s (Xi; Y, Sk41|Sk = 8). (B)

p(X|Sp)EP** It's easy to see that (6) can be reduced from (5) if we let

€8’ Py(Sk+1| Xk, Sk) = P2(Sk+1]Skx) and let Markov process
where P** is the set of all stationary Markov input{Sy,k =1,2,...} be irreducible. The difference between (5)
policies under which there is a single ergodic chain iand (6) suggests that

the state spac& and{.}ses: is the induced stationary (a) when the state process is unaffected by the input and

distribution of {Sy, k =1,2,...}onS". output processes, we should maximize the mutual infor-
Note: this result has been obtained partially in [3, 4] and  mation for each state:
_ implicitly in [1]. N _ _ (b) when the state process can be affected by the input
(i) Multichain (the transition matrix corresponding to at and/or output process, the greedy method @ i

least one stationary policy contains two or more closed  generally not optimal since by maximizing the mutual
irreducible recurrent classes): It is possible but rather  jnformation for each state, the machine may be driven

R R Csyn . . . .

intricate to determindim sup === in this class. The to the states with low mutual information too frequently.
derivation is thus omitted. We just mention that in gen- ~ So the joint optimization (i.e., optimize the mutual
eral multichain model can be decomposed into several information for each state and the induced stationary
disjoint communicating model. distribution jointly) should be used.

Since (5) come from the converse coding theorem, it is anLet’s consider the following example (Fig. 4).
upper bound onC/¢. But actually (5) is achievable if our

model is in Classif. This follows from evaluating the general 15 (@) 1 ®
feedback capacity formula in [1]. 856{1‘1 is determined if our

model is in Classi}. It is interesting to see that in Clas§ ( X, S
, Csfld does not depend oxy. Actually this phenomenon can
be explained by an intuitive argument which is stated in the (T 1 e

following theorem.

Theorem 2:Let P denote the probability measure induced
by the initial stateS; = 4, the input policy # and the
conditional probability associated with the machine. het=
min{k : S, = j,k =1,2,...}. If there exists a input policy
under whichP7 (o < c0) = 1, thenC/* > C{“. (Note: this
theorem is not restricted to our machine model.) _ .

Proof: (Sketch) We can first drive the machine state from Let P(X) = 1|5y = 0) = p, then the equilibrium distri-
i to 7, which can be done within finite steps with probablitpution of {Si, k = 1,2,...} is (po, ) = (ﬁv ﬁ) and
one, and then use the optimal coding scheme designed thee induced transmission rateﬁgh(p) which is maximized

initial state j. As n — oo, such a strategy asymptoticallywhenp = p* = 3-V5 o, (.38 with corresponding value
5 .

achieves rateC;". Since this strategy is not necessarily 1.\ ~ (.69 bits per machine use. Nofe: < 1. The
. e 3 d d 1+p* . . . R
optimal for initial statei, we can conclude that/* > C/”. information rate induced by setting — 1is 2 (bits per

B machine use) which is less thart9 (bits per machine use).
The above theorem suggests that in general the transmission

scheme can be decomposed into two steps. Assﬂg‘ﬁ'e: I1l. TDMA MULTI-USER SYSTEM
ma‘;(ng and from anys € S, there exists an input policy

Jﬁder which the machine can be driven to stataising
finite steps with probability one (Note: by Theorem 2 this
assumption actually implies thaff,d = C'Sf,‘,i V', s" € S). | R
So if the initial state is nog, we can first drive the machine 2n1 w
to states and then use the optimal coding scheme designed R(YIX0S) | s vt 7
for the initial states. The advantage of doing this is that now f'_’ (S, X01S,) - 1
we only need to design a coding scheme for one initial state W t:2n t=Y‘2'n Decoder 2 | —
instead of developing different coding schemes for different ‘ W,
initial states. S.t=2n

Now let's return to (5) to get an intuitive feeling. It's
well-known [6, 7] that when the state process is ergodic and Fig. 5. Two-user system.

Pz(skA‘Sk:onk) PZ(Sku‘Sk:l’Xk)

vxe,seS$, RB(Y, =c|X, =x5, =s)=1, for some constant c

Fig. 4. Example.

In this section, we consider the model shown in Fig. 5.

S,t=2n-1




Two transmitter-receiver pairs share a finite-state machirMe pair( %) is also achievable. It is interesting to note that
via TDMA. Transmitteri wants to convey messagg; to Re- > m , 1.e., although only transmitting half of time, one of
ceiveri, i = 1,2. Wy and W, are assumed to be independenthe users can achieve the transmission rate higher than half of
Transmitter 1 can use the machine in the odd time slots whilee capacity of the single-user case, which is fundamentally
Transmitter 2 can use the machine in the even time slots. Eatifierent from (7). Of course, this is obtained by sacrificing
transmitter observes, in a causal way, the realization of ttiee transmission rate of the other user. Now a natural question
machine state process in its transmission slots. Receiver 1 tiget ask whether there exist some other rate pairs that are also
to recover messadé’; based on all the machine outputs in thechievable.
odd time slots and all the machine states upon the decodindet’s still consider the previous example. Suppose User 1
time. Receiver 2 tries to recover messafje based on all the chooses the policyr;(p): P(X, = 1|S, = 0) =p (k =
machine outputs in the even time slots and all the machinhe3,...) while User 2 chooses the policy:(q):P(Xx =
states upon the decoding time. Except through observing thé, = 0) = ¢ (kK = 2,4,...). Under m;(p) and
machine state realization in their transmission slot, Transmittes(q), the state proces§Sy}°, is in general a nonho-

1 and Transmitter 2 are not allowed to convene. So one daaegeneous Markov chain since the state transition matrix

not know beforehand what is the message that the other wapt et | Si) is Ti = L= 11 henk is odd and is
to transmit. Now the question is what are the rate pairs that D 0

these two users can achieve. Here we regard a transmltﬁer— 1-¢q 1 when k is even. But it's interesting to
receiver pair as a user. g O

This question is completely trivial when the machine stag€e that{Sa,—1};2, is alhomogeneous Markov chain with
process is ergodic and unaffected by the machine input a@gnsition matrixi,7, = | .7 +pg 1—gq and {55, 1%,

output processes. In that case, since there is no interference,h Mark Q(afp ith t i i, —
each user can achieve the half capacity of the single-u p homogeneous viarkov chain with transttion mair3> =

system but no more. So the capacity region is given by (s ep_(lp qu;q 1=p . Because matrix multiplication is not
Fig. 6) commutative, 71T, # T5T in general.{So;_1}52, is irre-
1 ducible wherp, ¢ # 1 and has a unique stationary distribution
R, <=C i=1,2, @) A 1-¢g g(1-p) 0 ig i i
2 (Ho- 1) = (1o =gy )-1526 172, is irreducible when
S| p,q # 1 and has a unique stationary distributitm;, /) =
where C' = Z Ls (mlax )I(X ;Y]S = s) is the feedback ( 1_qpp, p1(1 qq)) So the limiting average transmlssmn rate of
capacity of smgle user system. User 1 isi sHoh (p) (per machine use) while the limiting

average transmission rate of User %l'ysgh (¢) (per machine

R, use). This gives the following achievable rate pair:

11—g¢q 11-—p
c (21_qph(p),21_qph(Q)>
2

which is plotted in Fig. 7

R1 R,

2
Fig. 6. Capacity region for two-user TDMA system with no interference.

But when the state process can be affected by the input,
the above result does not hold anymore. Let's consider the
two-user system with the machine specified by Fig. 4. Since 0.5 0.69
when Sy, = 1, Si41 is always zero no matter what the input
is, we onIy need to Specify the input policies of User 1 and B9- 7. An achievable region for two-user TDMA system with interference

when Sy = 0. Suppose User 1 chooses the poligyP (X}, = .

019, = 0) = P(X = 1|S, =0) = L (k=1,3,...) while This exarr_\ple suggests that for the general case, the follow-
User 2 chooses the policy,:P(X; = 0|5, = 0) = 1 (k = ng rate region:

2,4,...). Clearly, underr; andmy, P(Sx =0,k =3,5,...) = (R, Ry)

1. So Transmitter 1 always faces the good state (i.e., state Oi 1, R2)
and can transmit 1 bit of information in each of its transmission .
slot while Transmitter 2 can not transmit any information at 0 = £ < ) Z“ivs(ﬁhm)lpw (Xk; Y, Spr1|Sk = 5)
all. So underr; and , the rate pair(3,0) is achievable. s=1 , oL

Since the role of User 1 and User 2 can be interchanged, the i=1,2, Vpy,pa} (8)

R1

S|



is achievable. Here Proof: It's easy to see thaf[ 7; > T™. SinceT is

1) 95 = (i1, Pi2s---sDi i = 1,2) with each entr _ _ =1
) ]t';eing g)blré)lt))gbility fné‘gls)ur(é ok ) Y strongly irreducible, every row of should have at least one

2) ft(Frs) = (s (h,pa) 12 (71, ), positive element. So we can scale every rowZoto make
AV B - 7, 1 ’ 1, 1
s (F1.72)) (i=1,2) is the stationary d|str|but|on it to be a transition matrix@’ in which the summation of the

of the Markov chain governed by the transition matri Iements.on every row is 1. C'ea_”?’ IS wredugblg V_V'th the
T T wh _ : same period a% and we haved™(i,j) =0 < T™(i,5) = 0.
(i mod 2)+113, whereT,,, (m =1,2) is an[S| x |S| . _ .
- o . Given ar x r real matrix M, we say a directed graph
matrix whose(i, j) entry is _ . : . S
G with r vertices is generated by/ if M(i,j) > 0 <
. _ there is a directed edge from vertéxto vertex j. So the
D Py(Ski1 = i1Xk =1,k = )pm (X =1) (9 graph generated by™ is identical to the graph generated

=1 ~ . ~ ~ .
by 7™. Since [[ T; > T™, the graph generated B§™ is a
3) Ip, . (Xy; Y, Sky1|Sk = s) is the mutual information y 11:[1 graph g uy

betweenX, and (Y, Sk+1) When the current state is  sypgraph of the one generated lﬂ' T;. Since the Markov

and the input distribution ip; ;.
But there are some technical problems since under certal
input policy, the Markov chain governed by the transitio
matrix 717, or T5T; may not be irreducible and it’s in genera

not easy to check. Here we give a sufficient condition undgf |rected raph generated by its transition matrix, we can sa
which the Markov chain governed by the finite product o graph 9 y y

at directed graph is irreducible if its associated Markov chain
transition matrix is always irreducible no matter what the inpu h di d h ducible if
distribution is. iS. It's easy to see that a directed graph is irreducible if it

Definition 3 (Strong irreducibility): Let contains an irreducible subgraph whose vertex set is same

|X]

chaln governed by the transition mattB( is irreducible with
Plriod d and GCD (m,d) = 1, the Markov chain governed

by the transition matrix7™ is also reducible. Since the

irreducibility of a Markov chain is fully determined by the

as the original graph. Hence, the graph generatedﬁ)gfi

L . =1 .
T(i,j) _ min (Spsr = §|1 X =1, Sp = 4) is irreducible and We_ (.:an cong[yde _thgt the .Markov chain
le{1,2,...| X[} governed by the transition matrik] 7; is irreducible. u
. . . =1
We say there exists a directed edge from siate state; Corollary 1: For any positive Zintegem, any input distri-

if T(i,5) > 0. We say a Markov chaifSy,k = 1,2,...} is

strongly irreducible if for any two statésand; (i can be equal The Mark hai d by th "
toj), there exists a directed path frano j. For simplicity, we e Markov chain governed by the transition mat;j}l T

just sayT', the|S| x |S| matrix whose(i, j) entry isT(i, ), is s irreducible and aperiodic if" is strongly irreducible and

strongly irreducible, sincé’ contains all the information that strongly aperiodic.

determines whether the Markov chafisy, k = 1,2,...} is Proof: SinceT is a periodic, by Definition 4, we have

strongly irreducible or not. d = 1. The “irreducible” part in the corollary now follows by
Definition 4 (Strong aperiodicity)Where the “length” of & Theorem 3 sincezCD (m,d) = GCD (m,1) = 1. For the

path is the number of edges comprising the pathPlebe the «aperiodic” part, observe thaf is s strongly aperiodic=> 7 is
set of lengths of all the possible closed paths from state

bution pi, pa, ..., pm, defineT;, ¢ = 1,2,...,m as in (9).
m

statei. Let d; be the greatest common divisor &f;. d; is aperiodic=- T™ is aperiodic=- H T; is aperiodic. u

called the period of state By Theorem 3, (8) can be generahzed to m-user case.
The following result says that period is a class property. Although the analysis in this section is rather heuristic, it
Lemma 1:If the Markov chain {Sy,k = 1,2,...} is can be converted into a rigorous random coding argument.

strongly irreducible, them,; = d; for any: andj. (See [4].) Furthermore, since the capacity regioiis convex and closed,
So for a strongly irreducible Markov chaifSy,k = we have

1,2,...}, all the states have the same period, which we shall

by d. We say a strongly irreducible Markov chaftsy, k = C= () {(R1,R2): ARy + (1= \)Ry < 55}

1,2,...}is strongly aperiodic il = 1. For simplicity, we just 0sA<l

say thatT is strongly irreducible and strongly aperiodic. whereX, = max AR + (1 — \)Ro.
Definition 5: For any two matricesA = (a;;) € (R1,R2)€C

R™M B = (b;) € R™*", we sayA > B if a;; > by Y, can be computed.in a way similar to that in Theorem 1.1t
for all # and ;. turns out that the achievable rate region given by (8) is exactly

Theorem 3:For any positive integem, and input distribu- the capacity region. See [8] for the details.
tion 71, s Do, defineTy, i = 1,2 m as in (9). IfT is From the above analysis, we can see that the procedure to

strongly irreducible with period and GCD (m, d) = 1, then find the capacity region, especially to find the boundary of the

he Mark hai d by th . . capacity region, is same as those standard procedures in the
the Markov chain governed by the transition mati@;T’? IS" stochastic game theory. Actually our problem can be converted

irreducible. into the following form:



In a stochastic game with two players, where the rewamh the boundary of the capacity region and one user adheres
function is the sum of weighted long term directed mututd the contract. But the other user may secretly break the
information of each player, what kind of input policies shouldontract and design a coding scheme which can support a
these two players choose in order to maximize the rewandnsmission rate higher than his current one. This action may
function? hurt the communication performance of the user who adheres

In the above, we assume that two users will cooperate sirtoghe contract. However, if the agreement is made at the Nash-
they have a single objective. A natural question is to ask if tieguilibrium rate pair, then the user that adheres to the contract
individual users have objectives that are in conflict with eaaton’t need to worry since the other user is not able to increase
other, e.g. each user only cares about the transmission fEiszcommunication rate by breaking the contract and thus will
of himself, whether they will still cooperate. The answer isot have the incentive to do so. Note also that we assume both
“Yes". The rigorous analysis is omitted due to the page counsers are selfish but not evil, i.e., the objective of each user
constraint. Interested readers could see [8] for the details.ifAto maximize his own transmission rate, not to deprive the
similar problem in the setting of the Gaussian multiaccesgnsmission rate of the other.
channel is addressed in [9].

We can also address the problem from the viewpoint of non- IV. CoNcLUSION
cooperative game theory. For simplicity, here we only discuss aOur model requires that both transmitter and receiver know
simple example. The conclusion actually holds for much motee state information, which seems unrealistic for most of real
general setting. Again let's consider the two-user system wig@mmunication systems. But in some biological systems, this
the machine specified by Fig.4. We know that if User 1 choosagsumption can be justified. See Fig. 9
the policy m:P(Xy = 1S, =0) =p (k=1,3,...) and

User 2 chooses the policy,: P(Xy, = 1|S;, = 0) = ¢ (k =
i i iri X, Channel o
2,4,...), then the corresponding achievable rate pair is | R Pes) Y e
11—g¢q 11—-p
- h - h
(31=2h0) 37— (0) AT
By Brower’s fixed point theorem, there exigi$ and ¢* such , o o
that Fig. 9. A communication model for a biological system
1- q* * 1 - q}k
21— ¢ pr ®) = max 57— q*ph(P) The main feature of Fig. 9 is that both the encoder and
. . decoder are inside the machine. In such a case, the state of
1 1-p (¢*) = max {1 1-p (q)} the machine is not only the state of the channel between the
21—q*p* a (21—qp* encoder and the decoder, but also the state of the encoder and

Here the policy pair(p*,¢*) may not be unique. For eachdecoder themselves. We can imagine that when such a system
p* and¢*, the associated rate pair is a Nash equilibrium fd¢ well-designed, which is fulfilled by evolution and natural
rate allocation. By numerical method, we can get that for o§election for biological system, the encoder and the decoder
example, there are two solutions: = ¢* = 1 andp* = ¢* = C€an be matched to the channel between them.

0.696. The resulting rate pairs argR; = 0,R; = 0) and

. . REFERENCES

(R} = 0.261, R = 0.261) respectively. See Fig. 8.

[1] S.C. Tatikonda, “Control Under Communication Constraints,” PhD dis-
sertation, MIT, 2000.

[2] T. Berger, “Living information theory,”Shannon LectureLausanne,
Switzerland, 2002.

[3] Y. Ying and T. Berger, “Capacity of binary feedback channels with unit

R>

0.5 Nash Equilibrium memory at the output,” submitted t&EE Trans. Inform. Theory2003.
— q [4] J. Chen and T. Berger, “The capacity of finite-state channels with
feedback,” submitted t¢eEEE Trans. Inform. Theory2003.
‘ [5] M. L. Puterman,Markov Decision ProcessedViley Inter-science, 1994.
Ry [6] J. Wolfowitz, Coding Theorems of Information Theo®erlin, Prentice-
©0 05 Hall, 1961.

[7] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with
channel side informationJEEE Tran. Inform.Theoryvol. 43, pp.1986-
1992, Nov. 1997.

J. Chen, P. Suksompong and T. Berger, “How to share a Markov

Fig. 8. Nash equilibrium in the capacity region.

The operational meaning of the Nash-equilibrium rate pa{ﬁ]
and the corresponding coding scheme is that: [9]

If one user adheres to the current coding scheme, then
it's impossible for the other user to achieve the reliable
communication at a rate higher than that supported by the
current coding scheme.

This is important in the interference communication sce-

machine?,” Preprint.

R. J. La and V. Anantharam, “A game-theoretic look at the Gaussian
multiaccess channelTo appear in the proceedings of the March 2003
DIMACS workshop on Network Information Theory

nario. Suppose two users agree to communicate at a rate pair



