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A Maximin Optimal Online Power Control Policy
for Energy Harvesting Communications

Shengtian Yang , Senior Member, IEEE, and Jun Chen , Senior Member, IEEE

Abstract— A general theory of online power control for
discrete-time battery limited energy harvesting communications
is developed, which leads to, among other things, an explicit
characterization of a maximin optimal policy. This policy only
requires the knowledge of the (effective) mean of the energy
arrival process and maximizes the minimum asymptotic expected
average reward (with the minimization taken over all energy
arrival distributions of a given (effective) mean). Moreover, it is
universally near optimal and has a strictly better worst-case
performance as well as a strictly improved lower multiplicative
factor in comparison with the fixed fraction policy proposed
by Shaviv and Özgür when the objective is to maximize the
throughput over an additive white Gaussian noise channel.
The competitiveness of this maximin optimal policy is also
demonstrated via numerical examples.

Index Terms— Energy harvesting, maximin optimal, online
policy, power control, saddle point, worst-case performance.

I. INTRODUCTION

RECENT advances in energy harvesting technologies have
enabled the development of self-sustainable wireless

communication systems that are powered by renewable energy
sources in the environment. An important research topic of
energy harvesting communications is to design power control
policies that maximize throughput or other rewards under ran-
dom energy availability (see, e.g., [1]–[17]). Although offline
power control is by far well investigated, our understanding
of online power control remains quite limited. This situation
can be largely attributed to the technical differences between
these two control problems. For offline power control, since
the realization of the whole energy arrival process is known
in advance, the underlying distribution is irrelevant as far as
policy design is concerned and it enters the picture only in the
evaluation of the expected reward, where different realizations
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need to be weighted according to their respective probabilities.
In contrast, for online power control, one has to take into
account the distribution of the energy arrival process due to
the uncertainty of future energy arrivals. Indeed, this fact can
also be seen from the implicit characterization of the optimal
online power control policy based on the Bellman equation,
which invovles the energy arrival distribution in an essential
way. Due to its distribution-dependent nature, the Bellman
equation is often very difficult to solve exactly. To the best of
our knowledge, the general analytical solution to the Bellman
equation has only been found in the low battery-capacity
regime where the greedy policy is shown to be optimal [17].
Even in that case, the so-called low battery-capacity regime
varies from one energy arrival distribution to another. More
generally, for any nondegenerate reward function, there is no
online power control policy that is universally optimal for all
energy arrival distributions, which should be contrasted with
offline power control where universality comes for free in
light of the aforementioned reason. It is worth mentioning that
the requirement of precise knowledge of the energy arrival
distribution not only complicates the characterization of the
optimal online power control policy, but also, in a certain
sense, diminishes the importance of such policy since the
needed knowledge is typically not available in practice.

Fortunately, as demonstrated by Shaviv and Özgür in their
remarkable work [14], it is possible to break the deadlock
by weakening the notions of optimality and universality.
Specifically, they proposed a fixed fraction policy, which
only requires the knowledge of the (effective) mean of the
energy arrival process, and established its universal near-
optimality in terms of the achievable throughput over an
additive white Gaussian noise (AWGN) channel (see also [15]
for an extended version of this result for more general
reward functions). At the heart of their argument is a worst-
case performance analysis of the fixed fraction policy, which
shows that among all energy arrival processes of the same
(effective) mean, the Bernoulli process induces the minimum
throughput for the fixed fraction policy; the aforementioned
near-optimality result then follows directly from the fact that
this minimum throughput is within both constant additive
and multiplicative gaps from a simple universal upper bound.
Their finding naturally raises the question of whether it is
possible to find an online power control policy with improved
worst-case performance as compared to the fixed fraction
policy or, better still, a policy with the best worst-case per-
formance. In this work, we provide an affirmative answer to
this question by constructing an online power control policy
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that is maximin optimal in the following sense: this policy
achieves the maximum asymptotic expected average reward
for the Bernoulli energy arrival process of any (effective)
mean while among all energy arrival processes of the same
(effective) mean, the Bernoulli process induces the minimum
asymptotic expected average reward for this policy. To this
end, two major obstacles need to be overcome. First of all,
the optimal online power control policy for the Bernoulli
energy arrival process of a given (effective) mean is uniquely
defined only for some discrete battery energy levels; however,
under the maximin formulation, it is essential to extend the
support of this policy to cover all possible battery energy
levels, and a judicious construction is needed to ensure that
the interpolated policy has desired properties and at the same
time is amenable to analysis. The second obstacle lies in the
worst-case performance analysis of the interpolated policy.
In contrast to the fixed fraction policy for which some basic
convexity/concavity argument suffices due to its linearity,
the interpolated policy requires more delicate reasoning for
establishing Bernoulli arrivals as the least favorable form
of energy arrivals. It will be seen that these two obstacles
are intertwined, and we will address them by developing
a maximin theory based on detailed investigations of some
general families of online power control policies. From a
mathematical perspective, our work can also be viewed as
saddle-point analysis in a functional space. Note that even for
finite-dimensional minimax/maximin games, one often relies
on fixed-point theorems to prove the existence of saddle-point
solutions. It is thus somewhat surprising that the saddle-point
solution of the specific functional game under consideration
admits an explicit characterization. In this sense, our work is
of inherent theoretical interest.

The rest of this paper is organized as follows. In Sec. II,
we formulate the problem and introduce the main results
of this paper. A maximin theory of online power control
for discrete-time battery limited energy harvesting commu-
nications is developed in Sec. III; this theory leads to an
explicit characterization of a maximin optimal policy, which is
shown to be universally near optimal and have a strictly better
worst-case performance as well as a strictly improved lower
multiplicative factor in comparison with the fixed fraction
policy when the objective is to maximize the throughput over
an AWGN channel. We conclude the paper in Sec. IV. The
proofs of Theorem 3 and most propositions, as well as some
auxiliary results, are given in the appendices.

Throughout the paper, the base of the logarithm function
is e. The maximum and the minimum of a and b are denoted
by a ∨ b and a ∧ b, respectively. The Borel σ-field generated
by the topology on a metric space S is denoted by B(S). The
n-fold product measure of a probability measure Q is denoted
by Q⊗n. The n-fold composition of a function f : A → A for
some subset A of R is denoted by f (n) with the convention
f (0)(x) = x. An empty sum and an empty product are defined
to be 0 and 1, respectively.

II. PROBLEM FORMULATION AND MAIN RESULTS

Consider a discrete-time energy harvesting communication
system equipped with a battery of capacity c > 0. We denote

by x∞ = (xt)∞t=1 the amount of energy harvested at time
t = 1, 2, 3, . . .. An online power control policy π∞ = (πt)∞t=1

is a family of mappings specifying the energy ut = πt(xt)
consumed in time slot t based on xt = (x1, x2, . . . , xt). Let
bt− and bt denote the amounts of energy stored in the battery
at the beginning of time slot t before and after the arrival of
energy xt, respectively. They satisfy

bt = (bt− + xt) ∧ c, (1a)

b(t+1)− = bt − ut. (1b)

It is assumed that b1− = 0.
A policy π∞ is said to be admissible if

ut ≤ bt for all x∞ ∈ R
∞
≥0 and all t ≥ 1.

The collection of all admissible policies is denoted by Π. For
π∞ ∈ Π, if πt depends on xt only through bt and is time
invariant, we say π∞ is stationary and identify it by a mapping
σ : [0, c] → [0, c] satisfying σ(x) ≤ x for all x ∈ [0, c] such
that π∞ = (σ ◦ bt)∞t=1, where bt is understood as a function
of xt by (1). The set of all (admissible) stationary policies is
denoted by Σ. In the sequel, when we write a stationary policy
σ ∈ Σ, it may be understood as a mapping σ : [0, c] → [0, c],
a policy (σ ◦ bt)∞t=1, or a partial policy (σ ◦ bt)n

t=m, and so
on, by the context.

The energy ut is consumed to perform some task in time
slot t, from which a reward r(ut) is obtained.

Definition 1: A reward function r is a nondecreasing, Lip-
schitz, and concave function from [0, +∞) to [0, +∞) with
r(0) = 0.

Definition 2: A reward function r is said to be regular if it
is strictly concave and differentiable and the function

κs(x) := r′−1(sr′(x)), x ∈ [τs, +∞),

is convex for all s > 1 (satisfying sr′(+∞) < r′(0), which is
in fact unnecessary because r′(+∞) = 0 by Proposition 5),
where

τs := κ1/s(0) = r′−1

(
r′(0)

s

)
∈ (0, +∞).

One example of interest is the throughput over an AWGN
channel. In this case, the reward r(ut) is the information rate
in time slot t given by

r(ut) :=
1
2

ln(1 + γut) (nats) (2)

with γ being the channel coefficient.
Thus the (m, n)-horizon total reward of partial policy πn

m =
(πt)n

t=m with respect to energy arrivals xn and the initial
battery energy level bm− is

Rn
m(πn

m, xn, bm−) :=
n∑

t=m

r(ut),

where m ≤ n, π ∈ Π, and ut = πt(xt) ≤ bt, with bt− and
bt satisfying (1). The corresponding n-horizon average reward
is

Tn(πn, xn) :=
1
n

Rn
1 (πn, xn, 0).
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Suppose now that the energy harvested at each time t is
a random variable Xt, and consequently the whole sequence
X∞ = (Xt)∞t=1 of energy arrivals forms a random process.
Correspondingly, the energy variables ut, bt− , and bt become
the random variables Ut, Bt− , and Bt, respectively. The
asymptotic expected average reward of policy π∞ with respect
to energy arrivals X∞ is defined as

T (π∞, X∞) := lim inf
n→∞ E Tn(πn, Xn).

Since it depends only on the (probability) distribution of X∞,
we can also write PX∞ in place of X∞. For example, we may
write T (π∞, Q⊗∞), where Q⊗∞ denotes the distribution of
an i.i.d. process with marginal distribution Q.

We are interested in characterizing online power control
policies that maximize the asymptotic expected average reward
in the worst case of a given family of energy arrival distribu-
tions. To this end, we introduce a maximin formulation.

Definition 3: The mean-to-capacity ratio (MCR) of a prob-
ability measure Q on (R≥0,B(R≥0)) is defined by

MCR(Q) :=
μc(Q)

c
,

where μc(Q) :=
∫
(x ∧ c)dQ is the (effective) mean of Q.

Definition 4: Let Qc,p consist of all probability measures
Q on ([0, c],B([0, c])) with MCR(Q) = p, where p ∈ (0, 1).
An online power control policy π̂∞ is said to be maximin
optimal for Qc,p if

inf
Q∈Qc,p

T (π̂∞, Q⊗∞) = sup
π∞∈Π

inf
Q∈Qc,p

T (π∞, Q⊗∞).

The main result of this paper is summarized as follows.
Theorem 1 (Theorems 5, 6 and Proposition 7): If the

reward function r is regular, then the stationary policy

ω(x) = η−1(x)

is maximin optimal for Qc,p and its associated least favorable
distribution is Bernoulli (see (4)), where

η(x) :=
M(x)∑
i=1

κ1/(1−p)i−1(x) =
M̃(x)∑
i=1

κ1/(1−p)i−1(x),

and

M(x) :=
⌈

ln(r′(x)/r′(0))
ln(1 − p)

⌉
,

M̃(x) :=
⌊

ln(r′(x)/r′(0))
ln(1 − p)

⌋
+ 1.

In particular, if r is given by (2), then

ωawgn(x) =
1
γ

[
p(γx + M̃)

1 − (1 − p)M̃
− 1

]

is maximin optimal, where M̃ is the least integer satisfying

[1 + p(γx + M̃)](1 − p)M̃ < 1.

III. A MAXIMIN THEORY OF ONLINE POWER CONTROL

FOR ENERGY HARVESTING COMMUNICATIONS

In order to find the maximin optimal online power control
policy, we adopt the following approach:

1) Find a distribution Q̂ that is the least favorable one
in Qc,p when a policy in some special subset N of Π or
Σ is employed.

2) Construct a policy that is optimal for Q̂ and is an element
of N .

The rationale underlying this approach is best explained by
the following fact.

Proposition 1: Let π̂∞ ∈ Π. If there is a distribution
Q̂ ∈ Qc,p such that

T (π̂∞, Q̂⊗∞) = max
π∞∈Π

T (π∞, Q̂⊗∞)

= min
Q∈Qc,p

T (π̂∞, Q⊗∞),

then π̂∞ is maximin optimal.
Proof: For any π∞,

inf
Q∈Qc,p

T (π∞, Q⊗∞) ≤ T (π∞, Q̂⊗∞)

≤ max
π∞∈Π

T (π∞, Q̂⊗∞)

= min
Q∈Qc,p

T (π̂∞, Q⊗∞).

So π̂∞ is maximin optimal. �

A. Normal Stationary Policies and the Least Favorable
Distribution

In this subsection, we will study a special family N of
policies called normal (stationary) policies. We will show that,
for any σ ∈ N , the Bernoulli distribution is the least favorable
one in Qc,p as long as p is not below a certain threshold
depending on σ.

Definition 5: For each (stationary) policy σ ∈ Σ, let σ̄ be
its associated policy induced by the complement operation:

σ̄(x) := x − σ(x).

Note that ¯̄σ = σ.
Policy σ̄ may be called a (stationary) reserve policy because

it specifies the amount of energy reserved for future use.
Definition 6: A policy σ ∈ Σ is said to be normal if it is

nondecreasing and concave. The set of all normal policies is
denoted by N .

Proposition 2: A normal policy σ ∈ N satisfies:
1) σ(0) = σ̄(0) = 0.
2) σ̄ is nondecreasing and convex on [0, c].
3) Both σ and σ̄ are Lipschitz on [0, c].
4) Both σ and σ̄ are differentiable at all but at most count-

able points of (0, c), and σ′ and σ̄′ are nonincreasing
and nondecreasing, respectively, on their domains of
definition. Moreover, both σ′(x) and σ̄′(x) are between
0 and 1 whenever they exist.

The proof of Proposition 2 is given in Appendix A.
The next theorem shows that the Bernoulli distribution is

the least favorable one for normal policies under certain mild
conditions.
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Theorem 2: For a normal policy σ ∈ N , if

r′(σ(x)) ≥ (1 − p)r′(σ(σ̄(x))) (3)

for almost every x ∈ [0, c], then

EXn∼B̃⊗n
p

Rn
1 (σ, Xn, x) ≤ EXn∼Q⊗n Rn

1 (σ, Xn, x)

for all Q ∈ Qc,p and x ∈ [0, c], where

B̃p := (1 − p)δ0 + pδc, (4)

and

δx(A) :=

{
1, if x ∈ A,

0, otherwise.
(5)

Proof: Let Xn and X̂n be two random sequences of
energy arrivals such that PXn = Q⊗n and PX̂n = B̃⊗n

p ,
respectively. Let

ft(x) = E Rn
t (σ, Xn

t , x)

and

gt(x) = E Rn
t (σ, X̂n

t , x),

where Xn
t = (Xi)n

i=t, X̂n
t = (X̂i)n

i=t, x ∈ [0, c], and
t = 1, 2, . . . , n.

Note that σ and r are both nondecreasing, concave, and
Lipschitz (Definitions 1 and 6 and Proposition 2). Let

χ(x, y) = (x + y) ∧ c,

where x, y ≥ 0. It is clear that χ is concave in x for fixed y.
Recall that, for any concave functions f and g, f(g(x)) is
concave if f is nondecreasing ([18, p. 84]). So a function
such as r(σ(χ(x, y))) is concave in x for fixed y.

Now we will show that gt(x) ≤ ft(x) for all 1 ≤ t ≤ n.
Note that

fn(x) = E r(σ(χ(Xn, x)))
≥ E r(σ(χ(X̂n, x))) ([14, Lemma 2])
= gn(x)
= (1 − p)r(σ(x)) + pr(σ(c)),

and

g′n(x) = (1 − p)r′(σ(x))σ′(x) a.e.;

moreover,

g′n(σ̄(x)) = (1 − p)r′(σ(σ̄(x)))σ′(σ̄(x))
≤ r′(σ(x))σ′(σ̄(x)) (Eq. (3))

≤ r′(σ(x)) a.e. (Proposition 2),

and gn(x) is nondecreasing, Lipschitz, and concave on [0, c].
We proceed by induction on t in the reverse order. Suppose

that

ft(x) ≥ gt(x), (6a)

g′t(σ̄(x)) ≤ r′(σ(x)) a.e., (6b)

and gt(x) is nondecreasing, Lipschitz, and concave on [0, c].
It follows that

ft−1(x) ≥ E h(χ(Xt−1, x)) (Eq. (6a))

≥ E h(χ(X̂t−1, x)) ([14, Lemma 2])

= gt−1(x)
= (1 − p)h(x) + ph(c)

and

g′t−1(x) ≤ (1 − p)r′(σ(x)) a.e. (Lemma 1 with (6b)),

which, together with Eq. (3), implies

g′t−1(σ̄(x)) ≤ r′(σ(x)) a.e.,

where

h(x) = r(σ(x)) + gt(σ̄(x))

is nondecreasing, Lipschitz, and concave on [0, c] (Lemma 1
with (6b)), and so is gt−1(x). Therefore, gt(x) ≤ ft(x) for
all t, and in particular for t = 1. �

Remark 1: In essence, condition (3) compares the marginal
utilities of two energy consumptions specified by policy σ: one
in the current time slot and the other in the next time slot if
there is no new energy arrival, assuming that the distribution
of energy arrivals is Bernoulli. The marginal utilities of these
two energy consumptions are

r′(σ(x)) and (1 − p)r′(σ(σ̄(x))),

respectively. When condition (3) is met, σ can be considered,
in a certain sense, non-greedy for Qc,p.

Motivated by this observation, we introduce the following
definitions.

Definition 7: A universal stationary policy σ is a mapping
from R≥0 to R≥0 satisfying σ(x) ≤ x. The set of all universal
stationary policy is denoted by Σ∞. A universal stationary
policy σ ∈ Σ∞ is said to be normal if it is nondecreasing and
concave. The set of all universal normal (stationary) policies
is denoted by N∞.

Note that any universal stationary policy σ can be regarded
as a stationary policy in Σ by considering its restriction
on [0, c].

Definition 8: The greed index ιc(σ) of a stationary policy
σ ∈ Σ is defined by

ιc(σ) := 1 − ess inf
0≤x≤c

r′(σ(x))
r′(σ(σ̄(x)))

.

The universal greed index ι(σ) of a universal stationary policy
σ ∈ Σ∞ is defined by

ι(σ) := 1 − ess inf
x≥0

r′(σ(x))
r′(σ(σ̄(x)))

.

Remark 2: Theorem 2 only provides a sufficient condition,
so it does not cover all possible policies for which the least
favorable distribution is Bernoulli (e.g., the greedy policy
σ(x) = x for sufficiently large c but fixed p). However, since
condition (3) coincides in part with the optimality condition
for the Bernoulli distribution (see (21) with α1 = σ(x) and
α2 = σ(σ̄(x))), any policy completely violating (3) cannot be
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an optimal policy for the Bernoulli distribution, and hence is
not maximin optimal even if its least favorable distribution is
Bernoulli.

We end this subsection with some properties of the greed
index and the universal greed index. Their proofs are simple
and hence left to the reader.

Proposition 3: Let σ ∈ Σ.

1) ιc(σ) ∈ [0, 1].
2) If ιc(σ) ≤ p, then σ satisfies (3).

Proposition 4: Let σ ∈ Σ∞.

1) ι(σ) ∈ [0, 1].
2) ιc(σ) is nondecreasing in c, and limc→+∞ ιc(σ) = ι(σ).
3) If ι(σ) ≤ p, then σ satisfies (3).

By Proposition 3, Theorem 2 can be restated as follows: If
a normal policy σ satisfies ιc(σ) ≤ p, then its least favorable
distribution in Qc,p is Bernoulli.

B. An Optimal Policy for Bernoulli Energy Arrivals

In this subsection, we will construct an optimal policy
for Bernoulli energy arrivals that is normal and satisfies
ιc(σ) ≤ p, and consequently is maximin optimal. In order to
achieve this goal, the reward function is required to be regular
(Definition 2). This property further implies the following fact.

Proposition 5: A regular reward function r is strictly
increasing and continuously differentiable. Its derivative r′ is
strictly decreasing and satisfies r′(+∞) = 0.

Sketch of Proof: Use [19, Th. 1.5] and Proposition 9. �
From now on, we will assume that r is regular. Under this

assumption, we can construct an explicit optimal stationary
policy for Bernoulli energy arrivals.

Definition 9: For any universal stationary policy σ para-
metrized by p, the asymptotic expected average reward
T (σ, B̃⊗∞

p ) of σ with respect to the Bernoulli energy arrival
distribution B̃p is a function of capacity c and MCR p, which
is denoted by Tσ(c, p), or more succinctly, Tσ(c), when p is
fixed and is clear from the context.

Theorem 3 (cf. [14, Th. 1] and [15, Sec. II-A]): A station-
ary policy ω is optimal for i.i.d. energy arrivals with the
Bernoulli distribution B̃p iff it satisfies

x =
M(ω(x))∑

i=1

κ1/(1−p)i−1(ω(x)) (7)

for all

x ∈ C :=
{
ω̄(i)(c) : 0 ≤ i ≤ M(ω(c))

}
, (8)

where

M(y) :=
⌈

ln(r′(y)/r′(0))
ln(1 − p)

⌉
. (9)

The proof of Theorem 3 is presented in Appendix A. From
the proof of Theorem 3, we can see that the value of ω(x)
for x /∈ C has no impact on the asymptotic expected average
reward for Bernoulli arrivals. However, this is not necessarily
the case for other energy arrival distributions. To construct a
universal stationary policy with maximin optimal performance,
we consider the natural extension of (7) from C to R≥0.

The resulting policy ω is analyzed with the aid of the following
functions.

Definition 10: The extension κ̄s of κs is defined by

κ̄s(x) := κs(x ∨ τs) =

{
κs(x), x ≥ τs,

0, 0 ≤ x < τs,

where s > 1.
Definition 11: Let

ηs(x) :=
∞∑

i=1

κ̄(i−1)
s (x),

where κ̄
(i)
s denotes the i-fold composition of κ̄s with the

convention κ̄
(0)
s (x) = x.

The following propositions summarize some important
properties of κ̄s and ηs.

Proposition 6: The function κ̄s has the following
properties:

1) 0 ≤ κ̄s(x) < x for x > 0.
2) κ̄s is continuous, nondecreasing, and convex.
3) κ̄

(i)
s (x) = κsi(x ∨ τ

(i)
s ), where i ≥ 0 and τ

(i)
s :=

κs−i(0).
4) The least nonnegative integer i such that κ̄

(i)
s (x) = 0 is

Ms(x) :=
⌈

ln(r′(0)/r′(x))
ln s

⌉
,

which is a generalization of (9) (the latter corresponds
to the special case s = 1/(1 − p)).

Proposition 7: The function ηs is continuous, strictly
increasing, and convex, and ηs(x) =

∑N
i=1 κ̄

(i−1)
s (x) for all

N ≥ Ms(x). In particular,

ηs(x) =
Ms(x)∑
i=1

κsi−1(x) =
M̃s(x)∑

i=1

κsi−1(x),

where

M̃s(x) :=
⌊

ln(r′(0)/r′(x))
ln s

⌋
+ 1.

The proofs of Propositions 6 and 7 are given in
Appendix A. A straightforward consequence of these prop-
erties is the next theorem, which shows that ω is normal and
ι(ω) = p.

Theorem 4: The stationary policy ω(x) = η−1
1/(1−p)(x) has

the following properties:

1) Policy ω is strictly increasing, concave, and conse-
quently normal.

2)

ω(ω̄(i−1)(x)) = κ̄
(i−1)
1/(1−p)(ω(x))

=

{
κ1/(1−p)i−1(ω(x)), if i≤M(ω(x)),
0, otherwise.

3) ι(ω) = p.

Proof: 1) It is clear that x = η1/(1−p)(ω(x)) (Theorem 3
and Proposition 7), which implies ω(x) = η−1

1/(1−p)(x) due
to the invertibility of η1/(1−p) (Proposition 7). Moreover, ω
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is strictly increasing and concave (Propositions 7 and 10).
Therefore, ω is normal.

2) Since x = η1/(1−p)(ω(x)),

ω̄(x) =
∞∑

i=2

κ̄
(i−1)
1/(1−p)(ω(x))

=
∞∑

i=1

κ̄
(i−1)
1/(1−p)(κ̄1/(1−p)(ω(x)))

= η1/(1−p)(κ̄1/(1−p)(ω(x)))

= ω−1(κ̄1/(1−p)(ω(x))),

which implies that ω(ω̄(x)) = κ̄1/(1−p)(ω(x)). Repeat-
edly applying this identity, we have ω(ω̄(i−1)(x)) =
κ̄

(i−1)
1/(1−p)(ω(x)), which is zero if i > M1/(1−p)(ω(x))

(Proposition 6).
3) It is clear that

r′(ω(ω̄(x))) =
r′(ω(x) ∨ τ1/(1−p))

1 − p
(Property (2)).

We have

inf
x≥0

r′(ω(x))
r′(ω(ω̄(x)))

= (1 − p) inf
x≥0

r′(ω(x))
r′(ω(x) ∨ τ1/(1−p))

= 1 − p,

and therefore ι(ω) = p. �
From Theorems 2, 3, and 4 and Proposition 1, it then follows

that ω is maximin optimal.
Theorem 5: Suppose that r is regular. The stationary policy

ω(x) = η−1
1/(1−p)(x) is maximin optimal for Qc,p and

inf
Q∈Qc,p

T (ω, Q⊗∞) = Tω(c) := T (ω, B̃⊗∞
p ),

where B̃p is the Bernoulli distribution defined by (4).
In particular, for the special reward function given by (2),

we have the following maximin optimal policy.
Theorem 6 (cf. [14, Th. 1]): Suppose that r is given by (2).

The policy

ωawgn(x) =
1
γ

[
p(γx + M̃)

1 − (1 − p)M̃
− 1

]
(10)

is maximin optimal, where M̃ is the least integer satisfying

[1 + p(γx + M̃)](1 − p)M̃ < 1.

Proof: With no loss of generality, we assume γ = 1. Note
that

r′(x) =
1

2(1 + x)
,

and

r′−1(x) =
1
2x

− 1 for x ∈
(

0,
1
2

)
.

We have

κs(x) = r′−1(sr′(x)) =
1 + x

s
− 1 for x ∈ (τs, +∞),

and consequently

κ̄s(x) =

⎧⎨
⎩

1 + x

s
− 1, x ≥ τs,

0, 0 ≤ x < τs,

where τs = s − 1. It is easy to see that r is regular.
In light of Theorem 5, the online power control policy

ωawgn(x) = η−1
1/(1−p)(x)

is maximin optimal. Note that

η1/(1−p)(x) =
M̃(x)∑
i=1

[
(1 + x)(1 − p)i−1 − 1

]

= (1 + x)
1 − (1 − p)M̃(x)

p
− M̃(x)

with

M̃(x) =
⌊
− ln(1 + x)

ln(1 − p)

⌋
+ 1 > − ln(1 + x)

ln(1 − p)
.

Thus

ωawgn(x) =
p(x + M̃)

1 − (1 − p)M̃
− 1,

where M̃ is the least integer satisfying

[1 + p(x + M̃)](1 − p)M̃ < 1.

By replacing x and ωawgn(x) with γx and γωawgn(x), respec-
tively, we get (10) for a general γ. �

By Proposition 6, it is easy to see that ωawgn is a piecewise
linear function, with the endpoints of line segments given by

Ek =
1
γ

(η1/(1−p)(τ
(k)
1/(1−p)), τ

(k)
1/(1−p))

=
1
γ

(
(1 − p)−k − 1

p
− k, (1 − p)−k − 1

)
(11)

for k ≥ 0. Policy ωawgn is plotted in Fig. 1 for γ = 1 and
p = 0.1, 0.5. For comparison, the fixed fraction policy

ϕ(x) := px (12)

and the greedy policy σ(x) = x are also plotted in Fig. 1. It
is observed from (11) and Fig. 1 that ωawgn(x) coincides with
σ(x) when x ≤ p/(1−p). It is also observed that ωawgn(x) =
ϕ(x) + O(lnx) as x → ∞.

C. Maximin Optimal Policy Versus Fixed Fraction Policy

In general, a maximin optimal policy does not necessarily
perform well for all distributions in Qc,p. But in the case
where the reward function is given by (2), there exists a certain
performance guarantee as shown in the sequel.

Definition 12: The additive gap G(π∞, Q) and the multi-
plicative factor F (π∞, Q) of π∞ ∈ Π for distribution Q are
defined respectively as

G(π∞, Q) := sup
π̂∞

T (π̂∞, Q⊗∞) − T (π∞, Q⊗∞),

F (π∞, Q) :=
T (π∞, Q⊗∞)

supπ̂∞ T (π̂∞, Q⊗∞)
.
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Fig. 1. Plots of the maximin optimal policy ωawgn(x) (for γ = 1), the fixed fraction policy ϕ(x), and the greedy policy σ(x) = x.

When π∞ is parametrized by (c, p) (and is written as
π∞

c,p, or simply π∞ when there is no danger of confusion),
the upper additive gap and the lower multiplicative factor of
π∞ are defined respectively as

G(π∞) := sup
c>0

0<p<1

G(π∞
c,p, c, p),

F (π∞) := inf
c>0

0<p<1

F (π∞
c,p, c, p)

with

G(π∞
c,p, c, p) := sup

Q∈Qc,p

G(π∞
c,p, Q),

F (π∞
c,p, c, p) := inf

Q∈Qc,p

F (π∞
c,p, Q).

According to ([14, Th. 2]), the fixed fraction policy ϕ is
universally near optimal for reward (2) in the sense that

G(ϕ) ≤ 1
2
, (13a)

F (ϕ) ≥ 1
2
. (13b)

This universal near optimality is established by consider-
ing the worst-case performance of ϕ and invoking the fact
that T (π̂∞, Q⊗∞) ≤ r(pc) for all π̂∞ and Q ∈ Qc,p

( [14, Prop. 2] and [15, Lemma 1]). Note that for both
ωawgn and ϕ, the least favorable distribution is Bernoulli
(Theorem 2 or [14, Prop. 5]). Since ωawgn is optimal for
Bernoulli arrivals whereas ϕ is suboptimal, it follows that
ωawgn has a strictly better worst-case performance compared to
ϕ and consequently must be universally near optimal as well
(in the sense of (13) with ϕ replaced by ωawgn). The next
result reveals that ωawgn is actually superior to ϕ in terms of
the lower multiplicative factor.

Theorem 7: For reward (2),

F (ωawgn) ≥ 1 − e−1 ≈ 0.6321 (14)

while

F (ϕ) =
1
2
. (15)

Proof: Since the least favorable distribution for ωawgn is
Bernoulli and T (π̂∞, Q⊗∞) ≤ r(pc) for all π̂∞ and Q ∈ Qc,p

( [14, Prop. 2] and [15, Lemma 1]), we immediately have

F (ωawgn, c, p) ≥
Tωawgn(c, p)

r(pc)

=

∫ c

0

∂Tωawgn(x, p)
∂x

dx

r(pc)

=

∫ c

0

pr′(ωawgn(x))dx

r(pc)
(Lemma 3)

≥

∫ c

0

pr′(px) inf
y>0

r′(ωawgn(y))
r′(py)

dx

r(pc)

= inf
y>0

r′(ωawgn(y))
r′(py)

. (16)

With no loss of generality, we assume γ = 1. Then from
Theorem 6 with γ = 1, it follows that

r′(ωawgn(x))
r′(px)

=
(1 + px)

[
1 − (1 − p)M̃

]
p(x + M̃)

=
[
1 − (1 − p)M̃

](
1 +

1 − pM̃

p(x + M̃)

)
,

which is nonincreasing for M̃ ≤ 1/p and is increasing for
M̃ > 1/p. So its minimum is attained at

x0 = sup
{
x : [1 + p(x + M̃0)](1 − p)M̃0 < 1,

[1 + p(x + M̃0 − 1)](1 − p)M̃0−1 ≥ 1
}

=
(1 − p)−M̃0 − 1

p
− M̃0,

where M̃0 = �1/p�, and the minimum ratio is

F0(p) =
[
1 − (1 − p)M̃0

](
1 +

1 − pM̃0

(1 − p)−M̃0 − 1

)

= 1 − (1 − p)M̃0 + (1 − pM̃0)(1 − p)M̃0

= 1 − pM̃0(1 − p)M̃0 .

Authorized licensed use limited to: McMaster University. Downloaded on October 13,2020 at 18:39:08 UTC from IEEE Xplore.  Restrictions apply. 



YANG AND CHEN: MAXIMIN OPTIMAL ONLINE POWER CONTROL POLICY FOR ENERGY HARVESTING COMMUNICATIONS 6715

Fig. 2. The additive gaps and multiplicative factors of fixed fraction policies for reward (2) with γ = 1 and Xt ∼ B̃p with p = 0.1, 0.5, 0.9, respectively.

Fig. 3. The additive gaps and multiplicative factors of maximin optimal and fixed fraction policies for reward (2) with γ = 1 and Xt ∼ Ũ2p̃c with
p̃ = 0.1, 0.5, 0.9 (MCR = 0.1, 0.5, and approximately 0.7222), respectively.

For p ∈ [1/(1 + n), 1/n) where n ≥ 1,

F0(p) = 1 − np(1 − p)n,

and hence

F ′
0(p) = n(1 − p)n−1[(n + 1)p − 1] ≥ 0,

so the minimum of F0(p) over p ∈ [1/(1 + n), 1/n) is

F0

(
1

n + 1

)
= 1 −

(
1 − 1

n + 1

)n+1

.

Therefore,

F (ωawgn) = inf
0<p<1

inf
c>0

F (ωawgn, c, p)

≥ inf
0<p<1

F0(p) (Eq. (16))

= inf
n≥1

[
1 −

(
1 − 1

n + 1

)n+1
]

= 1 − e−1.

Now let us evaluate F (ϕ). In view of (13b), it suffices to
show that F (ϕ) ≤ 1/2. For fixed p, by Lemmas 2 and 3 and

the dominated convergence theorem, we have

lim
c→0

F (ϕ, B̃p) = lim
c→0

∞∑
i=1

p(1 − p)i−1 r(ϕ(ϕ̄(i−1)(c)))
Tωawgn(c)

=
∞∑

i=1

p(1 − p)i−1 lim
c→0

r(ϕ(ϕ̄(i−1)(c)))
Tωawgn(c)

=
∞∑

i=1

p(1 − p)i−1 p(1 − p)i−1r′(0)
pr′(0)

=
1

2 − p
,

so F (ϕ) ≤ inf0<p<1 1/(2 − p) = 1/2. �
Figs. 2–4 illustrate the performance comparisons of the

maximin optimal policy ωawgn and the fixed fraction policy
ϕ when Q is Bernoulli, c-limited uniform, or c-limited expo-
nential, where the c-limited uniform and c-limited exponential
distributions are given by

Ũb(A) :=
∫

A

1
b
1{0 ≤ x ≤ b ∧ c}dx +

(
1 − c

b

)
+

δc(A) (17)

with (x)+ := x ∨ 0 and

Ẽλ(A) :=
∫

A

λe−λx1{0 ≤ x ≤ c}dx + e−λcδc(A), (18)
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Fig. 4. The additive gaps and multiplicative factors of maximin optimal and fixed fraction policies for reward (2) with γ = 1 and Xt ∼ Ẽ(p̃c)−1 with
p̃ = 0.1, 0.5, 0.9 (MCR ≈ 0.1000, 0.4323, 0.6037), respectively.

Fig. 5. The additive gaps and multiplicative factors of maximin optimal and fixed fraction policies for reward (19) and Xt ∼ Ũ2p̃c with p̃ = 0.1, 0.5, 0.9
(MCR = 0.1, 0.5, and approximately 0.7222), respectively.

respectively, where δc is defined by (5). The comparison is
performed by computing the additive gap and the multiplica-
tive factor (Definition 12) of a policy π∞ for a distribution Q.
Note that ωawgn is optimal in the Bernoulli case. A modified
value iteration algorithm based on [20, Sec. 8.5] is employed to
compute the optimal performance as well as the performance
of a given policy in non-Bernoulli cases. It can be seen
from the plots that ωawgn consistently outperforms ϕ and
has a clear advantage in the low battery-capacity regime
(i.e., when c is small). This shows that the dominance of
ωawgn over ϕ is not restricted to the worst-case scenario.
Moreover, the performance of ωawgn is very close (within 2%)
to the optimal in the non-Bernoulli cases under consideration,
in particular for low MCRs.

The advantage of the maximin optimal policy is potentially
more evident for other reward functions. Indeed, for the square
root reward

r(x) := (1 + x)1/2 − 1, (19)

the maximin optimal policy, denoted by ωsqrt, can outperform
the fixed fraction policy by a wide margin, as is shown
by Fig. 5.

Remark 3: In contrast to the fact that MCR(B̃p) = p,
the MCRs of Ũb and Ẽλ depend on the battery capacity c
(in addition to their respective parameters b and λ). To facil-
itate the characterization of this dependency, we define the
nominal MCR (NMCR) of a battery-capacity-limited distrib-
ution to be the ratio of the mean of its original distribution to
the battery capacity c. Note that the NMCRs of Ũb and Ẽλ

are

NMCR(Ũb) =
b

2c

and

NMCR(Ẽλ) =
1
λc

,

respectively. Hence, if the NMCR is p̃, then

Ũb = Ũp̃·2c

and

Ẽλ = Ẽ(p̃c)−1 ,
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and their actual MCRs are

MCR(Ũb) =

⎧⎨
⎩

b

2c
, 0 ≤ b ≤ c,

1 − c

2b
, b > c,

=

⎧⎪⎨
⎪⎩

p̃, 0 ≤ p̃ ≤ 1
2
,

1 − 1
4p̃

, p̃ >
1
2
,

and

MCR(Ẽλ) =
1
λc

(1 − e−λc) = p̃(1 − e−1/p̃),

respectively.

IV. CONCLUSION

We have constructed a maximin optimal online power con-
trol policy for discrete-time battery limited energy harvesting
communications. This policy only requires the knowledge of
the (effective) mean of the energy arrival process and achieves
the best possible worst-case performance. It is of considerable
interest to compare our new policy against the existing ones
in a systematic manner and quantify the performance gains.
We have made some initial attempt along this direction and in
particular showed that the new policy strictly outperforms the
fixed fraction policy in terms of the lower multiplicative factor
when the objective is to maximize the throughput over an
AWGN channel. It is also worthwhile to explore possible ways
to simplify the new policy without essentially compromising
its competitiveness or to enhance it for coping with the more
realistic scenario where the reward function and the energy
arrival distribution are not static. We intend to undertake some
of these tasks in a follow-up work [21].

APPENDIX A
PROOFS OF RESULTS IN SEC. III

Proof of Proposition 2: 1) 0 ≤ σ(0) ≤ 0.
2) It is clear that σ̄ is convex. For y > x ≥ 0,

σ̄(x) = σ̄

(
x

y
y +

(
1 − x

y

)
0
)

≤ x

y
σ̄(y) +

(
1 − x

y

)
σ̄(0) ≤ σ̄(y).

3) For 0 ≤ x < y ≤ c, we have

0≤ σ(y) − σ(x)
y − x

≤ σ(y) − σ(0)
y − 0

≤1 ( [19, Lemma 1.1]),

(20)

which implies |σ(y)−σ(x)| ≤ |y−x|. Therefore, σ is Lipschitz
on [0, c], and so is σ̄.

4) Use [19, Th. 1.4] and inequality (20). �
Proof of Theorem 3: We first prove the existence of a

stationary policy that is optimal for the Bernoulli distribution.
Let f := pm/c + δc be a finite measure on ([0, c],B([0, c])),
where m denotes the Lebesgue measure on [0, c]. Let ε = p.

It is clear that any measurable set A with f(A) ≤ ε does not
contain the point c, and consequently

PB2|B1(A | b) ≤ PB2|B1([0, c) | b)

=
∑

u∈[0,b]

PU1|B1(u | b)PB2|B1,U1([0, c) | b, u)

=
∑

u∈[0,b]

PU1|B1(u | b)P{b − u + X1 < c}

≤
∑

u∈[0,b]

PU1|B1(u | b)(1 − p)

≤ 1 − p = 1 − ε

for all b ∈ [0, c] and all (admissible) randomized stationary
policies PU1|B1 . This means that the so-called Doeblin condi-
tion is satisfied, and hence there exist a set C ∈ B([0, c])
with f(C) > ε and a stationary policy ω ∈ Σ such that
for all B1 = b ∈ C, policy ω achieves the maximum
asymptotic expected average reward and PB2|B1(C | b) = 1
([22, Th. 2.2]). It is clear that c ∈ C, and in fact, by the prop-
erty of Bernoulli distribution, C is an invariant set consisting
of the points

ω̄(0)(c) = c, ω̄(1)(c), . . . , ω̄(N−1)(c), ω̄(N)(c) = 0

for some integer N to be determined later. Note that for B1− =
0, the distribution of B1 is supported on {0, c} ⊆ C1. The
asymptotic expected average reward of policy ω is

Tω(c) =
∞∑

i=1

p(1 − p)i−1r(ω(ω̄(i−1)(c))) (Lemma 2),

or equivalently,

Tω(c) =
∞∑

i=1

p(1 − p)i−1r(αi)

with the constraint
∑∞

i=1 αi ≤ c, where αi = ω(ω̄(i−1)(c))
≥ 0.

In order to find (αi)∞i=1, we need to solve the following
infinite-dimensional optimization problem:

maximize T ((ui)∞i=1) :=
∞∑

i=1

p(1 − p)i−1r(ui)

subject to ui ≥ 0, i = 1, 2, . . . ,
∞∑

i=1

ui ≤ c,

where c > 0. It can be shown via an argument similar to [14,
Appx. C] that

r′(αi) =
λ0

p(1 − p)i−1
for 1 ≤ i ≤ M, (21a)

λ0 ≥ p(1 − p)Mr′(0), (21b)
M∑
i=1

αi = c. (21c)

1If the distribution of B1 is supported on a set not contained in C, e.g., [0, c],
then the energy Bt stored in the battery will undergo a transient stage, which
however has negligible impact on the long-term expected average reward (see,
e.g., [14, Prop. 6] or [22, Lemma 3.1]).
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Then, for 1 ≤ i, j ≤ M , we have

r′(αi)
r′(αj)

=
1

(1 − p)i−j

and

(1 − p)Mr′(0) ≤ λ0

p
= r′(αj)(1 − p)j−1

= r′(αM )(1 − p)M−1 < (1 − p)M−1r′(0).

So
Mj∑
i=1

κ1/(1−p)i−1(αj) =
Mj∑
i=1

αj+i−1

=
M∑
i=j

αi = ω̄(j−1)(c)

with

Mj = M − j + 1 =
⌈

ln(r′(αj)/r′(0))
ln(1 − p)

⌉
.

Since αj = ω(ω̄(j−1)(c)), ω(x) satisfies (7) for all x ∈ C
defined by (8), including x = ω̄(M)(c) = 0. In view of the fact
that κs is strictly increasing (see also Proposition 7), Eq. (7)
uniquely determines all αi, and we can conclude that ω is
optimal iff it satisfies (7). �

Proof of Proposition 6: 1) It is clear that κ̄s(x) ≥ 0. Since
s > 1, it is also easy to see that κ̄s(x) < r′−1(r′(x)) = x for
x > τs.

2) It is clear that κ̄s(x) = f(g(x)) with f(x) = κs(x) and
g(x) = x ∨ τs. Since r is regular, f is continuous, strictly
increasing, and convex on [τs, +∞). It is also clear that g is
continuous, nondecreasing, and convex on [0, +∞). Therefore,
κ̄s is continuous, nondecreasing, and convex ([18, p. 84]).

3) It is clear that κ̄
(i)
s (x) = κsi(x ∨ τ

(i)
s ) for i = 0, 1.

Suppose the identity is true for i = k. Then

κ̄(k+1)
s (x) = κs(κ̄(k)

s (x) ∨ τs)
= κs(κsk(x ∨ τ (k)

s ) ∨ τs)
= κs(κsk(x ∨ τ (k)

s ∨ κs−k(τs)))
= κs(κsk(x ∨ τ (k)

s ∨ τ (k+1)
s ))

= κs(κsk(x ∨ τ (k+1)
s )) = κsk+1(x ∨ τ (k+1)

s ).

Therefore by induction, κ̄
(i)
s (x) = κsi(x ∨ τ

(i)
s ) for all i ≥ 0.

4) The least nonnegative integer i such that κ̄
(i)
s (x) = 0 is

exactly the least nonnegative integer M satisfying

x ≤ τ (M)
s = κs−M (0),

or equivalently,

sMr′(x) ≥ r′(0).

In other words,

M =
⌈

ln(r′(0)/r′(x))
ln s

⌉
.

�
Proof of Proposition 7: It is easy to see that ηs(x) =∑N

i=1 κ̄
(i−1)
s (x) for all N ≥ Ms(x). So ηs is continuous,

strictly increasing, and convex (Proposition 6).

Observing that κ̄
(i)
s (x) = κ

(i)
s (x) for all x ≥ 0 and

i < Ms(x) and that κ̄
(Ms(x))
s (x) = κ

(Ms(x))
s (x) = 0 for x

satisfying

Ms(x) =
ln(r′(0)/r′(x))

ln s
,

we immediately have

ηs(x) =
Ms(x)∑
i=1

κsi−1(x) =
M̃s(x)∑

i=1

κsi−1(x).

�

APPENDIX B
IMPORTANT LEMMAS

Lemma 1: For a policy σ ∈ Σ and a real-valued function g
on [0, c], we define the function

h(x) := r(σ(x)) + g(σ̄(x)).

If σ is normal, g is nondecreasing, Lipschitz, and concave on
[0, c], and g′(σ̄(x)) ≤ r′(σ(x)) almost everywhere, then h is
nondecreasing, Lipschitz, and concave on [0, c], and h′(x) ≤
r′(σ(x)) almost everywhere.

Proof: Since h is nondecreasing and Lipschitz on [0, c]
(Proposition 2), it is absolutely continuous and hence dif-
ferentiable a.e. [23, Lemma 6.1.3 and Cor. 6.1.5], and so
are σ, r, and g. Thus, the derivative of h can be com-
puted by the differentiation rules, in particular, the chain rule
[23, Th. 6.5.2]. Specifically, we have

h′(x) = r′(σ(x))σ′(x) + g′(σ̄(x))σ̄′(x)
= r′(σ(x)) + σ̄′(x)(g′(σ̄(x)) − r′(σ(x))) a.e.,

which implies h′(x) ≤ r′(σ(x)) a.e. because σ̄′ is nonnegative
a.e. (Proposition 2).

Let A be the common set on which h′(x) exists and
g′(σ̄(x)) ≤ r′(σ(x)) holds true. It is clear that A is measurable
and its Lebesgue measure is c. Note that σ′ and σ̄′ are both
nonnegative on A, and σ′(x), r′(σ(x)), and g′(σ̄(x)) are all
nonincreasing on A (Proposition 2 and [19, Th. 1.4]). For any
x, y ∈ A such that x < y, we have

h′(y) − h′(x) = r′(σ(y))σ′(y) + g′(σ̄(y))σ̄′(y)
−r′(σ(x))σ′(x) − g′(σ̄(x))σ̄′(x)

= (r′(σ(y)) − r′(σ(x)))σ′(y)
+ r′(σ(x))(σ′(y) − σ′(x))
+ (g′(σ̄(y)) − g′(σ̄(x)))σ̄′(y)
+ g′(σ̄(x))(σ̄′(y) − σ̄′(x))

= (r′(σ(y)) − r′(σ(x)))σ′(y)
+ (g′(σ̄(y)) − g′(σ̄(x)))σ̄′(y)
+ (σ′(y) − σ′(x))(r′(σ(x)) − g′(σ̄(x)))

≤ 0,

which implies that h′ is nonincreasing on A. Therefore, h is
concave on [0, c] (Proposition 8). �
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Lemma 2 ( [14, Appx. C] and [15, Eq. (9)]): The asymp-
totic expected average reward of a stationary policy σ ∈ Σ
with respect to the Bernoulli energy arrival distribution B̃p is

Tσ(c) =
∞∑

i=1

p(1 − p)i−1r(σ(σ̄(i−1)(c))).

Lemma 3: T ′
ω(c) = pr′(ω(c)).

Proof: By Lemma 2 and Theorem 4,

Tω(c) :=
M(ω(c))∑

i=1

p(1 − p)i−1r(ω(ω̄(i−1)(c))).

We have

T ′
ω(c) =

M(ω(c))∑
i=1

p(1 − p)i−1r′(ω(ω̄(i−1)(c)))
dω(ω̄(i−1)(c))

dc

for almost every c ≥ 0. Since

(1 − p)i−1r′(ω(ω̄(i−1)(c)))
= (1 − p)i−1r′(κ1/(1−p)i−1(ω(c))) (Theorem 4)

= r′(ω(c))

for 1 ≤ i ≤ M(ω(c)), it follows that

T ′
ω(c) =

M(ω(c))∑
i=1

pr′(ω(c))
dω(ω̄(i−1)(c))

dc

= pr′(ω(c))
d
∑M(ω(c))

i=1 ω(ω̄(i−1)(c))
dc

= pr′(ω(c))
dc

dc
= pr′(ω(c))

for almost every c ≥ 0. �

APPENDIX C
USEFUL FACTS

Proposition 8: If f is an absolutely continuous real-valued
function on a closed interval I = [a, b] and f ′ is nondecreasing
(resp., nonincreasing) a.e. on the set of points where it exists,
then f is convex (resp., concave) on I .

Proof: Since f is absolutely continuous, it is differentiable
a.e. and satisfies

f(x) − f(a) =
∫ x

a

f ′(s)ds ( [23, Th. 6.4.2]).

Then for any a ≤ x < y ≤ b and any t ∈ (0, 1),

(1 − t)f(x) + tf(y) − f(z)
= (1 − t)(f(x) − f(z)) + t(f(y) − f(z))

= −(1 − t)
∫ z

x

f ′(s)ds + t

∫ y

z

f ′(s)ds

= −(1 − t)
∫

[x,z]∩A

f ′(s)ds + t

∫
[z,y]∩A

f ′(s)ds

≥ −(1 − t)
∫

[x,z]∩A

gzds + t

∫
[z,y]∩A

gzds

= gz[−(1 − t)(z − x) + t(y − z)]
= gz[(1 − t)x + ty − z] = 0,

where z = (1−t)x+ty, gz = sups∈[x,z]∩A f ′(s), and A is the
set of points where f ′ exists and is nondecreasing. Therefore,
f is convex on I . �

Proposition 9: Let f be a nonnegative and strictly decreas-
ing function on R≥0 (so f(+∞) = limx→+∞ f(x) is
well defined). If f−1(sf(x)), defined on [f−1(f(0)/s), +∞),
is convex for some s ∈ (1, f(0)/f(+∞)), then f(+∞) = 0.

Proof: Let g(x) = f−1(sf(x)) and choose an arbitrary
x1 ∈ [f−1(f(0)/s), +∞). If f(+∞) > 0, then

g(x) ≤ f−1(sf(+∞)) < +∞,

that is, g is bounded. On the other hand, since g(x) is convex,

g(x1) = g
(x1

x
x
)
≤ x1

x
g(x)

for all x ≥ x1. So

g(x) ≥ g(x1)
x1

x,

which implies that g is unbounded, a contradiction to the
assumption. Therefore, f(+∞) = 0. �

Proposition 10: Let f be a strictly increasing real-valued
functions on some convex subset of R. Then f is convex iff
f−1 is concave.

Proof: Since f is strictly increasing, we have

{(x, y) : y ≥ f(x)} = {(x, y) : x ≤ f−1(y)},

that is, the epigraph of y = f(x) is exactly the hypograph of
x = f−1(y). Therefore f is convex iff f−1 is concave. �
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