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IMPORTANT INFORMATION

e Students must pass the combined midterm/exam component separately
to get a pass in the course. The midterm and exam will be combined with
the weighting 36% on the midterm and 50% on the final. A grade of 50%
in this combination must be attained to pass. Statistical adjustments
(such as bell curving) will not normally be used.

e Please note that students who miss the midterm, and who have a valid
excuse, will be subjected to an oral makeup test or a written test, at the
discretion of the instructor. Those who do not have a valid excuse will

be assessed zero for the midterm component of the final grade.
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COURSE ORGANIZATION

Teaching assistants:
e Min Huang (turorial), ITB A202, ext. 23151,
Email: huangm2@mcmaster.ca
e Amin Behnad (turorial), ITB A103, ext. 26112,
Email: behnad©@grads.ece.mcmaster.ca

e Lin Song (grading)
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SYLLABUS

e Complex Variables and Contour Integration
e The Laplace Transform and Its Inversion

e [he Fourier Transform and Applications

e Discrete Transforms

e Linear Algebra and State Variables (if time permits)
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COURSE TEXTBOOK

e Shlomo Karni and William J. Byatt
Mathematical Methods in Continuous and Discrete Systems
NY: Holt, Rinehart and Winston, 1982.
ISBN: 0-03-057038-7
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COMPLEX ANALYSIS

e [he shortest route between two truths in the real domain passes through

the complex domain.

Jacques Salomon Hadamard (1865-1963)

e Complex analysis is beautiful, real analysis is dirty.

André Weil (1906-1998)
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1 ARITHMETIC OPERATIONS

OF COMPLEX VARIABLES
1.1 Complex Variables

e Imaginary unit: j = v/—1
e Complex variable: z
— Rectangular form: z =x 4+ jy  Re(z) =z, Im(2) =y
— Exponential form: z = rel?
Euler's formula: €/? = cos 6 + jsinf
= x =1rcosf, y=sinb, :1:2—|—y2 — 2
o Example: e//2 = j ™ = —1, 7] = (n any integer)
o Example: z=1— 3 & 2z = V2e=Im/4
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1.2 Arithmetic Operations

Rectangular form: z1 = x1 4+ jy1, 29 = T2 + jy2
Exponential form: z1 = Tlejel, 29 = T1€j02
o Addition: z1 + 22 = 21 + z2 + j(y1 + ¥2)
e Subtraction: 21 — 29 = x1 — x9 + j(yl — 92)
e Multiplication: 2129 = 2129 — y1y2 + J(y122 + y221) (rectangular form)
2129 = rqroel (01102) (exponential form)
o Example: z1 =44+ 93, 29=1—7
=21 +2=5+72,21—2=3+j4 z120=T—
e Complex conjugate: z = x + jy, 2* = x — jy
=t Pt =02 |z =V =r
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21 _ z1xety1ye+i(y17a—yoz1)
22 73+

% — %ej(el_‘g?) (exponential form)

Power: z = rel?
n _ pnejnd

Division: (rectangular form)

2 Re(2™) = r" cosnf, Im(2") = r"* sinnb

Fractional power: z = rel?
J/n Tl/nej(9—|—27rp)/n, p=01,-.n—1

Colis

Example: 2 =3 + j4 = 5e/% with § = tan—1
= (3 +j4)1/2 — /5l (0/2+mp) 5 — 0.1
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1.3 Functions of a Complex Variable

f(z) = f(z +jy) = u(z,y) + ju(z,y)

o Example: f(z) = e™?
etz — oE(z+jy) — T (cosy + jsiny)
= u(:z:, y) = e cosy, v(z,y) = e siny

o Example: f(z) = sin z
sin(z + jy) = sinx cos(jy) + cos z sin(jy)
cos jy = cosh gy, sin(jy) = jsinhy
= u(x,y) = sinxz coshy, v(x,y) = cosxsinhy
o Example: f(2) =Inz
Inz = In(ref?) = In(red(0F277)) — Inr + (0 £ 2n7) (n any integer)
= u(x,y) =1Inr), v(x,y) =0 £ 2nx
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1.4 Derivatives of a Complex Function

f(z) = u(z,y) + jv(z,y)

L oy df . [(z0+Az2)—f(20)
e Definition (derivative): == = lim
e Definition (Cauchy-Riemann conditions): % = g—z % = —g—z

x Theorem (sufficient conditions for differentiability):
1. the first-order partial derivatives of the functions u(x,y)and v(x, y)
with respect to  and y exist everywhere in the neighborhood of
20 = To + JYo;
2. those partial derivatives are continuous at (xq, yg) and satisfy the

Cauchy-Riemann conditions % = g—z % = —g—z at (0, y0).
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exists, its value being
2=z

df
Then 7>

6’u ov

df
6$ +‘78x (

dz|,

=20 y)=(x0,40)

e Definition (analytical function): f(z) is analytic at a point zq if it has a
derivative at each point in some neighborhood of zy. It follows that if f is
analytic at a point 2, it must be analytic at each point in some

neighborhood of 2.

o Example: f(z) = e 7
u(z,y) =e Pcosy, v(x,y) = —e Tsiny
%:—e Cosy—gz gz— —e xsiny:—%

The Cauchy-Riemann conditions are satistied.

o Example: f(z) =Inz
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u(z,y) = gIn(z? +y?), v(z,y) = tan"(y/z) + 2nw
ou _Ov_ x __cosh Ou_ Ov_ 'y _ sinf

Or — Oy 2492 1 "0y Or 242 T
The Cauchy-Riemann conditions are satistied at all finite points other than

r=0(x=y=0). The origin z = y = 0 is called a singular point for
f(z)=Inz

Definition (singularity): A point in the z-plane at which f(2) is not
analytic is called a singular point (or a singularity) of f(z). There are
several types of singularities. We say that f(z) has an isolated singularity
at z = zg it in the neighborhood of z = 2y, no matter how small, there
are no other singularities. In other words, f(z) is analytic throughout the
neighborhood of 2 = 2 except at z = 2.

The function f(z) has a pole of order n at z = z( (also called a

removable singularity) if (z — zg)" f(z) is analytic at zg. If no integer n
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can be found, then z = z( is an essential singularity.

o Example: f(z) = z;z;fl) has isolated singularities at z = 0 and at

z = 1. The singularity at z = 0 is a pole of order 2, and the singularity at

z = —1is a pole of order 1 (simple pole).
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1.5 Laplace’'s Equation

e Cauchy-Riemann conditions: % — g—z % — _g_"yﬁ
— @ — 82’0 5’22) L _@
ox2 — Oxzdy' Jydx — 9y

— V24 = 0 with V2 = & 4 9%
Similarly, V20 =0
e Definition (Laplace’s equation): VZH =0

*x Theorem: If a function f(2) = u(x,y) + jv(x,y) is analytic in some
region of the complex plane, both w and v satisty Laplace’'s equation

throughout that same region.
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1.6 Integration in the Complex Plane

e Definition (Contour): A contour, or piecewise smooth arc, is an arc
consisting of a finite number of smooth arcs joined end to end. When only
the initial and final values are the same, a contour C'is called a simple
closed contour. A contour is positively oriented when it is in the
counterclockwise direction.

x Theorem (Cauchy's first integral theorem): If a function f(z) is analytic

all all points interior to and on a simple closed contour C', then

jéf(z)dz =0

x Theorem (Cauchy's second integral theorem): Let f(z) be analytic
everywhere inside and on a simple closed contour C, taken in the positive
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sense. If zg is any point interior to C', then

1 f(2)
f(20) = o Cz—zodz
Extension:
(),y — ]{ f(2)
f=0) 27j C(z—zo)n+1dz
where
() —
[ (0) = —— .
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1.7 The Taylor Series

* Theorem: Suppose that a function f(2) is analytic throughout a disk
|2 — 20| < Ryp, centered at zg and with radius Rg. Then f(z) has the

power series representation

f(z)=> an(z—2)" (|2 — 2| < Ro)
n=0
where
ARG IR f(2) _
an =~ —E%C'(Z—Zg)n—i_ldz (n=20,1,2,---)

and the contour C' is inside the disk.
¢ Example: The Taylor series expansion of cos z about the point
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z2=z9=m/2

COS 2
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1.8 The Laurent Expansion

e Theorem: Suppose that a function f(z) is analytic throughout an annular
domain Ry < |z — 2g| < Ra, centered at 2q, and let C' denote any
positively oriented simple closed contour around zg and lying in that
domain. Then, at each point in the domain, f(z)has the series

representation

0 e bn
fo)= 2 onle e+ 2L g (R <z ol < o)
n=0 n=1

1 f(z)

~ 21 Jo (2 — zo)nH]

dz (n=0,1,2,--)

an
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and

1 f(z)

bp = —
b2 Jo (- 0)

dz (n=1,2,--+)

o Example: Find the Laurent expansion of f(z) = (z — 2)~ ! for |2| < 2.

f(Z) 1_2/2 Z 9~ n—l—l

o Example: Find the Laurent expansion of f(z) = (z — 2)~ ! for |2| > 2.

fe) =102/ =3 2
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1.9 Cauchy's Residue Theorem

e Definition (Residues): When zq is an isolated singular point of f(z), there
is a positive number Ro such that f(z) is analytic at each point z for
which 0 < |z — zg| < Ra. Let C be any positively oriented simple closed

contour around z( that lies in the punctured disk 0 < |z — zp| < Ra.
Define

Res,—2f(2) = ! éf(z)dz

_%

which is called the residue of f(z) at the isolated singular point z(.
Remark: The residues can often be calculated using Cauchy's second
integral theorem.

* Theorem: Let C be a simple closed contour, described in the positive
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sense. If a function f(2) is analytic inside and on C' except for a finite

number of singular points z;. (k=1,2,--- ,n) inside C', then

$ £z =2m) 3" Ressy f(2
¢ k=1

¢ Example: Find the residue of

Sin 2

(: —7/2)?

at z = /2. The residue can be found by calculating

flz) =

1 d?sin 2 1
2! dz?

z=m/2
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2.0 The Evaluation of Real Definite Integrals

¢ Example: Consider the integral I, defined by

21
I(a,b,m) = / 40
0

a -+ bcost

where a and b are real, and b < a. Set z = e7? The contour C of
integration in the complex plane will, then, be a circle of unit radius. Since
cosf = (7% + e79%) /2, we have cosf = (z + 271)/2 = (22 + 1) /2=
Further with z = €j0, dz = jejedﬁ, so that df = dz/jz. The integral I
becomes

2dz 2 dz
= 7%23’[2&2+b(22+ N ﬁ%(z—u)(z—?«’—)

McMaster University



where the poles of the integrand are at the points
a a. 9
= —— —) =1
2= =24 [0

o E

Since b < a by assumption, both poles are real, and |z4| < 1, |z2—| > 1.

Thus only the root z4 is within a circle of unit radius. Therefore the

application of the Cauchy's residue theorem leads to the result

2 1 4 1
I = —2mjRes,—, —— =
7b Iz Fr— 2 b z4 — z_
On inserting the expression for z4 and z_, the answer is
2
[=—=22

\/@2—192
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¢ Example: Consider the integral

50 -
I(w) _ smwtdt
t
0

By setting wt = x, we have

5o s
I(w):/ SIn & ,
0

X

|t is easy to see the value of I is be independent of w. Now, sinz/x is an
even function of x. Thus we can write
1 el T
I(w) = —Im/ —dx
2 oo T

To evaluate this integral, consider the associated integral

91z
%e—dz
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Here the integrand has a pole at the point 2 = 0. To exclude the point
z = 0, we choose the contour C' shown in Fig. 2.15 (p. 91).

By Cauchy's first integral theorem, we have

91z
—O—%e—dz
C

The contributions from the four parts of C' must now be found. We have
P ,Jx 0 jpeje 70 R jx 7 jRejeR 70
O:/ 6—daj—|—j/ c .[;6 d9+/ —d:z:—l—]/ c .96 db
—-R T T pe’ p L 0 ReJ

The value of the second term of the right-hand side, as p — 0, is —j;

the first and third terms are combined, so that

R BV T if
O:—j7r+/ —dx—l—]/ el e’ qg
~-R Z 0
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The absolute value of the integral over 6 satisfies the inequality

[N 1 T :
|]/ ejRe d9| < / 6_R8m0d6’
0 0

Further, since sin 6 is an even function about /2, we have

u . /2 .
/ e—R sin 9d9 _9 / e—R sin 9d(9
0 0

and sinf > 20 /7 forall 8 in 0 < 0 < 7/2. Thus,

/2 . /2
2/ e—RsmedH < 2/ 6—2R«9/7rd9 _ 1(1 B e—R)
0 0 R

Clearly, as R — o0, the last result approaches zero. Thus,

00 o / 1 o0 ]I
I(w) :/ et dt:—lm/ g ="
0t 2 2

o0 T
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