
Chapter 1

Electromagnetics and Optics

1.1 Introduction

In this chapter, we will review the basics of electromagnetics and optics. We will briefly

discuss various laws of electromagnetics leading to Maxwell’s equations. The Maxwell’s

equations will be used to derive the wave equation which forms the basis for the study of

optical fibers in Chapter 2. We will study elementary concepts in optics such as reflection,

refraction and group velocity. The results derived in this chapter will be used throughout

the book.

1.2 Coulomb’s Law and Electric Field Intensity

In 1783, Coulomb showed experimentally that the force between two charges separated in

free space or vacuum is directly proportional to the product of the charges and inversely

proportional to the square of the distance between them. The force is repulsive if the

charges are alike in sign, and attractive if they are of opposite sign, and it acts along the

straight line connecting the charges. Suppose the charge q1 is at the origin and q2 is at a

distance r as shown in Fig. 1.1. According to Coulomb’s law, the force F2 on the charge
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q2 is

F2 =
q1q2
4πϵr2

r, (1.1)

where r is a unit vector in the direction of r and ϵ is called permittivity that depends on

the medium in which the charges are placed. For free space, the permittivity is given by

ϵ0 = 8.854× 10−12 C2/Nm2 (1.2)

For a dielectric medium, the permittivity, ϵ is larger than ϵ0. The ratio of permittivity of

a medium and permittivity of free space is called the relative permittivity, ϵr,

ϵ

ϵ0
= ϵr (1.3)

It would be convenient if we can find the force on a test charge located at any point in

Figure 1.1. Force of attraction or repulsion between charges.

space due to a given charge q1. This can be done by taking the test charge q2 to be a unit

positive charge. From Eq. (1.1), the force on the test charge is

E = F2 =
q1

4πϵr2
r (1.4)

The electric field intensity is defined as the force on a positive unit charge and is given by

Eq. (1.4). The electric field intensity is a function only of the charge q1 and the distance

between the test charge and q1.
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For historical reasons, the product of electric field intensity and permittivity is defined

as the electric flux density D.

D = ϵE =
q1

4πr2
r (1.5)

Electric flux density is a vector with its direction same as the electric field intensity.

Imagine a sphere S of radius r around the charge q1 as shown in Fig. 1.2. Consider an

incremental area ∆S on the sphere. The electric flux crossing this surface is defined as

the product of the normal component of D and the area ∆S.

Flux crossing ∆S = ∆ψ = Dn∆S, (1.6)

whereDn is the normal component ofD.The direction of the electric flux density is normal

Figure 1.2. (a) Electric flux density on the surface of the sphere. (b) The incremental surface

∆S on the sphere.

to the surface of the sphere and therefore, from Eq. (1.5) we obtain Dn = q1/4πr
2. If we

add the differential contributions to flux from all the incremental surfaces of the sphere,

we obtain the total electric flux passing through the sphere,

ψ =

∫
dψ =

∮
S

DndS (1.7)

Since the electric flux density Dn given by Eq. (1.5) is the same at all the points on the

surface of the sphere, the total electric flux is simply the product of Dn and surface area
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of the sphere 4πr2,

ψ =

∮
S

DndS =
q1

4πr2
× surface area = q1 (1.8)

Thus, the electric flux passing through a sphere is equal to the charge enclosed by the

sphere. This is known as Gauss’s law. Although we considered the flux crossing a sphere,

Eq. (1.8) holds true for any arbitrary closed surface. This is because the surface element

∆S of an arbitrary surface may not be perpendicular to the direction of D given by Eq.

(1.5) and the projection of the surface element of an arbitrary closed surface in a direction

normal to D is the same as the surface element of a sphere. From Eq. (1.8), we see that

the total flux crossing the sphere is independent of the radius. This is because the electric

flux density is inversely proportional to the square of the radius while the surface area

of the sphere is directly proportional to the square of the radius and therefore, total flux

crossing a sphere is the same no matter what its radius is.

So far we have assumed that the charge is located at a point. Next, let us consider

the case when the charge is distributed in a region. Volume charge density is defined as

the ratio of the charge q and the volume element ∆V occupied by the charge as it shrinks

to zero,

ρ = lim
∆V→0

q

∆V
(1.9)

Dividing Eq. (1.8) by ∆V where ∆V is the volume of the surface S and letting this

volume to shrink to zero, we obtain

lim
∆V→0

∮
S
DndS

∆V
= ρ (1.10)

The left hand side of Eq. (1.10) is called divergence of D and is written as

div D = ∇ ·D = lim
∆V→0

∮
S
DndS

∆V
(1.11)

and Eq. (1.11) can be written as

div D = ρ (1.12)

The above equation is called the differential form of Gauss’s law and it is the first of

Maxwell’s four equations. The physical interpretation of Eq. (1.12) is as follows. Suppose
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Figure 1.3. Divergence of bullet flow.

a gun man is firing bullets in all directions as shown in Fig. 1.3 [2]. Imagine a surface

S1 that does not enclose the gun man. The net outflow of the bullets through the surface

S1 is zero since the number of bullets entering this surface is the same as the number of

bullets leaving the surface. In other words, there is no source or sink of bullets in the

region S1. In this case, we say that the divergence is zero. Imagine a surface S2 that

encloses the gun man. There is a net outflow of bullets since the gun man is the source of

bullets who lies within the surface S2 and divergence is not zero. Similarly, if we imagine

a closed surface in a region that encloses charges with charge density ρ, the divergence is

not zero and is given by Eq. (1.12). In a closed surface that does not enclose charges, the

divergence is zero.

1.3 Ampere’s Law and Magnetic Field Intensity

Consider a conductor carrying a direct current I. If we bring a magnetic compass near

the conductor, it will orient in a direction shown in Fig. 1.4(a). This indicates that
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the magnetic needle experiences the magnetic field produced by the current. Magnetic

field intensity H is defined as the force experienced by an isolated unit positive magnetic

charge (Note that an isolated magnetic charge qm does not exist without an associated

−qm) just like the electric field intensity, E is defined as the force experienced by a unit

positive electric charge.

Figure 1.4. (a) Direct current-induced constant magnetic field. (b) Ampere’s circuital law.

Consider a closed path L1 or L2 around the current-carrying conductor as shown in

Fig. 1.4(b). Ampere’s circuital law states that the line integral of H about any closed

path is equal to the direct current enclosed by that path.∮
L1

H · dL =

∮
L2

H · dL = I (1.13)

The above equation indicates that the sum of the components of H that are parallel to

the tangent of a closed curve times the differential path length is equal to the current

enclosed by this curve. If the closed path is a circle (L1) of radius r, due to circular

symmetry, magnitude of H is constant at any point on L1 and its direction is shown in

Fig. 1.4(b). From Eq. (1.13), we obtain∮
L1

H · dL = H × circumference = I (1.14)

or

H =
I

2πr
(1.15)
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Thus, the magnitude of magnetic field intensity at a point is inversely proportional to

its distance from the conductor. Suppose the current is flowing in z direction. The z-

component of current density Jz may be defined as the ratio of the incremental current ∆I

passing through an elemental surface area ∆S = ∆X∆Y perpendicular to the direction

of the current flow as the surface ∆S shrinks to zero,

Jz = lim
∆S→0

∆I

∆S
. (1.16)

Current density J is a vector with its direction given by the direction of current. If J is not

perpendicular to the surface ∆S, we need to find the component Jn that is perpendicular

to the surface by taking the dot product

Jn = J · n, (1.17)

where n is a unit vector normal to the surface ∆S. By defining a vector ∆S = ∆Sn, we

have

Jn∆S = J ·∆S (1.18)

and incremental current ∆I is given by

∆I = J ·∆S (1.19)

Total current flowing through a surface S is obtained by integrating,

I =

∫
S

J · dS (1.20)

Using Eq. (1.20) in Eq. (1.13), we obtain∮
L1

H · dL =

∫
S

J · dS, (1.21)

where S is the surface whose perimeter is the closed path L1.

In analogy with the definition of electric flux density, magnetic flux density is defined

as

B = µH (1.22)
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where µ is called the permeability. In free space, the permeability has a value

µ0 = 4π × 10−7 N/A2 (1.23)

In general, permeability of a medium µ is written as a product of the permeability of free

space µ0 and a constant that depends on the medium. This constant is called relative

permeability µr.

µ = µ0µr (1.24)

The magnetic flux crossing a surface S can be obtained by integrating the normal com-

ponent of magnetic flux density,

ψm =

∫
S

BndS (1.25)

If we use the Gauss’s law for the magnetic field, the normal component of the magnetic flux

density integrated over a closed surface should be equal to the magnetic charge enclosed.

However, no isolated magnetic charge has ever been discovered. In the case of electric

field, the flux lines start from or terminate on electric charges. In contrast, magnetic flux

lines are closed and do not emerge from or terminate on magnetic charges. Therefore,

ψm =

∫
S

BndS = 0 (1.26)

and in analogy with the differential form of Gauss’s law for electric field, we have

div B = 0 (1.27)

The above equation is one of Maxwell’s four equations.

1.4 Faraday’s Law

Consider an iron core with copper windings connected to a voltmeter as shown in Fig.

1.5. If you bring a bar magnet close to the core, you will see a deflection in the voltmeter.

If you stop moving the magnet, there will be no current through the voltmeter. If you
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Figure 1.5. Generation of emf by moving a magnet.

move the magnet away from the conductor, the deflection of the voltmeter will be in the

opposite direction. Same results can be obtained if the core is moving and the magnet

is stationary. Faraday carried out an experiment similar to the one shown in Fig. 1.5

and from his experiments, he concluded that the time varying magnetic field produces an

electromotive force which is responsible for a current in a closed circuit. An electromotive

force is simply the electric field intensity integrated over the length of the conductor or in

other words, it is the voltage developed. In the absence of electric field intensity, electrons

move randomly in all directions with a zero net current in any direction. Because of the

electric field intensity (which is the force experienced by a unit electric charge) due to

time varying magnetic field, electrons are forced to move in a particular direction leading

to current. Faraday’s law is stated as

emf = −dψm

dt
, (1.28)

where emf is the electromotive force about a closed path L (that includes conductor and

connections to voltmeter), ψm is the magnetic flux crossing the surface S whose perimeter
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is the closed path L and dψm/dt is the time rate of change of this flux. Since emf is an

integrated electric field intensity, it can be expressed as

emf =

∮
L

E · dl (1.29)

Magnetic flux crossing the surface S is equal to the sum of the normal component of the

magnetic flux density at the surface times the elemental surface area dS,

ψm =

∫
S

BndS =

∫
S

B · dS, (1.30)

where dS is a vector with its magnitude dS and its direction normal to the surface. Using

Eqs. (1.29) and (1.30) in Eq. (1.28), we obtain∮
L

E · dl = − d

dt

∫
S

B · dS

= −
∫
S

∂B

∂t
· dS (1.31)

In Eq. (1.31), we have assumed that the path is stationary and the magnetic flux density

is changing with time and therefore, the elemental surface area is not time dependent

allowing us to take the partial derivative under the integral sign. In Eq. (1.31), we have a

line integral on the left hand side and a surface integral on the right hand side. In vector

calculus, a line integral could be replaced by a surface integral using Stokes’ theorem,∮
L

E.dl =

∫
S

(∇× E) · dS (1.32)

to obtain ∫
S

[
∇× E+

∂B

∂t

]
· dS = 0 (1.33)

Eq. (1.33) is valid for any surface whose perimeter is a closed path. It holds true for any

arbitrary surface only if the integrand vanishes, i.e.,

∇× E = −∂B
∂t

(1.34)

The above equation is Faraday’s law in the differential form and is one of Maxwell’s four

equations.
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1.4.1 Meaning of Curl

The curl of a vector A is defined as

curl A = ∇×A = Fxx+ Fyy + Fzz (1.35)

Fx =
∂Az

∂y
− ∂Ay

∂z
(1.36)

Fy =
∂Ax

∂z
− ∂Az

∂x
(1.37)

Fz =
∂Ay

∂x
− ∂Ax

∂y
(1.38)

Consider a vector A with only x-component. The z-component of the curl of A is

Fz = −∂Ax

∂y
(1.39)

Figure 1.6. Clockwise movement of the paddle when the velocity of water increases from

bottom to the surface of river.

Skilling [1] suggests the use of a paddle wheel to measure the curl of a vector. As an

example, consider the water flow in a river as shown in Fig. 1.6(a). Suppose the velocity

of water (Ax) increases as we go from the bottom of the river to the surface. The length
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of arrow in Fig. 1.6(a) represents the magnitude of the water velocity. If we place a

paddle wheel with its axis perpendicular to the paper, it will turn clockwise since the

upper paddle experiences more force than the lower paddle (Fig. 1.6(b)). In this case, we

say that curl exists along the axis of the paddle wheel in a direction of an inward normal

to the surface of the page (z direction). Larger speed of the paddle means larger value of

the curl.

Suppose the velocity of water is the same at all depths as shown in Fig. 1.7. In this

Figure 1.7. Velocity of water is constant at all depths. The paddle wheel does not rotate in

this case.

case, the paddle wheel will not turn which means there is no curl in a direction of the axis

of the paddle wheel. From Eq. (1.39), we find that the z-component of the curl is zero if

the water velocity Ax does not change as a function of depth y.

Eq. (1.34) can be understood as follows. Suppose the x-component of the electric

field intensity Ex is changing as a function of y in a conductor, as shown in Fig. 1.8.

This implies that there is a curl perpendicular to the page. From Eq. (1.34), we see that

this should be equal to the time derivative of the magnetic field intensity in z-direction.

In other words, the time-varying magnetic field in the z-direction induces electric field

intensity as shown in Fig. 1.8. The electrons in the conductor move in a direction
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opposite to Ex (Coulomb’s law) leading to the current in the conductor if the circuit is

closed.

Figure 1.8. Induced electric field due to the time-varying magnetic field perpendicular to the

page.

1.4.2 Ampere’s Law in Differential Form

From Eq. (1.21), we have ∮
L1

H · dl =
∫
S

J · dS (1.40)

Using Stokes’ theorem (Eq. (1.32)), Eq. (1.40) may be rewritten as∫
S

(∇×H) · dS =

∫
S

J · dS (1.41)

or

∇×H = J (1.42)

The above equation is the differential form of Ampere’s circuital law and it is one of

Maxwell’s four equations for the case of current and electric field intensity not changing

with time. Eq. (1.40) holds true only under the non-time varying conditions. From

Faraday’s law (Eq. (1.34)), we see that if the magnetic field changes with time, it produces

an electric field. Due to symmetry, one might expect that the time-changing electric field

produces magnetic field. However, comparing Eqs. (1.34) and (1.42), we find that the term

corresponding to time varying electric field is missing in Eq. (1.42). Maxwell proposed
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to add a term to the right hand side of Eq. (1.42) so that time-changing electric field

produces magnetic field. With this modification, Ampere’s circuital law becomes

∇×H = J+
∂D

∂t
(1.43)

In the absence of the second term on the right hand side of Eq. (1.43), it can be shown

that the law of conservation of charges is violated (See Problem 1.4). The second term is

known as displacement current density.

1.5 Maxwell’s Equations

Combining Eqs. (1.12),(1.27),(1.34) and (1.43), we obtain

div D = ρ, (1.44)

div B = 0, (1.45)

∇× E = −∂B
∂t
, (1.46)

∇×H = J+
∂D

∂t
, (1.47)

From Eqs. (1.46) and (1.47), we see that time changing magnetic field produces

electric field and time changing electric field or current density produces magnetic field.

The charge distribution ρ and current density J are the sources for generation of electric

and magnetic fields. For the given charge and current distribution, Eqs. (1.44)-(1.47)

may be solved to obtain the electric and magnetic field distributions. The terms on the

right hand sides of Eqs. (1.46) and (1.47) may be viewed as the sources for generation

of field intensities appearing on the left hand sides of Eqs.(1.46) and (1.47). As an

example, consider the alternating current I0 sin(2πft) flowing in the transmitter antenna.

From Ampere’s law, we find that the current leads to magnetic field intensity around the

antenna (first term of Eq. (1.47)). From Faraday’s law, it follows that the time-varying

magnetic field induces electric field intensity (Eq. (1.46)) in the vicinity of the antenna.

Consider a point in the neighborhood of antenna (but not on the antenna). At this point
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J=0, but the time-varying electric field intensity or displacement current density (second

term on the right hand side of Eq.(1.47)) leads to magnetic field intensity, which in turn

leads to electric field intensity (Eq.(1.46)). This process continues and the generated

electromagnetic wave propagates outward just like the water wave generated by throwing

a stone into a lake. If the displacement current density were to be absent, there would be

no continuous coupling between electric and magnetic fields and we would not have had

electromagnetic waves.

1.5.1 Maxwell’s Equation in Source-Free Region

In free space or dielectric, if there is no charge or current in the neighborhood, we can

set ρ = 0 and J = 0 in Eq. (1.44). Note that the above equations describe the relations

between electric field, magnetic field and the sources at a space-time point and therefore,

in a region sufficiently far away from the sources, we can set ρ = 0 and J = 0 in that

region. However, on the antenna, we can not ignore the source terms ρ or J in Eqs.

(1.44)-(1.47). Setting ρ = 0 and J = 0 in the source-free region, Maxwell’s equations take

the form

div D = 0, (1.48)

div B = 0, (1.49)

∇× E = −∂B
∂t
, (1.50)

∇×H =
∂D

∂t
, (1.51)

In the source-free region, time changing electric/magnetic field (which was generated from

a distant source ρ or J) acts as a source for magnetic/electric field.

1.5.2 Electromagnetic Wave

Suppose the electric field is only along x-direction,

E = Exx, (1.52)
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and magnetic field is only along y-direction,

H = Hyy. (1.53)

Substituting Eqs. (1.52) and (1.53) into Eq. (1.50), we obtain

∇× E =


x y z

∂
∂x

∂
∂y

∂
∂z

Ex 0 0

 =
∂Ex

∂z
y− ∂Ex

∂y
z = −µ∂Hy

∂t
y. (1.54)

Equating y- and z-components separately, we find

∂Ex

∂z
= −µ∂Hy

∂t
, (1.55)

∂Ex

∂y
= 0. (1.56)

Substituting Eqs. (1.52) and (1.53) into Eq. (1.51), we obtain

∇×H =


x y z

∂
∂x

∂
∂y

∂
∂z

0 Hy 0

 = −∂Hy

∂z
x+

∂Hy

∂x
z = ϵ

∂Ex

∂t
x. (1.57)

Therefore,

∂Hy

∂z
= −ϵ∂Ex

∂t
, (1.58)

∂Hy

∂x
= 0. (1.59)

Eqs. (1.55) and (1.58) are coupled. To obtain an equation that does not contain Hy, we

differentiate Eq. (1.55) with respect to z and differentiate Eq. (1.58) with respect to t,

∂2Ex

∂z2
= −µ ∂Hy

∂t∂z
, (1.60)

µ
∂2Hy

∂z∂t
= −µϵ∂

2Ex

∂t2
. (1.61)

Adding Eqs. (1.60) and (1.61), we obtain

∂2Ex

∂z2
= µϵ

∂Ex

∂t2
. (1.62)

The above equation is called the wave equation and it forms the basis for the study of

electromagnetic wave propagation.
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1.5.3 Free Space Propagation

For free space, ϵ = ϵ0 = 8.854× 10−12C2/Nm2, µ = µ0 = 4π × 10−7N/A2, and

c =
1

√
µ0ϵ0

≃ 3× 108m/s, (1.63)

where c is the velocity of light in free space. Before Maxwell’s time, electrostatics, mag-

netostatics and optics were unrelated. Maxwell unified these three fields and showed that

the light wave is actually an electromagnetic wave with its velocity given by Eq. (1.63).

1.5.4 Propagation in a Dielectric Medium

Similar to Eq. (1.63), velocity of light in a medium can be written as

v =
1

√
µϵ
, (1.64)

where µ = µ0µr and ϵ = ϵ0ϵr. Therefore,

v =
1

√
µ0ϵ0µrϵr

. (1.65)

Using Eq. (1.64) in Eq. (1.65), we have

v =
c

√
µrϵr

. (1.66)

For dielectrics, µr = 1 and velocity of light in a dielectric medium can be written as

v =
c

√
ϵr

=
c

n
, (1.67)

where n =
√
ϵr is called the refractive index of the medium. The refractive index of a

medium is greater than 1 and velocity of light in a medium is less than that in free space.

1.6 1-Dimensional Wave Equation

Using Eq. (1.64) in Eq. (1.62), we obtain

∂2Ex

∂z2
=

1

v2
∂2Ex

∂t2
. (1.68)
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Elimination of Ex from Eqs. (1.55) and (1.58) leads to the same equation for Hy,

∂2Hy

∂z2
=

1

v2
∂Hy

∂t2
(1.69)

To solve Eq. (1.68), let us try a trial solution of the form

Ex(t, z) = f(t+ αz), (1.70)

where f is an arbitrary function of t+ αz. Let

u = t+ αz (1.71)

∂u

∂z
= α,

∂u

∂t
= 1, (1.72)

∂Ex

∂z
=
∂Ex

∂u

∂u

∂z
=
∂Ex

∂u
α, (1.73)

∂2Ex

∂z2
=
∂2Ex

∂u2
α2, (1.74)

∂2Ex

∂t2
=
∂2Ex

∂u2
. (1.75)

Using Eqs. (1.74) and (1.75) in Eq. (1.68), we obtain

α2∂
2Ex

∂u2
=

1

v2
∂2Ex

∂u2
. (1.76)

Therefore,

α = ±1

v
, (1.77)

Ex = f
(
t+

z

v

)
or Ex = f

(
t− z

v

)
(1.78)

The negative sign implies a forward propagating wave and the positive sign indicates a

backward propagating wave. Note that f is an arbitrary function and it is determined by

the initial conditions as illustrated by the following examples.
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Figure 1.9. Electrical field Ex(t, 0) at the flash light

Example 1.1

Turn on the flash light for 1 ms and turn it off. You will generate a pulse shown in Fig.

1.9 at the flash light (z = 0). The electric field intensity oscillates at light frequencies and

the rectangular shape shown in Fig. 1.9 is actually the absolute field envelope. Let us

ignore the fast oscillations in this example and write the field (which is actually the field

envelope1) at z = 0 as

Ex(t, 0) = f(t) = A0 rect

(
t

T0

)
, (1.79)

where

rect(x) =

 1, if |x| < 1/2

0, otherwise
(1.80)

and T0 = 1 ms. The speed of light in free space, v = c ≃ 3× 108m/s. Therefore, it takes

Figure 1.10. The propagation of the light pulse generated at the flash light.

1In can be shown that the field envelope also satisfies wave equation.
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0.33× 10−8s to get the light pulse on the screen. At z = 1 m,

Ex(t, z) = f
(
t− z

v

)
= A0rect

(
t− 0.33× 10−8

T0

)
. (1.81)

Figure 1.11. The electric field envelopes at the flash light and at the screen.

Example 1.2

A laser operates at 191 THz. Under ideal conditions and ignoring transverse distributions,

the laser output may be written as

Ex(t, 0) = f(t) = A0 cos(2πf0t), (1.82)

where f0 = 191 THz. The laser output arrives at the screen after 0.33 × 10−8s. The

Figure 1.12. The propagation of laser output in free space.

20



electric field intensity at the screen may be written as

Ex(t, z) = f
(
t− z

v

)
= A cos

[
2πf0

(
t− z

v

)]
= A cos

[
2πf0(t− 0.33× 10−8)

]
. (1.83)

Example 1.3

Figure 1.13. Reflection of the laser output by a mirror.

The laser output is reflected by a mirror and it propagates in backward direction as

shown in Fig. 1.13. In Eq. (1.78), the positive sign corresponds to backward propagating

wave. Suppose that at the mirror electromagnetic wave undergoes a phase shift of ϕ 2 .

The backward propagating wave can be described by (see Eq. (1.78)

Ex− = A cos[2πf0(t+ z/v) + ϕ] (1.84)

The forward propagating wave is described by Eq. (1.83) ,

Ex+ = A cos[2πf0(t− z/v)] (1.85)

Total field is given by

Ex = Ex+ + Ex− (1.86)

2If the mirror is a perfect conductor, ϕ = π .
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1.6.1 1-Dimensional Plane Wave

The output of the laser in Example 1.2 propagates as a plane wave as given by Eq. (1.83).

A plane wave can be written in any of the following forms:

Ex(t, z) = Ex0 cos
[
2πf

(
t− z

v

)]
,

= Ex0 cos

[
2πft− 2π

λ
z

]
,

= Ex0 cos (ωt− kz) ,

(1.87)

where v is the velocity of light in the medium, f is the frequency, λ = v/f is the wave-

length, ω = 2πf is the angular frequency, k = 2π/λ is the wave number, and k is also

called the propagation constant. Frequency and wavelength are related by

v = fλ, (1.88)

or equivalently

v =
ω

k
. (1.89)

Since Hy also satisfies the wave equation (Eq. (1.69)), it can be written as

Hy = Hy0 cos (ωt− kz) (1.90)

From Eq. (1.58), we have
∂Hy

∂z
= −ϵ∂Ex

∂t
, (1.91)

Using Eq. (1.87) in Eq. (1.91), we obtain

∂Hy

∂z
= ϵωEx0 sin (ωt− kz) (1.92)

Integrating Eq. (1.92) with respect to z,

Hy =
ϵEx0ω

k
cos (ωt− kz) +D (1.93)
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where D is a constant of integration and it could depend on t. Comparing Eqs. (1.90)

and (1.93), we see that D is zero and using Eq. (1.89), we find

Ex0

Hy0

=
1

ϵυ
= η, (1.94)

where η is the intrinsic impedance of the dielectric medium. For freespace η = 376.47

Ohms. Note that Ex and Hy are independent of x and y. In other words, at time t, the

phase ωt− kz is constant in a transverse plane described by z = constant and therefore,

they are called plane waves.

1.6.2 Complex Notation

It is often convenient to use the complex notation for electric and magnetic fields in the

following forms:

Ẽx = Ex0e
i(ωt−kz) or Ẽx = Ex0e

−i(ωt−kz) (1.95)

and

H̃y = Hy0e
i(ωt−kz) or H̃y = Hy0e

−i(ωt−kz) (1.96)

This is known as analytic representation. The actual electric and magnetic fields can be

obtained by

Ex = Re
[
Ẽx

]
= Ex0 cos (ωt− kz) (1.97)

and

Hy = Re
[
H̃y

]
= Hy0 cos (ωt− kz) (1.98)

In reality, the electric and magnetic fields are not complex, but we represent them in the

complex forms of Eqs. (1.95) and (1.96) with the understanding that the real parts of the

complex fields corresponds to the actual electric and magnetic fields. This representation

leads to mathematical simplifications. For example, differentiation of a complex expo-

nential function is the complex exponential function multiplied by some constant. In the

analytic representation, superposition of two eletromagnetic fields corresponds to addition

of two complex fields. However, care should be exercised when we take the product of
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two electromagnetic fields as encountered in nonlinear optics. For example, consider the

product of two electrical fields given by

Exn = An cos(ωnt− knz), n = 1, 2 (1.99)

Ex1Ex2 =
A1A2

2
cos[(ω1 + ω2)t− (k1 + k2)z] +

cos[(ω1 − ω2)t− (k1 − k2)z] (1.100)

The product of the electromagnetic fields in the complex forms is

Ẽx1Ẽx2 = A1A2 exp[i(ω1 + ω2)t− i(k1 + k2)z] (1.101)

If we take the real part of Eq. (1.101), we find

Re
[
Ẽx1Ẽx1

]
= A1A2 cos[(ω1 + ω2)t− (k1 + k2)z]

̸= Ex1Ex2 (1.102)

In this case, we should use the real form of electromagnetic fields. In the rest of the book,

we sometimes omit ˜ and use Ex(Hy) to represent complex electric (magnetic) field with

the understanding that the real part is the actual field.

1.7 Power Flow and Poynting Vector

Consider an electromagnetic wave propagating in a region V with the cross-sectional area

A as shown in Fig. 1.14. The propagation of a plane electromagnetic wave in the source

free region are governed by Eqs. (1.58) and (1.60),

ϵ
∂Ex

∂t
= −∂Hy

∂z
(1.103)

µ
∂Hy

∂t
= −∂Ex

∂z
(1.104)

Multiplying Eq. (1.103) by Ex and noting that

∂E2
x

∂t
= 2Ex

∂Ex

∂t
, (1.105)
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Figure 1.14. Electromagnetic wave propagation in a volume V with cross-sectional area A.

we obtain
ϵ

2

∂E2
x

∂t
= −Ex

∂Hy

∂z
(1.106)

Similarly, multiplying Eq. (1.104) by Hy, we have

µ

2

∂H2
y

∂t
= −Hy

∂Ex

∂z
(1.107)

Adding Eqs. (1.107) and (1.106) and integrating over the volume V , we obtain

∂

∂t

∫
V

[
ϵE2

x

2
+
µH2

y

2

]
dV = −A

∫ L

0

[
Ex
∂Hy

∂z
+Hy

∂Ex

∂z

]
dz (1.108)

On the right hand side of Eq. (1.108), integration over the transverse plane yields the

area A since Ex and Hy are functions of z only. Eq. (1.108) can be rewritten as

∂

∂t

∫
V

[
ϵE2

x

2
+
µH2

y

2

]
dV = −A

∫ L

0

∂

∂z
[ExHy] dz = −AExHy

∣∣∣∣L
0

(1.109)

The terms ϵE2
x/2 and µH

2
y/2 represent energy densities of electric field and magnetic field,

respectively. The left hand side of Eq. (1.109) can be interpreted as the power crossing
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the area A and therefore, ExHy is the power per unit area or power density measured in

watts per square meter (W/m2). We define a Poynting vector P as

P = E×H (1.110)

The z-component of the Poynting vector is

Pz = ExHy (1.111)

The direction of the Poynting vector is normal to both E and H vectors and in fact, it is

the direction of power flow.

In Eq. (1.109), integrating the energy density over volume leads to energy, E and

therefore, it can be rewritten as

1

A

dE
dt

= Pz(0)− Pz(L) (1.112)

The left hand side of (1.112) represents the rate of change of energy per unit area and

therefore, Pz has the dimension of power per unit area or power density. For lightwaves,

the power density is also known as optical intensity. Eq. (1.112) states that the difference

in the power entering the corss-section A and power leaving the cross-section A is equal

to the rate of change of energy in the volume V . The plane wave solutions for Ex and Hy

are given by Eqs. (1.87) and (1.90),

Ex = Ex0 cos (ωt− kz) (1.113)

Hy = Hy0 cos (ωt− kz) (1.114)

Pz =
E2

x0

η
cos2 (ωt− kz) (1.115)

The average power density may be found by integrating it over one cycle and divide by

the period T = 1/f .

Pav
z =

1

T

E2
x0

η

∫ T

0

cos2 (ωt− kz) dt, (1.116)

=
1

T

E2
x0

η

∫ T

0

1 + cos[2(ωt− kz)]

2
dt (1.117)

=
E2

x0

2η
. (1.118)
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The integral of the cosine function over one period is zero and therefore, the second term

of Eq. (1.118) does not contribute after the integration. The average power density Pav
z

is proportional to square of the electric field amplitude. Using complex notation, Eq.

(1.111) can be written as

Pz = Re
[
Ẽx

]
Re
[
H̃y

]
(1.119)

=
1

η
Re
[
Ẽx

]
Re
[
Ẽx

]
=

1

η

[
Ẽx + Ẽ∗

x

2

][
Ẽx + Ẽ∗

x

2

]
(1.120)

The right hand side of Eq. (1.120) contains the product terms such as Ẽ2
x and Ẽ∗2

x . The

average of E2
x and E∗2

x over the period T is zeros since they are sinusoids with no dc

component. Therefore, the average power density is given by

Pav
z =

1

2ηT

∫ T

0

∣∣∣Ẽx

∣∣∣2 dt =
∣∣∣Ẽx

∣∣∣2
2η

, (1.121)

since
∣∣∣Ẽx

∣∣∣2 is a constant for the plane wave. Thus, we see that, in complex notation, the

average power density is proportional to the absolute square of the amplitude.

Problem 1.1

Two monochromatic waves are superposed to obtain

Ẽx = A1 exp[i(ω1t− k1z)] + A2 exp[i(ω2t− k2z)] (1.122)

Find the average power density of the combined wave.

Solution From Eq. (1.121), we have

Pav
z =

1

2ηT

∫ T

0

∣∣∣Ẽx

∣∣∣2 dt
=

1

2ηT

{
T |A1|2 + T |A2|2 + A1A

⋆
2

∫ T

0

exp[i(ω1 − ω2)t− i(k1 − k2)z]dt

+A2A
⋆
1

∫ T

0

exp[−i(ω1 − ω2) + i(k1 − k2)z]]}dt (1.123)

27



Since integrals of sinusoids over the period T is zero, the last two terms in Eq. (1.123)

do not contribute, which leads to

Pav
z =

|A1|2 + |A2|2

2η
(1.124)

Thus, the average power density is the sum of absolute squares of the amplitudes of

monochromatic waves.

1.8 3-Dimensional Wave Equation

From Maxwell’s equations, the following wave equation could be derived (See Problem

1.6)
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− 1

υ2
∂2ψ

∂t2
= 0 (1.125)

where ψ is any one of components Ex, Ey, Ez, Hx, Hy, Hz. As before, let us try a trial

solution of the form

ψ = f (t− αxx− αyy − αzz) (1.126)

Proceeding as in section (1.6), we find that

α2
x + α2

y + α2
z =

1

υ2
(1.127)

If we choose the function to be a cosine function, we obtain a 3-dimensional plane wave

described by

ψ = ψ0 cos [ω (t− αxx− αyy − αzz)] (1.128)

= ψ0 cos (ωt− kxx− kyy − kzz) (1.129)

where kr = ωαr, r = x, y, z. Define a vector k = kxx + kyy + kzz. k is known as wave

vector. Eq. (1.127) becomes
ω2

k2
= υ2 or

ω

k
= ±υ (1.130)

where k is the magnitude of the vector k,

k =
√
k2x + k2y + k2z (1.131)
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k is also known as wave number. The angular frequency ω is determined by the light source

such as a laser or LED. In a linear medium, the frequency of the launched electromagnetic

wave can not be changed. The frequency of the plane wave propagating in a medium of

refractive index n is same as that of the source although the wavelength in the medium

decreases by a factor n. For the given angular frequency ω, the wave number in a medium

of refractive index n can be determined by

k =
ω

υ
=
ωn

c
=

2πn

λ0
(1.132)

where λ0 = c/f is the free space wavelength. For free space, n = 1 and the wave number

is

k0 =
2π

λ0
(1.133)

The wavelength λm is a medium of refractive index n can be defined by

k =
2π

λm
(1.134)

Comparing (1.132) and (1.134), it follows that

λm =
λ0
n

(1.135)

Example 1.4

Consider a plane wave propagating in x-z plane making an angle of 300 with z-axis. This

plane wave may be described by

ψ = ψ0 cos (ωt− kxx− kzz) (1.136)

The wave vector k = kxx + kzz. From the Fig. 1.15, kx = k cos 600 = k/2 and kz =

k cos 300 = k
√
3/2. Eq. (1.136) may be written as

ψ = ψ0 cos

[
ωt− k

(
1

2
x+

√
3

2
z

)]
(1.137)
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Figure 1.15. A plane wave propagates at angle 30◦ with z-axis.

Figure 1.16. Reflection of a light wave incident on a mirror.
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1.9 Reflection and Refraction

Reflection and refraction occur when light enters into a new medium with a different

refractive index. Consider a ray incident on the mirror MM’. According to the law of

reflection, the angle of reflection ϕr is equal to the angle of incidence ϕi

ϕi = ϕr

The above result can be proved from Maxwell’s equations with appropriate boundary

Figure 1.17. Illustration of Fermat’s principle.

conditions. Instead, let us use Fermat’s principle to prove it. There are infinite number

of paths to go from point A to point B after striking the mirror. Fermat’s principle can

be loosely stated as follows: out of infinite number of paths to go from point A to point

B, light chooses the path that takes the shortest transit time. In Fig. 1.17, light could

choose AC
′
B, AC

′′
B, AC

′′′
B or any other path. But it chooses the path AC

′
B for which

ϕi = ϕr. Draw the line M
′
B

′
= BM

′
so that BC

′
= C

′
B

′
, BC

′′
= C

′′
B

′
and so on. If

AC
′
B

′
is a straight line, it would be the shortest of all the paths connecting A and B

′
.

Since AC
′
B(= AC

′
B

′
), it would be the shortest path to go from A to B after striking the
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mirror and therefore, according to Fermat’s principle, light chooses the path AC
′
B which

takes the shortest time. To prove that ϕi = ϕr, consider the point C
′
. Adding up all the

angles at C
′
, we find

ϕi + ϕr + 2(π/2− ϕr) = 2π (1.138)

or

ϕi = ϕr (1.139)

1.9.1 Refraction

Figure 1.18. Refraction of a plane wave incident at the interface of two dielectrics.

In a medium with constant refraction index, light travels in a straight line. But as

the light travels from rarer medium to denser medium, it bends towards the normal to

the interface as shown in Fig. 1.18. This phenomenon is called refraction, and it can be

explained using Fermat’s principle. Since the speed of light in two media are different,

the path which takes the shortest time to reach B from A may not be a straight line AB.

Feynmann et al [2] give the following analogy: suppose there is a little girl drowning in

a sea at point B and screaming for help as illustrated in Fig. 1.19. You are at point A

on the land. Obviously the paths AC2B and AC3B take longer time. You could choose
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Figure 1.19. Different paths to connect A and B

the straight line path AC1B. But since running takes less time than swimming, it is

advantageous to travel a little longer distance on the land than on the sea. Therefore, the

path AC0B would take shorter time than AC1B. Similarly, in the case of light propagating

from rare medium to dense medium (Fig. 1.20), light travels faster in the rare medium

and therefore, the path AC0B may take shorter time than AC1B. This explains why light

bends towards the normal. To obtain a relation between the angle of incidence ϕ1 and

angle of refraction ϕ2, let us consider the time taken by light to go from A to B via several

paths.

tx =
n1ACx

c
+
n2CxB

c
, x = 0, 1, 2, . . . (1.140)

From Fig. 1.21, we have

AD = x, CxD = y, ACx =
√
x2 + y2 (1.141)

BE = AF − x, BCx =

√
(AF − x)2 +BG2 (1.142)

Substituting this in Eq. (1.140), we find

tx =
n1

√
x2 + y2

c
+
n2

√
(AF − x)2 +BG2

c
(1.143)
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Figure 1.20. Illustration of Fermat’s principle for the case of refraction.

Figure 1.21. Refraction of a lightwave
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Note that AF , BG and y are constants as x changes. Therefore, to find the path that

takes the least time, we differentiate tx with respect to x and set it to zero,

dtx
dx

=
n1x√
x2 + y2

− n2 (AF − x)√
(AF − x)2 +BG2

= 0 (1.144)

From Fig. 1.21, we have

x√
x2 + y2

= sinϕ1,
AF − x√

(AF − x)2 +BG2

= sinϕ2 (1.145)

Therefore, Eq. (1.144) becomes

n1 sinϕ1 = n2 sinϕ2 (1.146)

This is called Snell’s law. If n2 > n1, sinϕ1 > sinϕ2 and ϕ1 > ϕ2. This explains why light

bends towards the normal in a denser medium as shown in Fig. 1.18.

When n1 > n2, from Eq.(1.146), we have ϕ2 > ϕ1. As the angle of incidence ϕ1

increases, the angle of refraction ϕ2 increases too. For a particular angle, ϕ1 = ϕc, ϕ2

becomes π/2,

n1 sinϕc = n2 sinπ/2, (1.147)

or

sinϕc = n2/n1. (1.148)

The angle ϕc is called the critical angle. If the angle of incidence is increased beyond the

critical angle, the incident optical ray is completely reflected as shown in Fig.1.22. This

is called total internal reflection (TIR) and it plays an important role in the propagation

of light in optical fibers.

Note that the statement that light chooses the path that takes the least time is not

strictly correct. In Fig. 1.16, the time to go from A to B directly (without passing through

the mirror) is the shortest and one may wonder why should light go through the mirror.

However, if we put constraint that light has to pass through the mirror, the shortest path
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Figure 1.22. Total internal reflection when ϕ > ϕc.

would be ACB and light indeed takes that path. In reality, light takes the direct path

AB as well as ACB. A more precise statement of Fermat’s principle is that light chooses

a path for which the transit time is an extremum. In fact, there could be several paths

satisfying the condition of extremum and light chooses all those paths. By extremum, we

mean there could be many neighboring paths and change of time of flight with a small

change in the path length is zero to the first order.

Problem 1.2

The critical angle for the glass-air interface is 0.7297 rad. Find the refractive index of

glass.

Solution:

Refractive index of air is close to unity. From Eq. (1.148), we have

sinϕc = n2/n1 (1.149)
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With n2 = 1, the refractive index of glass, n2 is

n1 = 1/ sinϕc

= 1.5 (1.150)

Problem 1.3

Output of a laser operating at 190 THz is incident on a dielectric medium of refractive

index 1.45. Calculate (a) speed of light (b) wavelength in the medium (c) wave number

in the medium.

Solution:

(a) Speed of light in the medium is given by

v =
c

n
(1.151)

c = 3× 108 m/s, n = 1.45,

v =
3× 108 m/s

1.45
= 2.069× 108 m/s. (1.152)

(b)

speed = frequency× wavelength

v = fλm (1.153)

f = 190 THz, v = 2.069× 108 m/s,

λm =
2.069× 108

190× 1012
m = 1.0889 µm. (1.154)

(c) Wavenumber in the medium is

k =
2π

λm
=

2π

1.0889× 10−6
= 5.77× 106 m−1. (1.155)
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Problem 1.4

The output of the laser of Problem 1.3 is incident on a dielectric slab with an angle of

incidence = π/3, as shown in Fig. 1.23 (a) Calculate the magnitude of the wave vector

Figure 1.23. Reflection of light at air-dielectric interface.

of the refracted wave (b) calculate the x-component and z-component of the wave vector.

The other parameters are the same as in Problem 1.3.

Solution:

Using Snell’s law, we have

n1 sinϕ1 = n2 sinϕ2, (1.156)

For air n1 ≈ 1 , for the slab n2 = 1.45, ϕ1 = π/3. So,

ϕ2 = sin−1

{
sin (π/3)

1.45

}
= 0.6401 rad. (1.157)

The electric field intensity in the dielectric medium can be written as

Ey = A cos (ωt− kxx− kzz) . (1.158)

(a) Magnitude of wave vector is same as the wave number, k. It is given by

|k| = k =
2π

λm
= 5.77× 106 m−1. (1.159)
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(b) z-component of the wave vector is

kz = k cos(ϕ2) = 5.77× 106 × cos (0.6401) m−1 = 4.62× 106 m−1. (1.160)

x-component of the wave vector is

kx = k sin(ϕ2) = 5.77× 106 × sin (0.6401) m−1 = 3.44× 106 m−1. (1.161)

1.10 Phase Velocity and Group Velocity

Consider the superposition of two monochromatic electromagnetic waves of frequencies

ω0 +∆ω/2 and ω0 −∆ω/2 as shown in Fig. 1.24. Let ∆ω ≪ ω0. The total electric field

Figure 1.24. The spectrum when two monochromatic waves are superposed.

intensity can be written as

E = E1 + E2 (1.162)

Let the electric field intensity of these waves be

E1 = cos [(ω0 −∆ω/2)t− (k −∆k/2)z] (1.163)

E2 = cos [(ω0 +∆ω/2)t− (k +∆k/2)z] (1.164)

Using the formula,

cosC + cosD = 2 cos

(
C +D

2

)
cos

(
C −D

2

)
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Eq. (1.162) can be written as

E = 2 cos(∆ωt−∆kz)︸ ︷︷ ︸
field envelope

cos(ω0t− k0z)︸ ︷︷ ︸
carrier

(1.165)

Eq. (1.165) represents the modulation of an optical carrier of frequency ω0 by a sinusoid

of frequency ∆ω. Fig. 1.25 shows the total electric field intensity at z = 0. The broken

line shows the field envelope and the solid line shows the rapid oscillations due to optical

carrier. We have seen before that

Figure 1.25. Superposition of two monochromatic electromagnetic waves. The broken lines

and solid lines show the field envelope and optical carrier, respectively.

vph =
ω0

k0

is the velocity of the carrier. It is called the phase velocity. Similarly, from Eq.(1.165),

the speed with which the envelope moves is given by

vg =
∆ω

∆k
(1.166)

where vg is called the group velocity. Even if the number of monochromatic waves traveling

together is more than two, an equation similar to Eq.(1.165) can be derived. In general,
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the speed of the envelope (group velocity) could be different from that of the carrier.

However, in free space,

vg = vph = c

The above result can be proved as follows. In free space, the velocity of light is independent

of frequency,
ω1

k1
=
ω2

k2
= c = vph (1.167)

Let

ω1 = ω0 −
∆ω

2
, k1 = k0 −

∆k

2
(1.168)

ω2 = ω0 +
∆ω

2
, k2 = k0 +

∆k

2
(1.169)

From Eqs. (1.168) and (1.169), we obtain

ω2 − ω1

k2 − k1
=

∆ω

∆k
= vg (1.170)

From Eq.(1.167), we have

ω1 = ck1

ω2 = ck2

ω1 − ω2 = c(k1 − k2) (1.171)

Using Eqs. (1.170) and (1.171), we obtain

ω1 − ω2

k1 − k2
= c = vg (1.172)

In a dielectric medium, the velocity of light vph could be different at different frequencies.

In general,
ω1

k1
̸= ω1

k2
(1.173)

In other words, the phase velocity vph is a function of frequency,

vph = vph(ω) (1.174)

k =
ω

vph(ω)
= k(ω) (1.175)
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In the case of two sinusoidal waves, the group speed is given by Eq. (1.166),

vg =
∆ω

∆k
(1.176)

In general, for an arbitrary cluster of waves, the group speed is defined as,

vg = lim
∆k→0

∆ω

∆k
=
dω

dk
(1.177)

Sometimes it is useful to define the inverse group speed β1 as

β1 =
1

vg
=
dk

dω
(1.178)

β1 could depend on frequency. If β1 changes with frequency in a medium, it is called

a dispersive medium. Optical fiber is an example for a dispersive medium which will

be discussed in detail in Chapter 2. If the refractive index changes with frequency, β1

becomes frequency dependent. Since

k(ω) =
ωn(ω)

c
, (1.179)

From Eq. (1.178), it follows that

β1(ω) =
n(ω)

c
+
ω

c

dn(ω)

dω
(1.180)

Another example for a dispersive medium is prism in which the refractive index is different

for different frequency components. Consider a white light incident on the prism, as shown

in Fig. (1.26). Using Snell’s law for the air-glass interface at the left, we find

ϕ2(ω) = sin−1

(
sinϕ1

n2(ω)

)
(1.181)

where n2(ω) is the refractive index of the prism. Thus, different frequency components of

a white light travel at different angles as shown in Fig. (1.26). Because of the material

dispersion of the prism, a white light is spread into rainbow of colors. Next, let us consider

the co-propagation of electromagnetic waves of different angular frequencies in a range

[ω1 ω2] with the mean angular frequency ω0 as shown in Fig. (1.27).
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Figure 1.26. Decomposition of white light into its constituter colors.

Figure 1.27. The spectrum of electromagnetic wave.
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The frequency components near the left edge travel at an inverse speed of β1(ω1). If

the length of the medium is L, the frequency components corresponding to the left edge

would arrive at L after a delay of

T1 =
L

vg(ω1)
= β1(ω1)L

Similarly, the frequency components corresponding to the right edge would arrive at L

after a delay of

T2 = β1(ω2)L

The delay between the left edge and right edge frequency components is

∆T = |T1 − T2| = L|β1(ω1)− β1(ω2)| (1.182)

Differentiating Eq. (1.178), we obtain

dβ1
dω

=
d2k

dω2
≡ β2 (1.183)

β2 is called the group velocity dispersion parameter. When β2 > 0, the medium is said to

exhibit normal dispersive. In the normal-dispersion regime, low-frequency (red-shifted)

components travel faster than high-frequency (blue-shifted) components. If β2 < 0, the

opposite occurs and the medium is said to exhibit anomalous dispersion. Any medium

with β2 = 0 is non-dispersive. Since

dβ1
dω

= lim
∆ω→0

β1(ω1)− β1(ω2)

ω1 − ω2

= β2, (1.184)

and

β1(ω1)− β1(ω2) ≃ β2∆ω, (1.185)

using Eq. (1.185) in Eq. (1.182), we obtain

∆T = L|β2|∆ω (1.186)

In free space, β1 is independent of frequency, β2 = 0 and therefore, the delay between

left and right edge components is zero. This means that the pulse duration at the input

(z = 0) and output (z = L) would be the same. However, in a dispersive medium such as

optical fiber, the frequency components near ω1 could arrive earlier (or later) than that

near ω2 leading to pulse broadening.
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Problem 1.5

An optical signal of bandwidth 100 GHz is transmitted over a dispersive medium with

β2 = 10 ps2/km. The delay between minimum and maximum frequency components is

found to be 3.14 ps. Find the length of the medium.

Solution

∆ω = 2π100 Grad/s, ∆T = 3.14ps, β2 = 10 ps2/km. (1.187)

Substituting Eq. (1.187) in Eq. (1.186), we find L = 500 m.

1.11 Polarization of Light

So far we have assumed that the electric and magnetic fields of a plane wave are along

the x- and y-directions, respectively. In general, electric field can be in any direction in

x-y plane. This plane wave propagates in z-direction. The electric field intensity can be

written as

E = Axx+ Ayy, (1.188)

Ax = ax exp [i (ωt− kz) + iϕx] , (1.189)

Ay = ay exp [i (ωt− kz) + iϕy] , (1.190)

where ax and ay are complex amplitudes of the x- and y-polarization components, respec-

tively, and ϕx and ϕy are the corresponding phases. Using Eqs. (1.189) and (1.190), Eq.

(1.188) can be written as

E = a exp [i (ωt− kz) + iϕx] , (1.191)

a = axx+ ay exp (i∆ϕ)y, (1.192)

where ∆ϕ = ϕy−ϕx. Here, a is the complex field envelope vector. If one of the polarization

components vanishes (ay = 0, for example), the light is said to be linearly polarized in
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the direction of the other polarization component (the x direction). If ∆ϕ = 0 or π, the

light wave is also linearly polarized. This is because the magnitude of a in this case is

a2x+a
2
y and the direction of a is determined by θ = ± tan−1 (ay/ax) with respect to x-axis,

as shown in Fig. 1.28 The light wave is linearly polarized at an angle θ with respect to

Figure 1.28. The x- and y-polarization components of a plane wave. The magnitude is

|a| =
√

a2x + a2y and the angle is θ = tan−1 (ay/ax).

x-axis. A plane wave of angular frequency ω is completely characterized by the complex

field envelope vector a. It can also be written in the form of a column matrix known as

the Jones vector :

a =

 ax

ay exp(i∆ϕ)

 (1.193)

The above form will be used for the description of polarization mode dispersion in optical

fibers.

Exercises

1.1 Two identical charges are separated by 1 mm in vacuum. Each of them experience

a repulsive force of 0.225 N. Calculate (a) the amount of charge (b) the magnitude of

electric field intensity at the location of a charge due to the other charge.

(Ans: (a) 5 nC (b) 4.49 ×107 N/C)

1.2 The magnetic field intensity at a distance of 1 mm from a long conductor carrying a
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DC current is 239 A/m. The cross-section of the conductor is 2 mm2. Calculate the (a)

current (b)current density.

(Ans: (a) 1.5 A (b) 7.5 ×105 A/m2.)

1.3 Electric field intensity in a conductor due to a time-varying magnetic field is

E = 6 cos(0.1y) cos(105t)x V/m (1.194)

Calculate the magnetic flux density. Assume that the magnetic flux density is zero at

t=0.

(Ans: B = −0.6 sin(0.1y) sin(106t)z µT )

1.4 The law of conservation of charges is given by

∇ · J+
∂ρ

∂t
= 0

Show that the Ampere’s law given by Eq. (1.42) violates the law of conservation of charges

and Maxwell’s equation given by Eq. (1.43) is in agreement with the law of conservation

of charges.

Hint: Take divergence of Eq. (1.42) and use the vector identity

∇ · ∇ ×H = 0

1.5 The x-component of the electric field intensity of the laser operating at 690 nm is

Ex(t, 0) = 3rect(t/T0) cos(2πf0t) V/m, (1.195)

where T0 = 5 ns. The laser and screen are located at z = 0 and z = 5m, respectively.

Sketch the field intensities at the laser and the screen in time and frequency domain.

1.6 Starting from Maxwell’s equations (Eqs. (1.48)-(1.51)), prove that the electric field

intensity satisfies the wave equation

∇2E− 1

c2
∂2E

∂t2
= 0

Hint: Take curl on both sides of Eq. (1.50) and use the vector identity

∇×∇× E = ∇ (∇ · E)−∇2E
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1.7 Determine the direction of propagation of the following wave

Ex = Ex0 = cos

[
ω

(
t−

√
3

2c
z +

x

2c

)]

1.8 Show that

Ψ = Ψ0 exp
[
− (ωt− kxx− kyy − kzz)

2] (1.196)

is a solution of the wave equation (1.125) if ω2 = υ2
(
k2x + k2y + k2z

)
Hint: Subsititute Eq. (1.196) into the wave equation (1.125)

1.9. A lightwave of wavelength (free space) 600 nm is incident on a dielectric medium of

relative permittivity 2.25. Calculate (a) speed of light in the medium (b) frequency in

the medium (c) wavelength in the medium (d) wave number in the free space (e) wave

number in the medium.

(Ans: (a) 2× 108m/s (b)500 THz (c) 400 nm (d) 1.047×107m−1 (e) 1.57×107m−1.)

1.10 State Fermat’s principle and explain its applications.

1.11 A light ray propagating in a dielectric medium of index n=3.2 is incident on the

dielectric-air interface. Calculate (a) the critical angle (b) if the angle of incidence is π/4,

will it undergo total internal reflection?

(Ans: (a) 0.317 rad. (b) yes)

1.12 Consider a plane wave making an angle of π/6 radians with the mirror as shown in

Fig. 1.29. It undergoes reflection at the mirror and refraction at the glass-air interface.

Provide a mathematical expression for the plane wave in the air corresponding to segment

CD. Ignore phase-shifts and losses due reflections.

Figure 1.29. Plane wave reflection at the glass-mirror interface.
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1.13. Find the average power density of the superposition of N electromagnetic waves

given by

Ex =
N∑

n=1

An exp[in(ωt− kz)] (1.197)

1.14 A plane electromagnetic wave of wavelength 400 nm is propagating in a dielectric

medium of index n= 1.5. The electric field intensity is

E+ = 2 cos(2πf0t(t− z/v))x V/m. (1.198)

(a) Determine the Poynting vector. (b) This wave is reflected by a mirror. Assume that

the phase-shift due to reflection is π. Determine the Poynting vector for the reflected

wave. Ignore losses due to propagation and mirror reflections.

1.15. An experiment is conducted to calculate the group velocity dispersion coefficient

of a medium of length 500 m by sending two plane waves of wavelengths 1550 nm and

1550.1 nm. The delay between these frequency components is found to be 3.92 ps. Find

|β2|. The transit time for the higher frequency components is found to be less than that

for lower frequency component. Is the medium normally dispersive?

(Ans: 100 ps2/km. No)

49



Further Reading

1. J.D.Jackson, ”Classical Electrodynamics,” John Wiley and Sons Inc., 3rd Edition, New

York, 1998.

2. M.Born and E. Wolf, ”Principles of optics,” Cambridge University Press, 7th ed.,

Cambridge, 2003.

3. A. Ghatak and K. Thyagarajan, ”Optical electronics,” Cambridge University Press,

England,1998.

4. W. H. Hayt, Jr., ”Engineering Electromagnetics,” McGraw-Hill Book Company, 5th

Edition, 1989.

5. B.E.A. Saleh and M.C. Teich, ”Fundamentals of photonics,” John Wiley and Sons Inc.,

Hoboken, NJ, 2007.

50



References

[1] H. H. Skilling, ”Fundamentals of Electric Waves,” John Wiley and Sons Inc., 2nd

Edition, New York, 1948.

[2] Feynmann, Leighton and Sands, ”The Feynman Lectures on Physics,” Volume 1,

Addison-Wesley Publishing Company, 1963.

51


