Electrical Engineering EE3TR4

Midterm test: 1.5 Hours

Instructor: Dr. J. Reilly February, 2013

This examination paper includes 4 pages and 3 questions. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

Special Instructions

- (a) The McMaster Standard Calculator (Casio FX991) is the only calculator approved for this exam. No other aids are permitted.
- (b) There are 3 questions. Attempt all three.
- (c) You must show your work for full marks.
- (d) Make sure you read the entire paper over in its entirety before you start!
- (e) If you want your paper to be considered for remarking, then avoid pencil and white-out.
- (f) The tables of Fourier transforms and trigonometric identities at the back of this exam may be useful.

Continued on Page 2

- 1. The message signal shown in Figure 1 is amplitude modulated onto a carrier.
 - **a.** draw the corresponding modulated waveform s(t) with 100% modulation. Assume the carrier amplitude $A_c = 1$. (2 marks)
 - **b.** draw the magnitude spectrum S(f) of the modulated waveform above. Show all relevant values. (3 marks)
 - c. repeat parts a. and b. using 50% modulation. (5 marks)

Figure 1: Message signal for Question 1.

- 2. Consider the configuration shown in Figure 2 below, with inputs to the upper and lower branches being $\cos(2\pi f_m t)$ and $\sin(2\pi f_m t)$ respectively. (each following sub-question is 2 marks)
 - **a.** Give a mathematical expression in its simplest form for the modulated waveform s(t) at the modulator output.
 - **b.** Draw the corresponding spectrum S(f).
 - c. What type of modulation does this system represent?
 - **d.** What is the complex envelope corresponding to the input signal?
 - e. Sketch the waveform at point A in the figure.

Figure 2: Modulation configuration for Question 2.

3. The signal $x(t) = 2\cos[2\pi(1.5)t] + \cos[2\pi(0.5)t]$ is applied to the input of a filter, with frequency response H(s) given by

$$H(s) = \frac{1}{s^2 + \sqrt{2}s + 1} \tag{1}$$

where $s = \frac{jf}{f_o}$, where $f_o = 1$ Hz. Write an expression for the output y(t) of the filter.

Continued on Page 4

Fourier Transform Pairs

Time Function	Fourier Transform
$\operatorname{rect}\left(\frac{t}{T}\right)$	Tsinc(fT)
$\operatorname{sinc}(2Wt)$	$\frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$
$\exp(2\pi f_c t)$	$\delta(f - f_c)$
$\exp(-at)u(t), \ a > 0$	$\frac{1}{a+j2\pi f}$
$\exp(-a t), \ a > 0$	$\frac{2a}{a^2 + (2\pi f)^2}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$\delta(t)$	1
1	$\delta(f)$
$\cos(2\pi f_c t)$	$\frac{1}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right]$

Trigonometric Identities

$$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right]$$

$$\sin(\theta) = \frac{1}{2j} \left[\exp(j\theta) - \exp(-j\theta) \right]$$

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

$$\cos^2(\theta) - \sin^2(\theta) = \cos(2\theta)$$

$$\cos^2(\theta) = \frac{1}{2} \left[1 + \cos(2\theta) \right]$$

$$2\sin(\theta)\cos(\theta) = \sin(2\theta)$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right]$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2} \left[\cos(\alpha - \beta) + \cos(\alpha + \beta) \right]$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2} \left[\sin(\alpha - \beta) + \sin(\alpha + \beta) \right]$$

The End.