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This lab is a computer assignment. You are not required to attend any lab session at all 
for this exercise.  However, if you need help, there will be a TA available in the lab room 
during the regularly scheduled lab sessions.  Their contact information is available in the 
course outline on the website. 
 
If you need help with matlab, there are books available on reserve in Thode.  A good 
reference on the subject is “Mastering Matlab”, available at the bookstore. There is also 
the matlab tutorial on the course website. 
 
Since we are processing signals on a computer in this lab, all the signals must be discrete-
time.  Recall that if the signal is properly sampled, then there are no frequency 
components present in the signal greater than fs/2, where fs is the sampling frequency.  It 
is common practice to normalize the frequency scale when representing spectra of 
discrete-time signals relative to fs.  Thus, normalized frequency scales for discrete-time 
signals go from −1

2
  to + 1

2
 Hz.  These values represent ±fs/2 Hz. respectively. 

 
In this lab, we assume all signals are wide-sense stationary, ergodic, and zero mean. 
 
 
1.  Evaluation of Autocorrelation and Power Spectral Density 
 
In this part, we are given a sample of a random process which corresponds to the output 
𝑦𝑦1(𝑛𝑛) of a filter driven by white noise with variance 1.  The impulse response is a 
decaying (real) exponential ℎ(𝑛𝑛) = 0.8𝑛𝑛.   The data is available in the file part1_data.mat 
on the website. 
 
Evaluate the autocorrelation sequence corresponding to y and plot.  Use the matlab 
command “xcorr”, in the form “xcorr(y,y,maxlag)”, where “maxlag is the maximum 
autocorrelation lag you choose.  The default value is the length of y, which is very long, 
resulting in a very compressed autocorrelation plot.   If you use a value, say of 100 or less 



for maxlag, then the plot expands and you can see clearly the features of the 
autocorrelation function around tau = 0. 
 
Evaluate the corresponding power spectral density and plot.  It is easiest to use the matlab 
function pwelch, although it is also possible to evaluate the PSD using the Fourier 
transform of the autocorrelation function.   The output from this function needs some 
interpretation however.  As mentioned above, the frequency range for a discrete-time 
signal is from -1/2 to +1/2 Hz (normalized).  The input to the fft function is always a 
vector (array).  Let it be of length N.   Then, the fft  output is also a vector of length N, 
representing the Fourier transform of the input at N frequency points which are uniformly 
spaced over the range [-1/2 to +1/2].   The ordering of the frequency values is a bit 
surprising at first though, because the first half (corresponding to indeces 1, …,N/2) of 
the elements of the output vector correspond to the frequency range [0 ½] (i.e., positive 
frequencies),  while the second half (indeces N/2+1:N) correspond to the frequency range 
[1/2  1], or equivalently, [-1/2 0] (negative frequencies).   This ordering of output values 
is different from what you expect.  The interpretation of the output takes a bit of getting 
used to at first. 
 
Because of the way we use the fft function, the output will be complex, even though a 
power spectral density function is supposed to be pure real.  This has to do with the way 
the fft input is set up.  We can’t go in to the details here, but they will become clear in 
EE4TL4.  To get around this problem, we simply use “abs(fft(Ry))”, where Ry is the 
autocorrelation function of interest, and where abs(⋅) evaluates the magnitude of the 
argument. 
 
Write Up:  for this section, calculate the theoretical autocorrelation function of the 
output, and the corresponding PSD using the methodology discussed in class.  Compare 
your theoretical results with those from your program, and explain any discrepancies.  
Also, try using shorter lengths (e.g. 5000 or 2000) instead of the length 50000 which is 
the length of the data in the file provided. for the input sequence.  Explain your results.  
Include plots of all relevant quantities. 
 
 
2.  Estimation of a Filter Response 
 
The file part2_data.mat  on the website contains the output 𝑦𝑦2(𝑛𝑛) of a different filter, 
again driven by white noise with zero mean and variance 1.  This time the impulse 
response of the filter is unknown, and your job is to estimate it.  Hint:   Calculate the 
autocorrelation function of the output.  The impulse response can then be estimated using 
the formulas developed in class.   
 
Can we determine the phase response of the filter (in the frequency domain)?   In view of 
this issue, is your estimate of the impulse response unique?   State a simplifying 
assumption that is necessary to provide a unique impulse response. 
 



Write Up:  For this section, carefully explain how you estimated the impulse response.  
Include plots of relevant quantities to support your argument. 
 
 
3.  Sinusoids in noise 
 
Download the file “part3_data.mat”.  It contains a signal 𝑠𝑠(𝑛𝑛) consisting of a sinusoid 
buried in zero-mean white noise.  Estimate the amplitude and frequency of the sinusoid.  
Assume the sampling frequency of 𝑠𝑠(𝑛𝑛) is 1 KHz  (i.e., the time between samples is 1 
msec.).  Note that by plotting the data, the presence of the sinusoid is not discernible in 
the noise. 
 
Writeup:  For this section, explain the method you used to estimate the sinusoid’s 
frequency and amplitude.  Explain why the method is effective.  Is it possible to estimate 
the phase of the sinusoid?  Why?  Include plots of relevant quantities. 


