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necessary to approximate it. An approximation for an ideal low-pass filter
is of the form

Ay(s) = 751(?) (16-17)

where P,(s) is a polynomial in the variable s with zeros in the left-hand plane.
Active filters permit the realization of arbitrary left-hand poles for A v (8),
using the operational amplifier as the netive element and only resistors and B
capacitors for the passive elements.

Since commercinlly available op syps have unity gain-bandwidth prod-
uets as high as 100 MHz, it is possible to design active filters up to frequen-
cies of several MHz. The limiting factor for full-power response at those
high frequencies is the slewing rate (Sec. 15-6) of the operational amplifier.
(Commercial integrated or AMPS are available with slewing rates as high as
100 V/ps.)

Butterworth Filter® A common approximation of Eq. (16-17) uses the
Butterworth polynomials B,(s), where

4 .. _ ‘;1"'0 _1Q
Ay(s) = B.05) (16-18)
and with s = jo,
. Ap,?
L@ = [Ar@] 14v (=9 = T 7y (16-19)

Trom Eqgs. (16-18) and (16-19) we note that the magnitude of Ba(w) is given by

Ba(w)] = 4J1 + (g) | (16-20)

The Butterworth response [EEq. (16-19)] for various values of n is plotted in
Fig. 16-16. Note that the magnitude of Ay is down 3 dB at w = w, for all n.
The larger the value of n, the more closely the curve approximates the ideal
low-pass response of Fig. 16-15a. :

If we normalize the frequency by assuming w, = 1 rad/s, then Table 16-1

- gives the Butterworth polynomials for n up to 8. Note that for n even, ‘the

polynomials are the products of quadratic forms, and for n odd, there is present
the additional factor s + 1. The zeros of the normalized Butterworth poly-
nomials are either —1 or complex conjugate and are found on the so-called
Butterworth circle of unit radius shown in Iig. 16-17. The damping factor k
is defined as one-half the coefficient of s in each quadratic factor in Table
16-1. For example, for n = 4, there are two damping factors, namely,
0.765/2 = 0.383 and 1.848/2 = 0.924. It turns out (Prob. 16-20) that k is
given by

k= cos @ (16-21)

where 0 is as defined in Iig. 16-17a for n even and Tig. 16-17b for n odd.
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TABLE 16-1 Normalized Butterworth polyhominals

7 Faclors of polynomial P,(s)

1 s+ 1)

2 (s + 1.414s + 1)

3 (s + 2 +s+1)

4 (s? + 0.763s 4 1)(s? + 1.848s + 1)

5 (s + 1)(s2 + 0.618s + 1)(s* + 1.618s + 1)

6 (s* + 0.518s + 1)(s* 4 1.414s 4 1)(s? + 1.932s 4 1)

7 (s + 1)(s? + 0.445s 4 1)(s? + 1.247s + 1)(s? 4 1.802s 4 1)

8 (s* + 0.390s + 1)(s? -+ L.111s 4 1){s? 4 1.663s + 1)(s? + 1.962s + 1)

From the table and Eqg. (16-18) 'we see that the typical second-order
Butterworth filter trunsfer Tunction is of the form

Av(s) _ 1 o
A Vo - (S,/wu)‘d + 2/\'(5‘;-":(.0") + 1 (1()-.2_)

where w, = 2uf, is the high-frequency 3-dB point.  Similarly, the first-order
filter is ‘
A |-'(-S') 1
A \2 N B 16-23
14 Vo S;'/wa + l ( )

Practical Realization Consider the circuit shown in Fig. 16-1Sd, where
the active element is an operational amplifier whose stable midband gain
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Fig. 16-17 The Butterworth circle for (a) n even and (b)
n odd. Note that for n odd, one of the zerosis ats-= —1.

Vo, Vi= dy, = (B: + R)/R1 [Eq. (15-4)] is to be determined. We assume
that the amplifier input current is zero, and we show in Prob. 16-25 that

'ra _ . ;'1 ;‘,,Z;;ZA;

V. ZsZy+ Z:+ Zy) + ZiZo + Z1Z24(1 = Av)
If this network is to be a low-pass filter, then Z; and Z, are resistances and
Z, and Z,4 are capacitances. Let us assume Z; = Z» = R and (5 = Cy=0C,
as shown in Fig. 16-18b. The transfer function of this network takes the form

(1/RC)* (16-25)

2 % _ :'1 Vo 1 :
st + <—_~_RC >s + <Z?T’>

Comparing Eq. (16-23) with Eq. (16-22), we find

—

dv(s) = (16-24)

A V(S) =4 Yo

1
= —_— ’_‘) 3
Wo = P (16-26)
and

h=3—- 4 Vo or A4 Vo — 3 — 2k (16—27)

We are now in a position to synthesize even-order Burterworth filters
by caseading prototypes of the form shown in Iig. 16-15b, using identical
R’s and (s and selecting the gain Ay, of each operational amplifier to satisfy
Eq. (16-27) and the damping factors from Table 16-1.

To realize odd-order filters, it is necessary to cascade the first-order filter
of Eq. (16-23) with second-order sections such as indicated in Fig. 16-18b.
The first-order prototype of Fig. 16-18¢ has the transfer function of Eq.
(16-23) for arbitrary Ay, provided that w, is given by Iq. (16-26). For
example, a third-order Butterworth active filter consists of the circuit in
Fig. 16-18b in cascade with the cireuit of Fig. 16-18¢, with R and C chosen so
that RC = 1/w,, with Ay, in Fig. 16-18b selected to give k = 0.5 (Table 16-1,
n = 3), and Ay, in Fig. 16-18¢ chosen arbitrarily.
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Fig. 16-18 (a) Generalized active-filter prototype. (b) Second-order jow-
pass section. (c) First-order low-pass section.

EXAMPLE  Design a fourth-order Butterworth Jow-pass filter with a cutoff fre-
quency of 1 klz.

Solution  We cascade two second-order prototypes as shown in Fig. 16-19. For
n =4 we have from Table 16-1 and Eq. (16-27)

Avp =3 =2k =3 - 0765 = 2.235

10K 12.35 K. 10K 152K

0.16

T‘iﬁ? Tr

Fig. 16-19  Fourth-order Butterworth low-pass filter with f, = 1 kHz.




Sec. 16-6 © ANALOG SYSTEMS / 553

and
Apg=38— 2ky =3 — 1.848 = 1.152

From Egq.-(15-4), Ay, = (B, + R})/R,. If we arbitrarily choose R, = 10 K,
then for Ay, = 2.235, we find Ry = 12.35 K, whereas for Ay, = 1.152, we find
Ry = 1.520 K and R, = 10 K. To satisfy the cutoff-frequency requirement, we
have, from Bq. (16-26), f, = 1/20RC. We take B = 1 KK and find C = 0.16 pF.
Figure 16-19 shows the complete fourth-order low-pass-Butterworth filter.

High-pass Profotype An idealized high-pass-filter characteristic is
indicated in Fig. 16-13b. The high-pass second-order filter is obtained from the
low-pass second-order prototype of Eq. (16-22) by applying the transformation

s @o | : 98

Wo luw-puss—) S !high-pass (16 -AS)

Thus, interchanging R’s and C’s in Fig. 16-18b results in a second-order
high-pass active filter.

Bandpass Filter A second-order bandpass prototype is obtained by
cascading a low-pass second-order section whose cutoff frequency is foy with a
high-pass second-order section whose cutoft frequency is for, provided forr > for,
as indicated in IPig. 16-15c¢.

Band-reject Filter [Figure 16-20 shows that a band-reject filter is obtained
by paralleling a high-pass section whose cutoff [requency is for, with a low-pass

Aylfl
Low-pass
foH f
Aylfl
High-pass
{
f
faL
Aylfl
Band-
reject O
v,
f
foH faL
(a) ' (b}

Fig. 16-20 (a) ldeal band-reject-filter frequency response. (b) Parallel combina-
tion of low-pass and high-pass filters results in a band-reject filter. '



