Power & dBm Unit

\[P_{\text{dBm}} = 10 \log_{10} \left(\frac{P_{\text{Watt}}}{1 \text{Watt}} \right) \]

\[P_{\text{W}} = 10^{\frac{P_{\text{dBm}}}{10}} \]

\[P = K |E|^2 \]

For communication, set \(K = 1 \)

\[P = |E|^2 \]

\(\text{dBm Unit:} \)

\[P_{\text{dBm}} = 10 \log_{10} \left(\frac{P_{\text{Watt}}}{1 \text{Watt}} \right) \]

\[P_{\text{W}} = 10^{\frac{P_{\text{dBm}}}{10}} \]

\[P_{\text{Watt}} = \frac{10}{10^{P_{\text{dBm}}}} \]

\[\text{Inverse:} \]

\[P_{\text{Watt}} = \frac{10}{10^{P_{\text{dBm}}}} \]

\[P_{\text{dBm}} = 10 \log_{10} \left(\frac{P_{\text{Watt}}}{1 \text{Watt}} \right) \]

\(\text{Fiber Loss:} \)

\[P_{\text{in}} = 0 \text{ dBm} \]

\[P_{\text{out}} = 10 \text{ km} \]

\[P_{\text{loss}} = 0.25 \text{ dBm} \]

\[\frac{P_{\text{out}}}{P_{\text{in}}} = F \]

\[\frac{P_{\text{in}}}{P_{\text{out}}} = F = 0.5 \]

\[F = 0.5 \]

\[F = \left(\frac{P_{\text{in}}}{P_{\text{out}}} \right) \]

\[P_{\text{out}} = F P_{\text{in}} \]
Optical fiber loss

\[P_{in} = ? \]

\[P_{out} = \frac{P_{in}}{L} \]

\[P_{out} = P_{in} \cdot e^{-\alpha L} \]

Hint: Show that

\[\lim_{N \to \infty} e^{-N} = 0 \]

\[\alpha = \text{Fiber loss coefficient} \]

\[\text{(\(\delta \)) can be written as} \]

\[\text{Loss (dB)} = -10 \log_{10} \frac{P_{out}}{P_{in}} = -10 \log_{10} \frac{P_{in} \cdot e^{-\alpha L}}{P_{in}} \]

\[= (-2 \alpha L) (-10 \log_{10} 10) \]

\[= 2 \alpha L + 39.2 \]

\[L \to \text{km} \]

\[\alpha \to \text{km}^{-1} \]

\[2 \alpha \to \text{dimensionless} \]

Loss per unit length (dB/km):

\[\frac{\text{loss (dB)}}{L} = 2 \alpha \text{dB/km} \]

Example: Fiber loss per unit length is 0.2 dB/km. Find \(\alpha \) in dB.

\[\frac{\text{loss (dB)}}{L} = 0.2 \text{ dB/km} \]

\[\alpha (\text{dB/km}) = \frac{0.2}{2} \text{ dB/km} = 0.1 \text{ dB/km} \]

Power flow:

\[P_{TX} \]

\[F \]

\[F = \frac{P_{RX}}{P_{TX}} \]

\[F(\text{dB}) = -10 \log_{10} \frac{P_{RX}}{P_{TX}} \to (1) \]
\[
F(\Delta \theta) = -10 \log_{10} \frac{P_{in}}{P_{eff}} \Rightarrow G = \frac{P_{in}}{P_{eff}}
\]

\[
G(\Delta \theta) = 10 \log_{10} \frac{P_{in}}{P_{eff}} \Rightarrow G = G(\Delta \theta)
\]

\[
\frac{P_{in}}{P_{eff}} = \frac{P_{in}}{P_{in}} \cdot \frac{P_{in}}{P_{eff}} = GF
\]

\[
P_{in} = GF P_{eff}
\]

Suppose \(P_{in} \) & \(P_{eff} \) are given. In this we write:

\[
\frac{P_{in}(\Delta \theta)}{P_{eff}} = GF
\]

\[
10 \log_{10} \frac{P_{in}(\Delta \theta)}{P_{eff}} = 10 \log_{10} \left(\frac{GF}{1} \right)
\]

\[
P_{in}(\Delta \theta) = 10 \log_{10} \frac{P_{in}(\Delta \theta)}{P_{eff}}
\]

\[
P_{in}(\Delta \theta) = 10 \log_{10} \frac{P_{in}(\Delta \theta)}{P_{eff}} + 10 \log_{10} G + 10 \log_{10} F
\]

\[
P_{in}(\Delta \theta) = P_{in}(\Delta \theta) + G(\Delta \theta) - F(\Delta \theta)
\]

Example: Consider a fiber optic link shown below.

![Diagram](image)

Fiber Loss: 0.2 dB/km, **Leaky:** 1 dB, **Amplifier gain:** 17.5 dB.

Number of fiber gain: 8. So the minimum fiber required.

At the receiver to have a good S/N ratio, it \(-35\) dB. Calculate the linear limit on the transmitter level in dB.

Peak power calculation:

\[
F_{peak} = 0.2 \text{ dB/km}
\]

\[
F_{peak} = 0.2 \text{ dB/km}
\]

\[
F(\Delta \theta) = 0.2 \text{ dB/km} \times 100 \text{ km} = 20 \text{ dB}
\]

\[
G(\Delta \theta) = 17.5 \text{ dB}
\]

Net loss per km = \(F(\Delta \theta) - G(\Delta \theta) \)

\[
= 20 \text{ dB} - 17.5 \text{ dB}
\]

\[
= 2.5 \text{ dB/km}
\]

Net loss = \(0.2 \text{ dB/km} \times 100 \text{ km} = 20 \text{ dB} \)

\[
= F_{peak}(\Delta \theta)
\]
\(P_{\text{in}} (\Delta n) = P_{\text{in}} (\Delta n) - P_{\text{eff}} (\Delta n) \)

\(P_{\text{in}} (\Delta n) = P_{\text{in}} (\Delta n) + P_{\text{eff}} (\Delta n) \)

\(P_{\text{in}} (\Delta n) \geq -3 \Delta n \)

\(P_{\text{eff}} (\Delta n) = 4 \Delta n \)

\(P_{\text{in}} (\Delta n) \geq -3 \Delta n + 4 \Delta n = 1 \Delta n \)

Can we add something to \(\Delta n \) to make it zero? Yes.

Requires that

\(\frac{P(\Delta n)}{P(\Delta n)} = 10 \log \left(\frac{P(\Delta n)}{P(\Delta n)} \right) \)

\(\text{loss}(\Delta n) = -10 \log \left(\frac{P(\Delta n)}{P(\Delta n)} \right) \)