REVIEW OF ELECTROMAGNETICS

Coulomb's Law:

\[F = \frac{q_1 q_2}{4\pi \varepsilon_0 y^2} \]

- \(q_1, q_2 \) \(\rightarrow \) Charges (in Coulombs)
- \(\varepsilon \) \(\rightarrow \) Permittivity of the medium
- \(y \) \(\rightarrow \) Distance between charges

Direction of \(F \) **\(\rightarrow \)** Along the line joining \(q_1 \) & \(q_2 \).

The Force of attraction or repulsion between charges is a vector \(\vec{F} \).

\[\vec{F} = F \hat{y} \]

\(\hat{y} \) \(\rightarrow \) Unit vector in the direction \(\vec{F} \).

Electric Field Intensity \(E \):

Let \(q_1 = q \), \(q_2 = +1 \) C

\[E = F = \frac{q_1 q_2}{4\pi \varepsilon_0 y^2} = \frac{q(1)}{4\pi \varepsilon_0 y^2} \]

The force on the unit charge is called Electric Field Intensity \(E \).

\[E = \frac{q}{4\pi \varepsilon_0 y} \]

Electric Field Intensity is a vector.

\[\vec{E} = E \hat{y} = \frac{q}{4\pi \varepsilon_0 y} \hat{y} \]

The advantage of using \(E \) **is that it can be used to find a force on a charge in a region** \(E \) **is known, regardless of the charge causing that** \(E \) **is unknown. For example,**
There is a charge q, leading to E around it,

$$ E = \frac{q_1}{4\pi \varepsilon_0} $$

If we place a charge q near q_1, the force of attraction or repulsion between q_1 and q is

$$ F = \frac{q_1 q}{4\pi \varepsilon_0 r^2} = qE $$

or

$$ F = qE \quad \rightarrow \quad (3) $$

or

$$ E = \frac{F}{q} \quad \rightarrow \quad (4) $$

Electric field intensity = force per unit charge

Eq. (3) may be used to find the force on q in a region for which E is known, even if the charge or charge distribution causing this E is unknown.

Electric flux density, D:

For historic reasons, electric flux density is defined as

$$ D = \varepsilon E \quad \rightarrow \quad (5) $$

For a point charge, we have

$$ E = \frac{q}{4\pi \varepsilon_0 r^2}, \quad \text{so} \quad D = \frac{q}{4\pi \varepsilon_0 r^2} = \frac{q}{4\pi \varepsilon_0}.$$
\[\mathbf{D} = \mathbf{D} \]

\[\mathbf{E} \cdot \mathbf{y} = \mathbf{E} \rightarrow \mathbf{G} \]

Electric Flux, \(\psi = \text{Flux Density} \times \text{Area} \)

Flux Flow

\[\psi = \mathbf{D} \cdot \mathbf{A}, \quad \mathbf{A} = \text{Area Normal To Flux} \]

Gauss’s Law (Integral Form):

Consider a charge distribution with total charge \(q \) shown below.

Imagine a spherical surface \(S \) at a distance \(r \) from the center of charge distribution.

According to Gauss’s Law:

\[\int_{S} \mathbf{D} \cdot d\mathbf{s} = q \rightarrow \mathbf{G} \]

\[\psi = \mathbf{D} \cdot ds = \text{Flux crossing the elemental surface } ds \]

If we sum up all the elemental fluxes (\(d\psi \)) crossing the surface \(S \), according to Gauss’s Law, it is equal to charge \(q \).
SO, GAUSS'S LAW MAY BE STATED AS FOLLOWS:

TOTAL FLUX CROSSING ANY CLOSED SURFACE IS EQUAL TO THE CHARGE ENCLOSLED.

GAUSS'S LAW (DIFFERENTIAL FORM):

EQ. (7) MAY BE REWRITTEN AS

\[\text{DIV} \mathbf{D} = \nabla \cdot \mathbf{D} = \rho \]

\[\rho = \text{CHARGE DENSITY} = \text{d}q/\text{d}V \]

INTERPRETATION:

IMAGINE A GUNMAN SHOOTING RANDOMLY IN ALL DIRECTIONS.

LED \(\mathbf{D} \) DENOTE THE BULLET FLUX DENSITY.

INSIDE THE SURFACE \(S_1 \):

- NO. OF BULLETS ENTERING = NO. OF BULLETS LEAVING THE SURFACE \(S_1 \),

\[\therefore \text{NET FLUX CROSSING THE SURFACE} \ S_1 = 0 \]

\[\text{DIV} \mathbf{D} = 0 \text{ FOR THE POINTS INSIDE } S_1 \]

INSIDE THE SURFACE \(S_2 \):

- NO. OF BULLETS ENTERING THE SURFACE = 0

- NO. OF BULLETS LEAVING THE SURFACE ≠ 0

\[\therefore \text{NET FLUX CROSSING THE SURFACE} \neq 0 \]

\[\text{DIV} \mathbf{D} \neq 0 \]

GUNMAN IS THE SOURCE OF BULLET FLUX.
Inside the surface S_3: Suppose the gunman shot a person & the bullet is stuck inside the surface S_3.

No. of bullets entering the surface \neq No. of bullets leaving the surface

\[\text{Net flux crossing the surface } S_3 \neq 0 \]

\[\text{Div } \neq 0 \neq 0 \]

Dead man is the sink of bullet flux.
When there are two charges closely, there is electric flux density, \(\mathbf{D} \).

Inside the surface \(S_1 \): \(\text{flux lines entering the surface } S_1 \) = \(\text{flux lines leaving the surface } \)

\[
\text{Div } \mathbf{D} = 0
\]

Inside the surface \(S_2 \): net flux crossing the surface \(\neq 0 \)

\[
\text{Div } \mathbf{D} \neq 0
\]

'\(+q \)' is the source of electric flux.

Inside the surface \(S_3 \): net flux crossing the surface \(\neq 0 \)

\[
\text{Div } \mathbf{D} \neq 0
\]

'\(-q \)' is the sink of electric flux.

Magnetic field: