FARADAM's LAU:

$$
\begin{aligned}
& \operatorname{Cunc} \vec{E}=\nabla \times \vec{E}=-\frac{\partial T^{0}}{\partial t} \\
& \text { LET } \vec{E}=E_{x} \vec{x}+05^{0}+0 \tilde{z}^{0} \\
& \vec{F}=\operatorname{cucc} \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{F}=\left[\begin{array}{ccc}
\vec{z} & \overrightarrow{0} & \overrightarrow{2} \\
2 / \omega_{x} & \% & 0 \\
E_{x} & 0 & 0
\end{array}\right] \\
& F_{x} \\
& \pi_{0}^{2}, x_{0}^{2 / 2} \\
& F_{x}=0 \\
& \left.\begin{array}{l}
-+ \\
+- \\
-+
\end{array}\right] \\
& F_{y}: \quad{ }_{\partial / x}^{\partial x} \sum_{0}^{D / 2} \\
& F_{y}=-\left(0-\partial E_{x_{1}}\right) \\
& =\frac{\gamma \xi_{x}}{\partial 2} \\
& F_{2}: \quad \overline{\%_{x}} \begin{array}{ll}
2 / 2 \\
E_{x} & 0
\end{array} \\
& F_{2}=\left(-\frac{\partial F_{2}}{\partial y}\right) \\
& \vec{F}=\frac{-\partial \hat{B}^{0}}{\partial t} \\
& \text { LET } \vec{B}=B_{x} \vec{z}+B_{y} \vec{y}^{0}+B_{2} \overrightarrow{2}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& x \text {-contaceni } \quad F_{x}=0=-\frac{\partial B_{x}}{\partial t} \\
& \text { 4. compatant } \\
& F_{5}=\frac{\partial E_{1}}{\partial 2}=-\frac{\partial B_{y}}{\partial t} \\
& \text { 2- conposen } \quad F_{2}=-\frac{\partial E_{2}}{\partial y}=-\frac{\partial B_{2}}{\partial t} \\
& \text { Focus on The } 2 \text {-compoanet }
\end{aligned}
$$

$$
F_{2}=\frac{\partial E_{2}}{\partial y}=\frac{\partial \beta_{2}}{\partial t}
$$

Time varyint magettll flelo produles y－vadying ELじくなんル FICLD．

If B_{2} IS Not timevarying，SAY $B_{2}=K$ $\frac{\partial B_{2}}{\partial t}=0 \Rightarrow$ ELECTRIC FIELS DOES NOT chanke as a Functuduf

$$
\frac{\partial \varepsilon_{x}}{12}=0 \quad E_{x}=A \cos (\alpha x+\beta 2)
$$

SUPPOSL THAT yOU ARE DOINL AN EXPERMENT IN DAE LAA L observe that tar electacc flglo in a corouctiok is GRADUALLY InCREASINL FRIM THLS BOTTOM of THE CONOUCTOR To Nate top

WHAT WOLD YOU INFEK？
RESALL DTE WATEA GLOD EXAmpLE：

$$
\frac{\partial A_{x}}{\gamma_{j}} \neq 0 \Rightarrow \text { curc in } 2 \text {-Dinecioud }
$$

$\frac{\partial E_{Y}}{\partial y} \neq 0 \Rightarrow$ CuRC IV 2－DIRECTIND

$$
\frac{\partial s_{1}}{r_{2}}=\frac{\partial \Delta_{2}}{\partial t}
$$

Ampere's Lata:
$\prod_{L}^{I} \prod_{0}^{H_{0}} \quad \oint_{L} \vec{H} \cdot \vec{l} \vec{R}=I$
$I=\iint_{s} \vec{J} \cdot d \vec{S}$
$\vec{J}=$ Cunkent densith,

Current obasity $=\frac{\text { curcent }}{\text { Areat } \perp^{2} \text { to mhe curcent flow }}$

$$
=\frac{I}{A}
$$

Usinh STOKES'S TtEUREM,
divD $=$ D Gauss's lav: electace charale diva $=0 \quad$ "n : magetic charale $\nabla \times \vec{E}^{\circ}=-\frac{\partial \vec{B}}{\partial t} \quad$ FARAOAU'S LAU $\nabla \times H^{-p}=\vec{J} \quad$ AmPREE'S LAN

THESK LAUS WELE KNOWS PaIOR TO MAXURCL's TME.
maxucu's contrcautions:

$$
\nabla \times \vec{H}=\vec{J}+\frac{\vec{D}}{\partial t}
$$

$$
D=E E=E L E C T \text { FLUX DENSITT. }
$$

$$
\frac{\partial D^{0}}{\partial t} \Rightarrow \text { DISBLACEMEAT CURRENT DEASITT }
$$

$$
J \Rightarrow \text { conouctios }
$$

$$
I F J=0 ; \quad \nabla \times \vec{\pi}=\epsilon \frac{\vec{\partial}}{\partial t}
$$

$$
\nabla \times \vec{E}^{\rho}=-\mu \frac{\partial \vec{H}}{\partial t} \rightarrow \text { FARADAI's } A O
$$

$$
\begin{align*}
& D U B=0 \tag{2}\\
& \nabla \times \vec{E}=\frac{-\partial D^{-0}}{\partial t} \tag{3}\\
& \nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{\sigma}}{\partial t}
\end{align*}
$$

Intempretation: Ěa. © : pauduces eleltma fielo.

EO. (4) : TWO SuvRCE T(snn
(i) \vec{J}
\& (ii) $\partial \overrightarrow{0} / \partial r$
practical Examplez
Tx Anténata

$$
(8, \theta, 2)
$$

$$
|\phi| \pm=I_{0} \cos \left(2 \pi f_{0} t\right)
$$

$$
\begin{aligned}
J & =\frac{I}{A} \\
\left(\frac{I}{A}\right) & =\frac{\Phi_{0}}{A} \cos \left(2 \pi f_{0} t\right) \\
D & =J_{0} \cos \left(2 \pi f_{0} t\right)
\end{aligned}
$$

NOTE: It is TIME-VAKYING \& IT IS AWS SPACE-vAKTING

$$
H_{\theta} \propto \frac{1}{\gamma}
$$

Ampenérlau: $\nabla \times \vec{H}=\vec{J}$
MAxuEL's $E Q: \nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$
If A conouctin, $\quad \frac{\partial D^{-0}}{\partial t} \ll J$

$$
\nabla \times \vec{H} \cong \vec{J}
$$

FALADATAS LAU.

$$
\nabla \times \vec{E}=-\frac{\partial \vec{\theta}^{0}}{\partial t}=-M \frac{\partial \vec{H}^{0}}{\partial t}
$$

Time. vanuink mach. Filech \Rightarrow spacevanatach ELELT. FLECD

$$
\vec{H}=H_{\theta} \vec{\theta}^{\Delta}
$$

WHAT IS THE DIRECTION OF \vec{E} ? suppose $\vec{E}=E_{2} \vec{z}^{D}$ It E_{2} is canding as a funcition of r

$$
\frac{\partial E_{2}}{\partial r} \neq 0 \Rightarrow \text { curc of } \vec{E}_{\text {gincericos of of } \theta}
$$

$$
(\nabla \times E)_{\theta}=\theta \text {-compontesi of } \nabla \times E
$$

$$
\text { Thterks }=m \frac{\partial H \theta}{\partial t} \cdot \vec{\theta}
$$

suppose $\vec{E}=E_{\gamma} \tilde{2}^{0}$ (homesuak: Shas Diat

$$
\begin{aligned}
& \vec{H}_{0} \text { has a composcut } \\
& \text { in ogincition) }
\end{aligned}
$$

suppose $\vec{E}=\vec{E}_{\theta} \vec{\theta}$,

$$
\text { BUT UE kNJU DHAT H IS in } \theta \text {-dIxCCTCAN }
$$

$$
\text { It Eg is CHANGina As A Function cF } 2
$$

$$
\begin{aligned}
\frac{\partial s_{0}}{\partial 2} \neq 0 & \Rightarrow \text { cunc is in } \text { ner aikection of } r \\
& \Rightarrow \text { IS is } 1 \mathrm{r} \text { - Dikecion } X
\end{aligned}
$$

$$
\Rightarrow \quad H \text { is in } r \text {-oikecioon } X
$$

$$
\vec{E} \text { has no compontsut IV O-dirscilos. }
$$

$$
\vec{E}=v_{r} \vec{r}+\stackrel{c}{z}_{2} \overrightarrow{2}+0 \vec{\theta}
$$

TODAR, I will focus ovay os z-compone-i of E

$$
E=E_{2} 2^{-D}
$$

$$
\begin{aligned}
& \text { CAN } \vec{H}=H_{\sigma} \vec{\theta} \text {.? } \\
& \text { If } E_{\theta} \text { is chawhial as a fusction der } \\
& \Rightarrow \frac{\partial \varepsilon_{\theta}}{\partial_{r}} \neq 0 \Rightarrow \text { cune is in } 2 \text {-alrectid } \\
& \Rightarrow \text { Mashestic fieco h shouls } \\
& \text { in } 2 \text {-dinection }
\end{aligned}
$$

Consigte a polnt x Just outsiote the TX. ANTENNA

What is J at X ? $J=0$ AT X

$$
\begin{gathered}
\nabla \times H=J+\frac{\partial 0}{\partial t} \\
\text { AT } X=J=0 \Rightarrow F \times H=\frac{\partial 0}{\partial t}=\epsilon \frac{\partial \varepsilon}{\partial t}
\end{gathered}
$$

AT $\mathbf{~}$: TeS $J \neq 0, \nabla \times H \cong 丁$

TIME ClAANGING ELELTKLK PIGLD PRODULES SPACE, VARYINM MASNETIL FIELO.

Em wate ls simlar to tot watel wave

suppise the em wauk genlskates at TX protagates hundreas of kms x arrives at phe rx antenaa

$$
r_{2} \propto \sin \left(2 \pi f_{0} t\right)
$$

$F_{2}=\& E_{2} \Rightarrow$ ELELTROS MOUF UP 4 DUNN $=A C$ CURRESNT

FF The TX Antenal cumant $\rightarrow K A$

$$
\begin{array}{ccc}
\text { Tx AuTEvad culkent } \\
R_{x} & n
\end{array} \rightarrow M A
$$

$M_{x} 1$,

Questiuns: (1) If Dhe tx-antenna cukrent is D,,
can Le het Em chave? no
(li) If raxuell lata not Intruouciso DISplacement cumeñ Rens wivco यk
haver Ém uave?

