Practice Problems

1. Show that optical intensity I and energy density u are related by the relation

$$
\mathrm{I}=\mathrm{uv}
$$

Where v is the group speed of light.
(Hint: Consider a cube of volume $A \Delta z$ where A is the area perpendicular to the light flow. The optical energy crossing the left facet of the cube over a time Δt would be present over the length $\Delta z=v \Delta t$. Make use of the fact that intensity is power per unit area and energy density is energy per unit volume.)
2. Show that wavelength λ in microns emitted by a semiconductor laser is related to the band gap energy E_{g} in electron volts by the relation λ (microns) $=1.24 / E_{g}(\mathrm{eV})$
3. A double heterojunction InGaAsP LED emitting at a peak wavelength of 1310 nm has radiative and non-radiative recombination times of 25 and 90 ns, respectively. The drive current is 35 mA .
(a) Find the internal quantum efficiency and the internal power level.
(b) If the refractive index of the medium is 3.5 , find the power emitted from the device.
(Ans. (a) 0.7826 and 25.9 mW (b) 0.366 mW)
4. (a)A GaAlAs laser diode has a 500 micron cavity length which has an effective absorption coefficient of $10 \mathrm{~cm}^{-1}$. For uncoated facets the reflectivities are0.32 at each end. What is the optical gain at the lasing threshold? (Ans. $32.78 \mathrm{~cm}^{-1}$)
(b) If one end of the lasers is coated with a dielectric reflector so that its reflectivity is now 90%, what is the optical gain at the lasing threshold? (Ans: $22.44 \mathrm{~cm}^{-1}$. Notice that required gain to overcome the loss can be reduced by coating on one side of the cavity and take the useful output on the otherside)
5. A GaAs laser operating at 800 nm has a 400 micron cavity length with a refractive index of 3.6. If the gain exceeds the total loss in the region 750 nm $<\lambda<850 \mathrm{~nm}$ and the loss dominates the gain for wavelengths that are out of the above range, how many modes will exist in the laser?
(Ans: 451 modes)
6. Find the grating period of a DFB laser required to operate at 1550 nm . Assume the refractive index $=3.5$ and choose the grating period such that operating wavelength corresponds to first order Bragg diffraction.
(Ans: 221.42 nm)
7. A 1300 nm InGaAs laser diode has the following parameters:

Active area width w 3 microns
Active area thickness $d \quad 0.3$ microns
Length L 500 microns
Confinement factor $\Gamma \quad 0.3$
Time constant $\quad \tau_{\mathrm{r}} \quad 1 \mathrm{~ns}$
Gain cross - section $\sigma_{\mathrm{g}} \quad 2.5 \times 10^{-20} \mathrm{~m}^{2}$
Threshold density $n_{t h} \quad 0.8 \times 10^{24} m^{-3}$
Absorption coefficient $\alpha \quad 0.46 \mathrm{~cm}^{-1}$
Refractive index $=3.5$
Reflectivities $R_{1}=R_{2}=0.6$

Under steady state conditions, calculate (a) threshold current
(b) the bias current required to generate a power of 10 mW .
(Ans:(a)57.7mA (b)63.3mA)

