Optical Fibers- I

Maxwell's Equations

Differential Form

$$
\begin{align*}
& \nabla \cdot \mathbf{D}=\rho \tag{1}\\
& \nabla \cdot \mathbf{B}=0 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t} \tag{4}
\end{equation*}
$$

Electrical and Magnetic flux density, \mathbf{D} and \mathbf{H} are
$\mathbf{D}=\varepsilon \mathbf{E}, \quad \varepsilon=$ permittivity
$\mathbf{B}=\mu \mathbf{H}, \mu=$ permeability

Wave Equation

Using the vector identity
$\nabla \times \nabla \times \mathbf{E}=\nabla(\nabla . \mathbf{E})-\nabla^{2} \mathbf{E}$
and using Eqs. (3) and (4),
$\nabla \times \nabla \times \mathbf{E}=-\frac{\partial}{\partial t}(\nabla \times \mathbf{B})=-\mu \frac{\partial}{\partial t}\left(\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}\right)$
In the source free region, $\rho=\mathbf{J}=0$. From (5) and (6),
$\nabla^{2} \mathbf{E}=\mu \varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$
Similar calculation for magnetic field yields
$\nabla^{2} \mathbf{H}=\mu \varepsilon \frac{\partial^{2} \mathbf{H}}{\partial t^{2}}$

Wave Equation

The permittivity ε and permeability μ can be written as
$\mathcal{E}=\varepsilon_{0} \varepsilon_{r} \quad \mu=\mu_{0} \mu_{r}$
$\varepsilon_{0}=$ free space permittivity. $\mu_{0}=$ free space permeability.
$\varepsilon_{r}=n^{2}=$ relative permittivity, which is medium dependent.
$n=$ refractive index.
$\mu_{r}=$ relative permeability $=1$ for dielectrics.
Velocity of light in free space, c is
$c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

Wave Equation

The wave equation for electric field can be rewritten as
$\nabla^{2} \mathbf{E}=\frac{n^{2}}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}$
Eq. (8) is a vector equation for components E_{x}, E_{y} and E_{z}.
These equations should be solved with the boundary conditions that tangential electric and magentic fields be continuous at the boundary.
But if the refractive index difference at the boundary is small, one could use scalar wave approximation, i.e.
$\nabla^{2} \psi=\frac{n^{2}(r)}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}$
ψ could represent a transeverse electric field component
E_{x} or E_{y}.

Linearly Polarized (LP) Modes of Optical Fiber

Let
$\psi(r, \theta, z, t)=\phi(r, \theta) \exp [i(\omega t-\beta z)]$
$\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\left[k_{0}^{2} n^{2}(r)-\beta^{2}\right] \phi=0(10)$
$\frac{\omega}{c}=k_{0}=\frac{2 \pi}{\lambda_{0}}$
$\lambda_{0}=$ free space wavelength

LP Modes

Using the method of separation of variable
$\phi=R(r) \Theta(\theta)$
$\frac{r^{2}}{R}\left(\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right)+r^{2}\left[k_{0}^{2} n^{2}(r)-\beta^{2}\right]=-\frac{1}{\Theta} \frac{d^{2} \Theta}{d r^{2}}=l^{2}$
$l=$ const.
$\frac{d^{2} \Theta}{d r^{2}}+l^{2} \Theta=0$
$\Theta(\theta)=A \cos (l \theta)+B \sin (l \theta)$
Since $\Theta(\theta+2 \pi)=\Theta(\theta)$

$$
\begin{aligned}
& =A \cos [l(\theta+2 \pi)]+B \sin [l(\theta+2 \pi)] \\
& =A \cos (l \theta)+B \sin (l \theta)
\end{aligned}
$$

Eq. (14) would be true only if l is an integer, $0,1,2 \ldots$
We could choose either the form $\cos (l \theta)$ or $\sin (l \theta)$ for Θ.

LP Modes

From Eq.(14),
$\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}+\left[k_{0}{ }^{2} n^{2}(r)-\beta^{2}-\frac{l^{2}}{r^{2}}\right] R=0$
For step index fiber
$\begin{aligned} n^{2}(r) & =n_{1}^{2} & \text { for } \quad r<a & & \text { (core) } \\ & =n_{2}^{2} & \text { for } \quad r \quad>=a & & \text { (cladding) }\end{aligned}$
Guided Modes : $\left(k_{0}^{2} n_{2}^{2}<\beta^{2}<k_{0}^{2} n_{1}^{2}\right)$
$U=a\left(k_{0}^{2} n_{1}^{2}-\beta^{2}\right)^{1 / 2}$
$W=a\left(\beta^{2}-k_{0}^{2} n_{2}^{2}\right)^{1 / 2}$
$V=\left(U^{2}+W^{2}\right)^{1 / 2}=k_{0} a\left(n_{1}^{2}-n_{2}^{2}\right)^{1 / 2}$

LP Modes

$$
\begin{array}{ll}
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}+\left[\frac{U^{2}}{a^{2}}-\frac{l^{2}}{r^{2}}\right] R=0 & r<a \\
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}-\left[\frac{W^{2}}{a^{2}}+\frac{l^{2}}{r^{2}}\right] R=0 & r>=a
\end{array}
$$

For $r<a$,
$R(r)=C J_{l}(U r / a)+D Y_{l}(U r / a)$
J_{l} and Y_{l} are Bessel functions of first and second
kind, resply. $Y_{l}(0)=-\infty$, so we can not have the term with
$Y_{l} . i . e . D=0$.
$R(r)=C J_{l}(U r / a)$
For $r>=a$
$R(r)=E K_{l}(W r / a)+F I_{l}(W r / a)$
K_{l} and I_{l} are modified Bessel functions of first and second kind, resply. I_{l} is rejected because $I_{l}(\infty)=\infty$.

LP Modes

For $r>=a$
$R(r)=E K_{l}(W r / a)$
The field ψ and its derivative $\partial \psi / \partial \mathrm{r}$ should continuous at the boundary $r=a$. If $\partial \psi / \partial \mathrm{r}$ is not continuous, $\partial^{2} \psi / \partial \mathrm{r}^{2}$ would be a Dirac Delta function and from Eq. (10), we see that n^{2} (r) would be a Dirac Delta function w hich is not consistent .
In our example, $n^{2}(\mathrm{r})$ is a step function.
$R(a)=C J_{l}(U)=E K_{l}(W)$
$\left.\frac{d R}{d r}\right|_{r=a}=U C J_{l}^{\prime}(U)=W E K_{l}^{\prime}(W)$
$\frac{U J_{l}^{\prime}(U)}{J_{l}(U)}=\frac{W K_{l}^{\prime}(W)}{K_{l}(W)}$
The transcede ntal equation (15) should be numericall y solved for the unknown β or U.

LP Modes

For numerical calculation, it is easier if we avoid derivatives.
Using the identities :
$U J_{l}^{\prime}(U)=U J_{l-1}(U)-l J_{l}(U)$
$W K_{l}^{\prime}(W)=-W K_{l-1}(W)-l K_{l}(W)$
From Eq.(15), we obtain
$\frac{U J_{l-1}(U)}{J_{l}(U)}=-\frac{W K_{l-1}(W)}{K_{l}(W)}$
It is convenient to use normalized prop. const. b and normalized parameter V.
$b=\frac{W^{2}}{V^{2}}=\frac{\beta^{2}-k_{0}^{2} n_{2}^{2}}{k_{0}^{2}\left(n_{1}^{2}-n_{2}^{2}\right)}(17)$
$U^{2}=V^{2}(1-b)$
Solve Eq.(16) with b as unknown. Since $k_{0}^{2} n_{2}^{2}<\beta^{2}<k_{0}^{2} n_{1}^{2}$, we must have $0<b<1$.

LP modes

Mode Classifica tion :

The modes are designated as $L P_{l m}$ where $l=$ mode order and $m=$ radial mode number.
l is the index corresponding to the variations along θ.
m is the index correspond ing to the variations along r.
When $l=0$, the field does not vary as a function of θ.

Mode Cutoff :

At cutoff $\beta=k_{0} n_{2}$ and therefore,
$b=0, W=0, U=V \equiv V_{c}$
For the $1=1$ mode, from Eq.(16), we have
$V_{c} J_{0}\left(V_{c}\right)=0 \quad$ (18)
Solving eq.(18), we have $V_{c}=2.408$ which is the cutoff condition for LP11 mode.

Mode Cutoff

For a stepindex fiber with

$$
0<\mathrm{V}<\mathrm{V}_{\mathrm{c}}(=2.4048)
$$

we will have only one guided mode namelyLP01 mode.

Such a fiber is referredto as single mode fibers and
is of tremendous importancein optical communication
systems.

Since V-numberis inverselyproportional to wavelengh,
aboveconditionimplies that the fiber willremainsingle modedif
$\lambda>\lambda_{\mathrm{c}}=\frac{2 \pi a\left(n_{1}^{2}-n_{2}^{2}\right)^{1 / 2}}{V_{c}}$
λ_{c} is calledcut-off wavelengh. The fiber willsupport more than
one modeif the operating wavelengh is less than λ_{c}.

Effective Index

- When an optical mode is interpreted as a ray, we could define the refractive index "seen" by the ray as if it is propagating in a uniform medium. Mathematically, effective refractive index is defined as

$$
\mathrm{n}_{\mathrm{eff}}=\beta / \mathrm{k}_{0}
$$

$\mathrm{k}_{0}=2 \pi / \lambda=$ free space prop. const.

Problem \#1

The single mode step-index fiber to be designed should have a cutoff wavelength of 1.2 microns or less. R.I. of the core and cladding are 1.55 and 1.545 , respectively. The free space wavelength $=1.55$ microns. What is the maximum core radius?

Problem \#2

For a step-index fiber, R.I. of the cladding $=1.52 . \Delta=0.3 \%$. Wavelength $=1.55$ and core radius $=10$ microns.
Calculate V number. Is this fiber a single mode fiber?

