Optical Fibers- |



Maxwell’ s Equations

Differential Form Integral Form
O0D=p (1) §D.dS=[ pdv
O0B=0 (2) ~
. §B.dS=0
OxE=-— (3 0
ot fEdl =-—[BdS
oD ot

OxH=J+Z (4 5
ot fH.d =1+ [Dds
ot

Electrical and Magnetic flux density,D and H are
D=¢E, £=pemittivity
B =/H, u=permeability



Wave Equation

Using the vector identity
OxOxE=0(0E)-0O°E (5
and using Egs. (3) and (4),

0 0 oD
OxOxE __E(DXB) ——,LIE(J +Ej (6)
In thesourcefreeregion, p =J =0.From (5) and (6),
0°E
ot*
Similar calculation for magneticfield yields
0°H
ot*

0°E = ue

O0°H = ue




Wave Equation

The permittivity £ and permeability 1 can bewritten as

&= &yE, H = HH,

&, = freespace permittivity. p, =freespace permeability.
£ = n° = relative permittivity, which is medium dependent.
n = refractiveindex.

U = relative permeability =1for dielectrics.

Velocity of lightinfreespace, cis




Wave Equation

The wave equation for electric field can be rewritten as

n* 0°E
0°E =— 8
c® ot’ ®)
Eq. (8) isa vector equation for componentsE,, E, and E,.

These equations should be solved with the boundary conditions
that tangential electric and magentic fields be continuous at the
boundary.

But if therefractiveindex differenceat the boundary issmall,
one could use scalar wave approximation, i.e.

n*(r) o’y
Oy =
v c® ot°

(/ could represent a transeverse electric field component
E,orE,.




Linearly Polarized (LP) Modes of Optical Fiber

L et

Y(r,0,z,t) =¢r, d)expli(at - fz)] (9
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A, = freespacewavel ength




LP Modes

Using the method of separation of variable

¢=R(r)o(0) (11)
+—— [+r[kin“(r) =B =—— =1 (12
R(dr2 rdr) o) = #'] © dr? (12
| = const.
d“®
+1°0=0 (13
dr? (19

©(80) = Acos(l 6) + Bsin(l 6)
Since©(8+ 2m) = O(6)
= Acod[l(8+2m)]+Bsin[l (6 +2m)]
= Acos(l18) + Bsin(18) (14)
Eqg.(14) would betrueonlyif |isaninteger,0,1,2...
We could chooseeither theform cos(l ) or sin(l &) for ©.



LP Modes

From Eq.(14),

I 2

2
SR - -
For step index fiber
n(r)=n’ for r<a (core)

=n; for r >= a (cladding)

Guided  Modes :(kZnZ < B2 < kZn?)
U = a(k02n12 _ ﬁ2)1/2

W =a(f?-kgn2)'

V = (U 2 + W 2)1/2 — koa(n12 _ r]22)1/2



LP Modes

2 11 2 2
d|§+£dR+U2—|2R:0 f<a
dr r d a r

2 2 2
dlj+£dR \N2+|2 R=0 r >= a
dr r d a r
For r <a,

R(r)=CJ,(Ur /a)+ DY, (Ur /a)
J, and Y, are Bessdl functions of first and second
kind, resply. Y,(0) = —c0, SO we can not have the term with

Y,.i.e.D =0.

R(r) =CJ,(Ur /a)

For r >= a

R(r) = EK,(Wr /a)+ FI,(Wr /a)
K,and |, are modified Bessel functions of first and second
kind, resply. |, isrejected because |, (o0) = oo,



LP Modes

For r >=a

R(r) = EK,(Wr /a)

The field ¢ and its derivative d¢ /dr should continuous at the
boundary r = a.lf 0 ¢ /dris not continuous , 8’ /or* would be
a Dirac Delta function and from Eqg. (10), we see that n*(r)
would be a Dirac Delta function w hich is not consistent .

In our example, n*(r) is astep function.
R(a) =CJ,(U) = EK, (W)

R =ucy; ) =weK; W)
JU)  KW)

The transcede ntal equation (15) should be numericall y solved for
the unknown SorU.



LP Modes

For numerical calculation, itiseasier if we avoid derivatives.
Using theidentities:
UJ,U)=uJ_U)-13,U)
VVK|I (W) =-WK,; (W) -IK, (W)
From Eq.(15), weobtain
WILU) - WKW oo
J,(U) K, (W)
It isconvenient to use normalized prop. const. b and
normalized parameter V.

b:W22 B’ k22 (17)
Ve kg (ny - )
U®=V?*@1-h)

Solve Eq.(16) with b asunknown. Sincek’n: < 87 <kin’, we
must haveO <b <1.



LP modes

Mode Classification :

The modes are designated as LP,, where | = mode order and
m = radial mode number.

| istheindex corresponding to the variationsalong &.
mistheindex corresponding to the variationsalong r.
When | =0, the field does not vary asafunction of 6.
Mode Cutoff :

At cutoff S =k, n, and therefore,

b=0,W=0,U =V =V,

For the | =1mode, from Eq.(16) , we have

V. J,(V.)=0 (18)

Solving eq.(18), we haveV, = 2.408 which is the cutoff
condition for LP11 mode.



Mode Cutoff

For astepindex fiber with

o<V< Ve (=2.4048)
wewill haveonly oneguided modenamely L PO1mode.
Such afiberisreferredto assinglemodefibersand
isof tremendousimportancein optical communicaion
systems.
SinceV -numberisinverselyproportioral to wavelengh,

aboveconditionimpliesthat thefiber willremainsinglemodedif

2 2.\1/2
278 -n
A>) = (n =)

C

/lc iscalledcut-off wavelengh. Thefiber willsupport morethan

onemodeif theoperatingwavelenghislessthan A c:



Effective Index

* When an optical mode isinterpreted as aray, we could
define the refractive index “seen” by theray asif itis

propagating in a uniform medium. Mathematically,
effective refractive index is defined as

Nes=P/Ko
K,=2TVA= free space prop. const.



Problem #1

The single mode step-index fiber to be designed should
have a cutoff wavelength of 1.2 micronsor less. R.1. of the
core and cladding are 1.55 and 1.545, respectively. The
free space wavelength = 1.55 microns. What is the

maximum core radius?



Problem #2

For astep-index fiber, R.I. of the cladding=1.52. A=0.3%.

Wavelength = 1.55 and core radius = 10 microns.
Calculate V number. Isthisfiber asingle mode fiber?



