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Applications of MoM 

 Example on static problems 

 Example on 2D scattering problems 

 Wire Antennas and scatterers 

References 
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A Charged Conducting Plate 

  Find the charge distribution and capacitance of a metalic 

plate of dimensions 2a2a whose potential is  = Vo 
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A Charged Conducting Plate (Cont’d) 

 The potential and charge satisfy for the unbounded medium 

 The well-known solution for this problem is 

 As the plate is assumed to be in the xy plane we may also 

write 
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A Charged Conducting Plate (Cont’d) 

 We divide the conducting plate into N square subsections and 

define the subsectional basis function 
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 We then expand the unknown surface charge density in terms 

of the subsectional basis functions 
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A Charged Conducting Plate (Cont’d) 

 But as the nth basis function is nonzero only over the nth 

subsection we may write 
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 We utilize point matching by enforcing the above equation at 

the centers of each subsection 
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A Charged Conducting Plate (Cont’d) 

 It follows that the coefficients n  are obtained by solving 
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 Postprocessing: The capacitance of the conducting plate is 

approximated by 
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A Charged Conducting Plate (Cont’d) 

The charge distribution along the width of the plate 

Harrington, Field 

Computation by 

Moment Methods 
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Scattering Problems 

conductor 
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Ei 
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 An incident wave generates surface currents that in turn 

generate a scattered field such that  

0 )( EEn si (zero total tangential electric field) 

 In a scattering problem it is required to determine the surface 

currents.  Es is obtained as a byproduct 
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Scattering by a Conducting Cylinder of a TM Wave 

 Incident field has only z direction   
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 Fields are dependent on x and y directions.  It follows that we 

can solve this problem as a 2D problem  
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Scattering by a Conducting Cylinder (Cont’d) 

 Starting with Maxwell’s equations 
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(We consider only the z component) 
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Scattering by a Conducting Cylinder (Cont’d) 

 For the problem at hand we must have                    for all 

points on the surface of the cylinder  
EE
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The only unknown in this equation is Jz 

 We expand Jz in terms of the subsectional basis functions 
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Scattering by a Conducting Cylinder (Cont’d) 

 It follows that we have 
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(one equation in N unknowns) 

 We utilize point matching to enforce the above equation at 

the centers of the subsections  N  m yx mmm ,,2,1),,( ρ
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(N equation in N unknowns) 
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Scattering by a Conducting Cylinder (Cont’d) 

For a uniform plane wave incident at an angle i we have 

eysine xcoskjE
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Harrington, Field 
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Pocklington’s Integral Equation  

 The target is to determine the current distribution and 

consequently the scattered field due to an incident field for a 

finite-diameter wire 
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Pocklington’s Integral Equation (Cont’d) 

 The main relation for this scatterer is 
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 The z component of the magnetic vector potential is   

zdad
R

e
zJsd

R

e
JA

l/

l/-

R-j

z

R-j

S
zz    







   2

2

2

0

),(
4

)(
4

)( rr

rr  -R



17 EE757, 2016, Dr. Mohamed Bakr 

Pocklington’s Integral Equation (Cont’d) 

 If the wire is thin, Jz is not a function of   

zdd
R

e
zJ aA

l/

l/-

R-j

zz  







 

2

2

2

0 42

1
)(2)(

 




r

)(zI z  ),( zG r

 The distance R in cylindrical coordinate is  

a 

r 

 

zz 

R 

)()(2
222

zzacosaR  

 For observation points on the wire surface we have 

)()(22
222 zzcosaaR  

)()
2

(4
222 zzsinaR 








18 EE757, 2016, Dr. Mohamed Bakr 

 But as                                     , we may write 

Pocklington’s Integral Equation (Cont’d) 

 But as Az has a  symmetry, we may write  

Az(=a,z,) = Az(=a,z,0)  
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 The scattered field at the wire surface is thus given by  
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Pocklington’s integral equation (only Iz is not known) 
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Solution of Pocklington’s Integral equation 

 

 Divide the wire into N non overlapping segments  

 Expand the unknown current in terms of the 
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 For triangular functions we have 
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Solution of Pocklington’s Equation (Cont’d) 

 It follows that 
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using a pulse function 
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One equation in N unknowns 
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Solution of Pocklington’s Equation (Cont’d) 

 Enforcing this equation at the center of each segment, we get 

N equations in N unknowns 
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