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The Finite Element Method (FEM) 

 The Ritz Method 

 Galerkin’s Method 

 Introduction to FEM and general steps 
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Ritz Method 

  This method aims at solving a Boundary Value Problem 

(BVP) of the form L()=f, by minimizing a corresponding 

functional F() 

  Example: Solve the BVP                             0< x <1 

    subject to                                     using Ritz method 
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  We define the corresponding functional 
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  Notice that for every possible trial function           the 

functional F assumes a certain value  
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Ritz Method (Cont’d) 

  We want to show that the minimum of F is assumed at a 

function                , the solution of the BVP 

  If a trial function  is perturbed by a function , the 

functional F changes by F where 
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Ritz Method (Cont’d) 
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  If follows that we have 

dxx dx
dx

d

dx

d
F   


















1

0

1

0

)1(
)()(






  For optimality, we should have F=0 
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Integrate by parts 
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Ritz Method (Cont’d) 

  But as (0)= (1)=0 because of fixed boundary 

conditions, the optimality condition gives  
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  optimality condition has to apply for any perturbation , 

it follows that the minimizer of the functional satisfies, 

                                 which is our BVP 
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  The functional F was formulated such that its minimizer is 

the solution of the BVP we wish to solve 
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Ritz Method (Cont’d) 

 If we assume a solution of the form 
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 Substituting into the functional 
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Ritz Method (Cont’d) 

 Applying optimality conditions we get 
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General Steps for the Ritz Method 

 Formulate a functional whose minimizer is the solution of 

the BVP 

 Apply optimality conditions to determine the parameters of 

the solution 
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Galerkin’s Method 

 This method seeks a solution to the BVP L()=f by        

weighting the residual of the differential equation 

 For a trial function          this residual is defined by 

  

 The unknown solution is expressed as a sum of known 

entire domain basis functions                                                       

   where                                  and 

 We define the ith weighted residual as  

 

 We set the weighted residuals to zero to obtain N equations 

in N unknowns 
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Galerkin’s Method (Cont’d) 

 For this method we choose wi=vi  to have 
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  Example: Solve the BVP                             0< x <1 

    subject to                                     using Galerkin’s method 
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  As shown before we selected the trial functions as 
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Galerkin’s Method (Cont’d) 
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  The weighted residuals are thus given by 
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  Solving these two equations we get c3=1/2, c4=1/6 

General Steps for Galerkin’s Method 

  Expand the unknown solution in terms of basis 

functions 

  Evaluate the weighted residuals using the basis 

functions as weighting functions 

  Solve the resultant system of equations for the unknown 

coefficients 
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Introduction to FEM 

  We introduce the FEM by solving the previous example 
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  We discretize the space into 3 subdivisions (elements) 

  Notice that each node has both a local and a global index, 

i.e., there are two numbering schemes  
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Introduction to FEM (Cont’d) 

  Over the ith element, the unknown function is expressed 

as an interpolation of the unknown nodes values 
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  Notice that i , i=1, 2, 3, 4 are not known in general.  In 

this problem only the boundary values are known (1=0 

and 4=1) 

  We can formulate FEM using either Ritz’s or Galerkin’s 

methods 
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Introduction to FEM (Cont’d) 

  For the Ritz method, we utilize the functional 
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Introduction to FEM (Cont’d)  

 Integrating, we get 
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(1=0 and 4=1) 
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 Applying optimality conditions for the minimizer of F 
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Introduction to FEM (Cont’d) 

 The same result can be obtained using Galerkin’s method with 

the weighting functions  
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Prove it! 

 We shall focus on the Ritz finite element method  
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General Steps of the Ritz FEM 

 Divide the domain into subdomains (elements) e, e=1, 2, , 

M  

 Over each element, expand the unknown function as an 

interpolation of the values of the element’s nodes  

                                                                     is the value of  at 

the jth node of the eth element and             is the 

corresponding interpolation function 

  Formulate the functional in terms of the unknown 

coefficients   

  Apply the optimality conditions for a minimizer of the 

functional F/ i=0, i=1,2, , N 

  Solve the resultant system of equations 
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