EE757
 Numerical Techniques in Electromagnetics Lecture 12

1D FEM

- We consider a 1D differential equation of the form
$-\frac{d}{d x}\left(\alpha \frac{d \varphi}{d x}\right)+\beta \varphi=f, x \in(0, L) \quad$ subject to the
boundary conditions $\varphi(0)=p,\left[\alpha \frac{d \varphi}{d x}+\gamma \varphi\right]_{x=L}=q$
- α and β are functions associated with the physical parameters and f is the excitation
- Notice that the boundary conditions may be a Dirichlet, Neuman or mixed Dirichlet and Neuman.

1D FEM (Cont'd)

- The functional associated with this problem is

$$
F(\varphi)=0.5 \int_{0}^{L}\left[\alpha\left(\frac{d \varphi}{d x}\right)^{2}+\beta \varphi^{2}\right] d x-\int_{0}^{L} f \varphi d x+\left[\frac{\gamma}{2} \varphi^{2}-q \varphi\right]_{x=L}
$$

(Prove it)!

- We divide our computational domain into M elements with a total number of N nodes

1D FEM (Cont'd)

	j	2
1	1	2
2	2	3
3	3	4
$:$	$:$	$:$
M	M	$M+1$

- We utilize an index table to determine the global index of each local node
- For this simple 1D case, we have $N=M+1$ and

$$
x_{1}^{e}=x_{e}, x_{2}^{e}=x_{e+1}
$$

1D FEM (Cont'd)

- We approximate the unknown function φ by a linear approximation over each element, i.e.,

$$
\varphi_{e}(x)=a^{e}+b^{e} x, \quad x \in \Omega_{e}
$$

- It follows that we have

$$
\varphi_{1}^{e}=a^{e}+b^{e} x_{1}^{e}, \quad \varphi_{2}^{e}=a^{e}+b^{e} x_{2}^{e}
$$

$$
\begin{aligned}
& \square \text { Express } a^{e} \text { and } b^{e} \text { in terms of nodes values } \\
& \varphi^{e}(x)=\sum_{j=1}^{2} N_{j}^{e}(x) \varphi_{j}^{e}
\end{aligned}
$$

- $N_{j}^{e}(x)$ is the j th interpolation function of the e th element where $N_{1}^{e}(x)=\left(x_{2}^{e}-x\right) / l^{e}$ and $N_{2}^{e}(x)=\left(x-x_{1}^{e}\right) / l^{e}$ where l^{e} is the length of the eth element, i.e., $l^{e}=x_{2}^{e}-x_{1}^{e}$

The Homogenous Neuman BC Case

- For this case $(\gamma=q=0)$, the functional is given by

$$
F(\varphi)=0.5 \int_{0}^{L}\left[\alpha\left(\frac{d \varphi}{d x}\right)^{2}+\beta \varphi^{2}\right] d x-\int_{0}^{L} f \varphi d x
$$

Ω Use elemental expansion

$$
F(\varphi)=0.5 \sum_{e=1}^{M} \int_{x_{1}^{e}}^{x_{2}^{e}}\left[\alpha\left(\frac{d \varphi^{e}}{d x}\right)^{2}+\beta\left(\varphi^{e^{2}}\right)^{2}\right] d x-\sum_{e=1 x_{1}^{e}}^{M} \int_{2}^{x_{2}^{e}} f \varphi^{e} d x
$$

§F can be written as a sum of subfunctionals

$$
F(\varphi)=\sum_{e=1}^{M} F^{e}\left(\varphi^{e}\right)
$$

The Homogenous Neuman BC Case (Cont'd)

- The e th subfunctional is thus given by

$$
F^{e}\left(\varphi^{e}\right)=0.5 \int_{x_{1}^{e}}^{x_{2}^{e}}\left[\alpha\left(\frac{d \varphi^{e}}{d x}\right)^{2}+\beta\left(\varphi^{e}\right)^{2}\right] d x-\int_{x_{1}^{e}}^{x_{2}^{e}} f \varphi^{e} d x
$$

- It follows that we have

$$
\frac{\partial F(\varphi)}{\partial \varphi_{i}}=\sum_{e=1}^{M} \frac{\partial F^{e}\left(\varphi^{e}\right)}{\partial \varphi_{i}}, i=1,2, \cdots, N
$$

- Notice the coefficient of any node value may be obtained through summing the associated coefficients obtained by differentiating each subfunctional
- Substituting in the e th subfunctional with the expansion

$$
\varphi^{e}(x)=\sum_{j=1}^{2} N_{j}^{e}(x) \varphi_{j}^{e} \text { we get }
$$

[^0]
The Homogenous Neuman BC Case (Cont'd)

- It follows that we have

$$
\begin{gathered}
F^{e}\left(\varphi^{e}\right)=0.5 \int_{x_{1}^{e}}^{x_{2}^{e}}\left[\alpha \sum_{i=1}^{2} \sum_{j=1}^{2} \varphi_{i}^{e} \frac{d N_{i}^{e}}{d x} \frac{d N_{j}^{e}}{d x} \varphi_{j}^{e}+\beta \varphi_{i}^{e} N_{i}^{e} N_{j}^{e} \varphi_{j}^{e}\right] d x \\
-\int_{x_{1}^{e}}^{x_{2}^{e}} f \sum_{i=1}^{2} \varphi_{i}^{e} N_{i}^{e} d x
\end{gathered}
$$

\sum Differentiating w.r.t. φ_{i}^{e}
$\frac{d F^{e}}{d \varphi_{i}^{e}}=\sum_{j=1}^{2} \varphi_{j}^{e}\left(\int_{x_{1}^{e}}^{x_{2}^{e}} \alpha \frac{d N_{i}^{e}}{d x} \frac{d N_{j}^{e}}{d x}+\beta N_{i}^{e} N_{j}^{e} d x\right)-\int_{x_{1}^{e}}^{x_{2}^{e}} f N_{i}^{e} d x$

- Or in matrix form $\left\{\frac{\partial F^{e}}{\partial \boldsymbol{\varphi}^{e}}\right\}_{2 \times 1}=\left[\boldsymbol{K}^{e}\right]_{2 \times 2}\left[\varphi^{e}\right]_{2 \times 1}-\left[\boldsymbol{b}^{e}\right]_{2 \times 1}$

The homogenous Neuman BC case (Cont'd)

- The coefficients of the matrix \boldsymbol{K}^{e} and the vector \boldsymbol{b}^{e} are

$$
\begin{aligned}
& K_{i j}^{e}=\int_{\substack{e_{i}^{e}}}^{x_{2}^{e}}\left(\alpha \frac{d N_{i}^{e}}{d x} \frac{d N_{j}^{e}}{d x}+\beta N_{i}^{e} N_{j}^{e}\right) d x \\
& b_{i}^{e}=\int_{x_{2}^{e}}^{x_{1}^{e}} f N_{i}^{e} d x
\end{aligned}
$$

- The process of assembly involves storing the local elemental components into their proper location in the system of equations

$$
\frac{\partial F}{\partial \varphi}=\mathbf{0} \quad \longleftrightarrow[\boldsymbol{K}]_{N \times N}[\boldsymbol{\varphi}]_{N \times 1}=[\boldsymbol{b}]_{N \times 1}
$$

An Assembly Example

- assuming that we have only 3 elements (4 unknowns)

- Initialization: $\boldsymbol{K}=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
- $1^{\text {st }}$ element: $\boldsymbol{K}^{(1)}=\left[\begin{array}{ll}K_{11}^{(1)} & K_{12}^{(1)} \\ K_{21}^{(1)} & K_{22}^{(1)}\end{array}\right]$, and $\boldsymbol{b}^{(1)}=\left[\begin{array}{l}b_{1}^{(1)} \\ b_{2}^{(1)}\end{array}\right]$
- Update the global system to get

An Assembly Example (Cont'd)

$$
\boldsymbol{K}=\left[\begin{array}{cccc}
K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0 \\
K_{21}^{(1)} & K_{22}^{(1)} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
b_{1}^{(1)} \\
b_{2}^{(1)} \\
0 \\
0
\end{array}\right]
$$

- 2nd element: $\boldsymbol{K}^{(2)}=\left[\begin{array}{ll}K_{11}^{(2)} & K_{12}^{(2)} \\ K_{21}^{(2)} & K_{22}^{(2)}\end{array}\right]$, and $\boldsymbol{b}^{(2)}=\left[\begin{array}{l}b_{1}^{(2)} \\ b_{2}^{(2)}\end{array}\right]$
- Update the global system to get

$$
\boldsymbol{K}=\left[\begin{array}{cccc}
K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0 \\
K_{21}^{(1)} & K_{22}^{(1)}+K_{11}^{(2)} & K_{12}^{(2)} & 0 \\
0 & K_{21}^{(2)} & K_{22}^{(2)} & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
b_{1}^{(1)} \\
b_{2}^{(1)}+b_{1}^{(2)} \\
b_{2}^{(2)} \\
0
\end{array}\right]
$$

EE757, 2016, Dr. Mohamed Bakr

An Assembly Example (Cont'd)

- By assembling the $3^{\text {rd }}$ element we finally have the system of equations

$$
\boldsymbol{K}=\left[\begin{array}{cccc}
K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0 \\
K_{21}^{(1)} & K_{22}^{(1)}+K_{11}^{(2)} & K_{12}^{(2)} & 0 \\
0 & K_{21}^{(2)} & K_{22}^{(2)}+K_{11}^{(3)} & K_{12}^{(3)} \\
0 & 0 & K_{21}^{(3)} & K_{22}^{(3)}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
b_{1}^{(1)} \\
b_{2}^{(1)}+b_{1}^{(2)} \\
b_{2}^{(2)}+b_{1}^{(3)} \\
b_{2}^{(3)}
\end{array}\right]
$$

The General Boundary Case

- For the case $q \neq 0$ or $\gamma \neq 0$, the functional is augmented by the subfunctional
$F_{b}(\varphi)=\left[\frac{\gamma}{2} \varphi^{2}-q \varphi\right]_{x=L} \square F_{b}(\varphi)=\frac{\gamma}{2} \varphi_{N}^{2}-q \varphi_{N}$
$\frac{\partial F_{b}}{\partial \varphi_{N}}=\gamma \varphi_{N}-q$
- It follows that only $K_{N N}$ is incremented by γ and b_{N} is incremented by q

Dirichlet's Boundary Conditions

- Dirichlet's boundary conditions are imposed by eliminating the corresponding nodal values
- Example: for the case $N=4$, we have
$\boldsymbol{K}=\left[\begin{array}{llll}K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \\ K_{31} & K_{32} & K_{33} & K_{34} \\ K_{41} & K_{42} & K_{43} & K_{44}\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$
\square if $\varphi_{1}=p$

$$
\boldsymbol{K}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & K_{22} & K_{23} & K_{24} \\
0 & K_{32} & K_{33} & K_{34} \\
0 & K_{42} & K_{43} & K_{44}
\end{array}\right]\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4}
\end{array}\right]=\left[\begin{array}{c}
p \\
b_{2}-K_{21} p \\
b_{3}-K_{31} p \\
b_{4}-K_{41} p
\end{array}\right] \square\left[\begin{array}{lll}
K_{22} & K_{23} & K_{24} \\
K_{32} & K_{33} & K_{34} \\
K_{42} & K_{43} & K_{44}
\end{array}\right]\left[\begin{array}{l}
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{2}-K_{21} p \\
b_{3}-K_{31} p \\
b_{4}-K_{41} p
\end{array}\right]
$$

EE757, 2016, Dr. Mohamed Bakr

Example

- Determine the power reflected by this inhomogeneous metal-backed dielectric slab for a uniform incident plane wave with a z polarized electric field. Both μ_{r} and ε_{r} may vary with x.

Example (Cont'd)

- The expression for the incident electric field is

$$
\begin{gathered}
E_{z}^{i n c}(x, y)=E_{0} \exp (-j \boldsymbol{k} \boldsymbol{r}), \boldsymbol{k}=-k_{o} \cos \theta \boldsymbol{a}_{x}+k_{o} \sin \theta \boldsymbol{a}_{y} \\
E_{z}^{i n c}(x, y)=E_{0} \exp \left(j k_{0} x \cos \theta-j k_{0} y \sin \theta\right)
\end{gathered}
$$

- Notice that all field components must have a variation of $\exp \left(-j k_{o} y \sin \theta\right)$ to satisfy field continuity
- The wave equation for this problem is

$$
\nabla \times\left(\frac{1}{\mu} \nabla \times \boldsymbol{E}\right)-\omega^{2} \varepsilon \boldsymbol{E}=-j \omega \boldsymbol{J}
$$

- Taking into account that $\boldsymbol{E}=E_{z} \boldsymbol{a}_{z}, \partial / \partial z=0$ and $\boldsymbol{J}=\mathbf{0}$, we get

$$
\left[\frac{\partial}{\partial x}\left(\frac{1}{\mu_{r}} \frac{\partial}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{1}{\mu_{r}} \frac{\partial}{\partial y}\right)+k_{o}^{2} \varepsilon_{r}\right] E_{z}=0
$$

EE757, 2016, Dr. Mohamed Bakr

Example (Cont'd)

- Substituting for $\frac{\partial}{\partial y}\left(\frac{1}{\mu_{r}}\right)=0$, and $\frac{\partial E_{z}}{\partial y}=-j k_{o} \sin \theta E_{z}$ we get

$$
\frac{\partial}{\partial x}\left(\frac{1}{\mu_{r}} \frac{d E_{z}}{d x}\right)+k_{o}^{2}\left(\varepsilon_{r}-\frac{\sin ^{2} \theta}{\mu_{r}}\right) E_{z}=0 \text { with the } \mathrm{BC} E_{z}(0)=0
$$

- An analytical solution is obtained by dividing the slab into layers $m=1,2, \ldots, M$, where ε_{r} and μ_{r} are assumed constant with values $\varepsilon_{r m}$ and $\mu_{r m}$, respectively.

Example (Cont'd)

- The wave equation in each layer, thus becomes
$\frac{1}{\mu_{r m}} \frac{d^{2} E_{z}}{d x^{2}}+k_{0}^{2}\left(\varepsilon_{r m}-\frac{\sin ^{2} \theta}{\mu_{r m}}\right) E_{z}=0 \square \frac{d^{2} E_{z}}{d x^{2}}+k_{0}^{2}\left(\varepsilon_{r m} \mu_{r m}-\sin ^{2} \theta\right) E_{z}=0$
which has the solution

$$
\begin{aligned}
E_{z m} & =\left(A_{m} \exp \left(j k_{x m} x\right)+B_{m} \exp \left(-j k_{x m} x\right)\right) \exp \left(-j k_{o} \sin \theta y\right) \\
k_{x m} & =k_{o} \sqrt{\varepsilon_{r m} \mu_{r m}-\sin ^{2} \theta}
\end{aligned}
$$

- The analytical solution is obtained by enforcing continuity of the electric and magnetic field components at the layers interface to get

Example (Cont'd)

$$
\begin{aligned}
& R_{m+1}=\frac{\eta_{m+1, m}+R_{m} \exp \left(-2 j k_{x m} x_{m+1}\right)}{1+\eta_{m+1, m} R_{m} \exp \left(-2 j k_{x m} x_{m+1}\right)} \exp \left(2 j k_{x m+1} x_{m+1}\right) \\
& R_{m}=\frac{B_{m}}{A_{m}}, \eta_{m+1, m}=\frac{\mu_{r m} k_{x m+1}-\mu_{r m+1} k_{x m}}{\mu_{r m} k_{x m+1}+\mu_{r m+1} k_{x m}} \\
& R_{1}=\frac{B_{1}}{A_{1}}=-1, \quad(\text { conductor }) \quad(\text { Prove it)! }
\end{aligned}
$$

FEM Solution

- Our problem is given by

$$
\frac{d}{d x}\left(\frac{1}{\mu_{r}} \frac{d E_{z}}{d x}\right)+k_{o}^{2}\left(\varepsilon_{r}-\frac{\sin ^{2} \theta}{\mu_{r}}\right) E_{z}=0 \text { with the BC } E_{z}(0)=0
$$

- A boundary condition at $x=L$ to have a finite computational domain
- For $L \leq x$, we have
$E_{z}(x, y)=\left(E_{0} \exp \left(j k_{o} x \cos \theta\right)+R E_{0} \exp \left(-j k_{o} x \cos \theta\right)\right) \exp \left(-j k_{o} y \sin \theta\right)$
Ω

$$
E_{z}(x, y)=E_{z}(x) \exp \left(-j k_{o} y \sin \theta\right)
$$

- Differentiating $E_{z}(x)$ relative to x we get
$\frac{d E_{z}(x)}{d x}=j k_{o} \cos \theta\left(E_{0} \exp \left(j k_{o} x \cos \theta\right)-R E_{0} \exp \left(-j k_{o} x \cos \theta\right)\right)$
EE757, 2016, Dr. Mohamed Bakr

FEM Solution (Cont'd)

- Manipulating we get

$$
\begin{aligned}
& \frac{d E_{z}(x)}{d x}=2 j k_{o} \cos \theta E_{o} \exp \left(j k_{o} x \cos \theta\right)-j k_{o} \cos \theta E_{z}(x) \\
& \left.\left(\frac{d E_{z}(x)}{d x}+j k_{o} \cos \theta E_{z}(x)\right)\right|_{x=L^{+}}=2 j k_{o} \cos \theta E_{o} \exp \left(j k_{o} L \cos \theta\right)
\end{aligned}
$$

- Utilizing the continuity of the electric and magnetic field we may convert this boundary condition into

$$
\left.\left(\frac{1 d E_{z}(x)}{\mu_{r} d x}+j k_{o} \cos \theta E_{z}(x)\right)\right|_{x=L^{-}}=2 j k_{o} \cos \theta E_{o} \exp \left(j k_{o} L \cos \theta\right)
$$

FEM Solution (Cont'd)

- It follows that our problem is given by

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{\mu_{r}} \frac{d E_{z}}{d x}\right)+k_{o}^{2}\left(\varepsilon_{r}-\frac{\sin ^{2} \theta}{\mu_{r}}\right) E_{z}=0 \text { with } E_{z}(0)=0 \\
& \left.\left(\frac{1}{\mu_{r}} \frac{d E_{z}(x)}{d x}+j k_{o} \cos \theta E_{z}(x)\right)\right|_{x=L}=2 j k_{o} \cos \theta E_{0} \exp \left(j k_{o} L \cos \theta\right)
\end{aligned}
$$

- Comparing with our 1D FEM formulation we have

$$
\begin{aligned}
& \varphi=E_{z}(x), \quad \alpha=1 / \mu_{r}, \quad \beta=-k_{0}^{2}\left(\varepsilon_{r}-\frac{\sin ^{2} \theta}{\mu_{r}}\right) \\
& \gamma=j k_{\mathrm{o}} \cos \theta, \quad q=2 j E_{\mathrm{o}} k_{\mathrm{o}} \cos \theta \exp \left(k_{\mathrm{o}} L \cos \theta\right)
\end{aligned}
$$

- Once the field is solved, the reflection coefficient is given by

$$
R=\frac{E_{z}(x)-\left(E_{0} \exp \left(j k_{o} L \cos \theta\right)\right.}{E_{0} \exp \left(-j k_{o} L \cos \theta\right)}
$$

EE757, 2016, Dr. Mohamed Bakr

[^0]: EE757, 2016, Dr. Mohamed Bakr

