
1 

EE757  

Numerical Techniques in Electromagnetics 
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2D FEM 

 We consider a 2D differential equation of the form 

                                                                                         

subject to  
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 x, y and    are functions associated with the physical 

parameters and  f  is the excitation 

 

 Notice that the boundary conditions may be a Dirichlet,  

Neuman or mixed Dirichlet and Neuman. 
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where = 1 2 is the contour enclosing the domain  and 

n is the unit outward normal 

 



3 EE757, 2016, Dr. Mohamed Bakr 

2D FEM (Cont’d) 
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 The functional associated with this problem is 

 

(Prove it)! 
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2D FEM Analysis 

 Each node has both a local and a 

   global index 
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3  The computational domain is divided 

   into triangles (elements) 

 A connectivity array n(i,e), i=1, 2, 3 and e=1, 2, , M 

stores the global indices of the nodes 
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2D FEM Analysis (Cont’d) 

 We assume that there are Ms line segments on 2 
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s=1 

s=2 

s=3 

 We store the index array ns(i,s), i=1, 2 and s=1, 2, , Ms 

of global indices of nodes on 2 
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Input Data to the 2D FEM Analysis  

 The coordinates of the nodes ri=(xi,yi), i=1, 2, , N, where 

N is the total number of nodes 

 The values of x, y,  and f for each element 

 The value of p for each node residing on 1 

 The value of  and q for each segment with nodes on 2 

  The two arrays n(i,e), i=1, 2, 3 and e=1, 2, , M and 

ns(i,s), i=1, 2 and s=1, 2, , Ms  
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Elemental Interpolation 

 Over the eth element we utilize the linear approximation 
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 The three nodes of the eth element must satisfy the linear   
interpolation relation 
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 Solving for ae, be and ce we obtain 
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Elemental Interpolation (Cont’d) 

 Ae is the area of the eth element and is given by 
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 The interpolation functions satisfy 
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The Homogenous Neuman BC case  

 We first consider the case ( = q = 0) 

 
 The functional is expressed as a sum of elemental 

subfunctions 
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 Substituting with the linear interpolation expression, we 

write 
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The Homogenous Neuman BC case  
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The Homogenous Neuman BC case (Cont’d) 
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 If x, y ,  and f are taken as constants over each element, 

and utilizing the property 
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The Process of Assembly 

 The process of assembly involves storing the local 

elemental components into their proper location in the 

global system of equations 
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An Assembly Example 
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 There are six nodes                

 

      
 1666 and bK

 We initialize K and b with zeros                

  Evaluate K(1) and b(1) an add them to the proper locations 

to get          
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An Assembly Example (Cont’d) 
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 Evaluate K(2) and b(2) an add them to the proper locations        

 

































































0

0
,

000000

000

00

000000

00

000

)2(
1

)2(
2

)1(
2

)2(

3

)1(
1

)1(

3

)2(

11

)2(

12

)2(

31

)2(

21

)2(

22

)1(

22

)2(

32

)1(

21

)1(

32

)2(

13

)2(

23

)1(

12

)2(

33

)1(

11

)1(

31

)1(

23

)1(

13

)1(

33

b

bb

bb

b

     

KKK

KKKKKK

KKKKKK

KKK

bK

 Repeat the same steps for all elements       
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Incorporating a Boundary Condition of the 3rd Kind  

 In this case  and q are not zeroes 

 The extra subfunctional                                       is added to  

the functional F 
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Incorporating a 3rd Kind BC (Cont’d) 
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 Assembly is then applied to store these coefficients 
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The Dirichlet Boundary Condition 

 The Dirichlet boundary conditions are imposed by 

eliminating the known nodes by substituting for their 

values 
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Reduced system 
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An Example: A Shielded Microstrip Line 
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 The microstrip is kept at potential =1 while the external 

shielding box is kept at potential =0  

  Symmetry may be employed to reduce the computational 

domain by one half 

  The governing BVP is 
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An Example: A Shielded Microstrip Line (Cont’d) 
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with  = 0 on the outer conductor,  =1 on the microstrip 

and  / n=0 on the plane of symmetry 

 It follows that we have x= y=r,  =0, f = 0 

 The electric field is obtained through E=-.  But  over 

each element is approximated by 
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An Example: A Shielded Microstrip Line (Cont’d) 

The Finite Element Method in Electromagnetics, Jianming Jin 
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An Example: A Shielded Microstrip Line (Cont’d) 

The equi-potential lines 

The Finite Element Method 

in Electromagnetics, 

Jianming Jin 


