EE757

Numerical Techniques in Electromagnetics
Lecture 13

2D FEM

- We consider a 2D differential equation of the form
$-\frac{\partial}{\partial x}\left(\alpha_{x} \frac{\partial \varphi}{\partial x}\right)-\frac{\partial}{\partial y}\left(\alpha_{y} \frac{\partial \varphi}{\partial y}\right)+\beta \varphi=f,(x, y) \in \Omega$
subject to

$$
\begin{aligned}
& \varphi=p \quad \text { on } \Gamma_{1} \\
& \left(\alpha_{x} \frac{\partial \varphi}{\partial x} i+\alpha_{y} \frac{\partial \varphi}{\partial y} \boldsymbol{j}\right) . \boldsymbol{n}+\gamma \varphi=q \quad \text { on } \Gamma_{2}
\end{aligned}
$$

where $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ is the contour enclosing the domain Ω and \boldsymbol{n} is the unit outward normal

- Notice that the boundary conditions may be a Dirichlet, Neuman or mixed Dirichlet and Neuman.
- α_{x}, α_{y} and β are functions associated with the physical parameters and f is the excitation
$\overline{\text { EE757, 2016, Dr. Mohamed Bakr }}$

2D FEM (Cont'd)

- The functional associated with this problem is

$$
\begin{aligned}
F(\varphi)=0.5 \iint_{\Omega}\left[\alpha_{x}\left(\frac{\partial \varphi}{\partial x}\right)^{2}\right. & \left.+\alpha_{y}\left(\frac{\partial \varphi}{\partial y}\right)^{2}+\beta \varphi^{2}\right] d \Omega \\
& -\iint_{\Omega} f \varphi d \Omega+\int_{\Gamma_{2}}\left[\frac{\gamma}{2} \varphi^{2}-q \varphi\right] d \Gamma
\end{aligned}
$$

(Prove it)!

2D FEM Analysis

- The computational domain is divided into triangles (elements)
- Each node has both a local and a global index

- A connectivity array $n(i, e), i=1,2,3$ and $e=1,2, \ldots, M$ stores the global indices of the nodes

e	1	2	3
1	2	4	1
2	5	4	2
3	3	5	2
4	5	6	4

EE757, 2016, Dr. Mohamed Bakr

2D FEM Analysis (Cont'd)

- We assume that there are M_{s} line segments on Γ_{2}
- We store the index array $n_{s}(i, s), i=1,2$ and $s=1,2, \ldots, M_{s}$ of global indices of nodes on Γ_{2}

Input Data to the 2D FEM Analysis

- The coordinates of the nodes $\boldsymbol{r}_{i}=\left(x_{i}, y_{i}\right), i=1,2, \ldots, N$, where N is the total number of nodes
- The values of $\alpha_{x}, \alpha_{y}, \beta$ and f for each element
- The value of p for each node residing on Γ_{1}
- The value of γ and q for each segment with nodes on Γ_{2}
- The two arrays $n(i, e), i=1,2,3$ and $e=1,2, \ldots, M$ and $n_{s}(i, s), i=1,2$ and $s=1,2, \ldots, M_{s}$

Elemental Interpolation

- Over the eth element we utilize the linear approximation $\varphi^{e}(x, y)=a^{e}+b^{e} x+c^{e} y, \quad(x, y) \in \Omega_{e}$
- The three nodes of the e th element must satisfy the linear interpolation relation

$$
\begin{aligned}
& \varphi_{1}^{e}=a^{e}+b^{e} x_{1}^{e}+c^{e} y_{1}^{e}, \quad \varphi_{2}^{e}=a^{e}+b^{e} x_{2}^{e}+c^{e} y_{2}^{e}, \\
& \varphi_{3}^{e}=a^{e}+b^{e} x_{3}^{e}+c^{e} y_{3}^{e}
\end{aligned}
$$

- Solving for a^{e}, b^{e} and c^{e} we obtain $\varphi^{e}(x, y)=\sum_{j=1}^{3} N_{j}^{e}(x, y) \varphi_{j}^{e}$ where $N_{j}^{e}(x, y)=\frac{1}{2 A_{e}}\left(a_{j}^{e}+b_{j}^{e} x+c_{j}^{e} y\right), j=1,2,3$

$$
\begin{aligned}
& a_{1}^{e}=x_{2}^{e} y_{3}^{e}-y_{2}^{e} x_{3}^{e}, b_{1}^{e}=y_{2}^{e}-y_{3}^{e}, c_{1}^{e}=x_{3}^{e}-x_{2}^{e} \\
& a_{2}^{e}=x_{3}^{e} y_{1}^{e}-y_{3}^{e} x_{1}^{e}, b_{2}^{e}=y_{3}^{e}-y_{1}^{e}, c_{2}^{e}=x_{1}^{e}-x_{3}^{e} \\
& a_{3}^{e}=x_{1}^{e} y_{2}^{e}-y_{1}^{e} x_{2}^{e}, b_{3}^{e}=y_{1}^{e}-y_{2}^{e}, c_{3}^{e}=x_{2}^{e}-x_{1}^{e}
\end{aligned}
$$

EE757, 2016, Dr. Mohamed Bakr

Elemental Interpolation (Cont'd)

- A_{e} is the area of the e th element and is given by

$$
A_{e}=\frac{1}{2}\left|\begin{array}{lll}
1 & x_{1}^{e} & y_{1}^{e} \\
1 & x_{2}^{e} & y_{2}^{e} \\
1 & x_{3}^{e} & y_{3}^{e}
\end{array}\right|
$$

- The interpolation functions satisfy

$$
N_{i}^{e}\left(x_{j}^{e}, y_{j}^{e}\right)=\delta_{i j}=\left\{\begin{array}{l}
1, i=j \\
0, i \neq j
\end{array}\right.
$$

The Homogenous Neuman BC case

- We first consider the case ($\gamma=q=0$)
- The functional is expressed as a sum of elemental subfunctions

$$
F(\varphi)=\sum_{e=1}^{M} F^{e}\left(\varphi^{e}\right)
$$

where
$F^{e}\left(\varphi^{e}\right)=0.5 \iint_{\Omega_{e}} \alpha_{x}\left(\frac{d \varphi^{e}}{d x}\right)^{2}+\alpha_{y}\left(\frac{d \varphi^{e}}{d y}\right)^{2}+\beta\left(\varphi^{e}\right)^{2} d \Omega-\iint_{\Omega_{e}} f \varphi^{e} d \Omega$

- Substituting with the linear interpolation expression, we write

The Homogenous Neuman BC case

$$
\left.\begin{array}{c}
F^{e}\left(\varphi^{e}\right)=0.5 \iint_{\Omega_{e}}^{3} \sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_{x} \varphi_{i}^{e} \frac{d N_{i}^{e}}{d x} \frac{d N_{j}^{e}}{d x} \varphi_{j}^{e}+\alpha_{y} \varphi_{i}^{e} \frac{d N_{i}^{e}}{d y} \frac{d N_{j}^{e}}{d y} \varphi_{j}^{e} d \Omega \\
+\iint_{\Omega_{e} i=1}^{3} \sum_{j=1}^{3} \beta \varphi_{i}^{e} N_{i}^{e} N_{j}^{e} \varphi_{j}^{e} d \Omega-\iint_{\Omega_{e}} f \sum_{i=1}^{3} N_{i}^{e} \varphi_{i}^{e} d \Omega \\
\frac{\partial F^{e}}{\partial \varphi_{i}^{e}}=\sum_{j=1}^{3} \varphi_{j}^{e}\left(\iint_{\Omega_{e}} \alpha_{x} \frac{d N_{i}^{e}}{d x} \frac{\Omega}{d N_{j}^{e}}\right. \\
\left.-\iint_{\Omega_{e}}^{d x}+N_{i}^{e} \frac{d N_{i}^{e}}{d y} \frac{d N_{j}^{e}}{d y}+\beta N_{i}^{e} N_{j}^{e} d \Omega\right) \\
i=1,2,3
\end{array}\right] \quad \begin{aligned}
\left.\frac{\partial F^{e}}{\partial \varphi^{e}}\right\}_{3 \times 1} & =\left[\boldsymbol{K}^{e}\right]_{3 \times 3}\left[\varphi^{e}\right]_{3 \times 1}-\left[\boldsymbol{b}^{e}\right]_{3 \times 1}
\end{aligned}
$$

The Homogenous Neuman BC case (Cont'd)

$$
\begin{aligned}
K_{i j}^{e} & =\iint_{\Omega_{e}} \alpha_{x} \frac{d N_{i}^{e}}{d x} \frac{d N_{j}^{e}}{d x}+\alpha_{y} \frac{d N_{i}^{e}}{d y} \frac{d N_{j}^{e}}{d y}+\beta N_{i}^{e} N_{j}^{e} d \Omega \\
b_{i}^{e}=\iint_{\Omega_{e}} f N_{i}^{e} d \Omega & i=1,2,3 \text { and } j=1,2,3
\end{aligned}
$$

- If $\alpha_{x}, \alpha_{y}, \beta$ and f are taken as constants over each element, and utilizing the property

$$
\iint_{\Omega_{e}}\left(N_{1}^{e}\right)^{(}\left(N_{2}^{e}\right)^{n}\left(N_{3}^{e}\right)^{n} d \Omega=2 A_{e} \frac{l!m!n!}{l!+m!+n!}
$$

we get

$$
\begin{aligned}
& K_{i j}^{e}=\frac{1}{4 A_{e}}\left(\alpha_{x}^{e} b_{i}^{e} b_{j}^{e}+\alpha_{y}^{e} c_{i}^{e} c_{j}^{e}\right)+\frac{A_{e}}{12} \beta^{e}\left(1+\delta_{i j}\right) \\
& b_{i}^{e}=\frac{A_{e}}{3} f^{e}
\end{aligned}
$$

EE757, 2016, Dr. Mohamed Bakr

The Process of Assembly

- The process of assembly involves storing the local elemental components into their proper location in the global system of equations

$$
\frac{\partial F}{\partial \varphi}=\mathbf{0} \quad \Longleftrightarrow[\boldsymbol{K}]_{N \times N}[\boldsymbol{\varphi}]_{N \times 1}=[\boldsymbol{b}]_{N \times 1}
$$

- The element $K_{i j}^{e}$ is added to $K_{n(i, e), n(j, e)}$
- The element b_{i}^{e} is added to $b_{n(i, e)}$

An Assembly Example

e	1	2	3
1	2	4	1
2	5	4	2
3	3	5	2
4	5	6	4

- There are six nodes $\longmapsto \boldsymbol{K} \in \mathfrak{R}^{6 \times 6}$ and $\boldsymbol{b} \in \mathfrak{R}^{6 \times 1}$
- We initialize \boldsymbol{K} and \boldsymbol{b} with zeros
- Evaluate $\boldsymbol{K}^{(1)}$ and $\boldsymbol{b}^{(1)}$ an add them to the proper locations to get

An Assembly Example (Cont'd)

$\boldsymbol{K}=\left[\begin{array}{cccccc}K_{33}^{(1)} & K_{31}^{(1)} & 0 & K_{32}^{(1)} & 0 & 0 \\ K_{13}^{(1)} & K_{11}^{(1)} & 0 & K_{12}^{(1)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ K_{23}^{(1)} & K_{21}^{(1)} & 0 & K_{22}^{(1)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}b_{3}^{(1)} \\ b_{1}^{(1)} \\ 0 \\ b_{2}^{(1)} \\ 0 \\ 0\end{array}\right]$

- Evaluate $\boldsymbol{K}^{(2)}$ and $\boldsymbol{b}^{(2)}$ an add them to the proper locations
$\boldsymbol{K}=\left[\begin{array}{cccccc}K_{33}^{(1)} & K_{31}^{(1)} & 0 & K_{32}^{(1)} & 0 & 0 \\ K_{13}^{(1)} & K_{11}^{(1)}+K_{33}^{(2)} & 0 & K_{12}^{(1)}+K_{32}^{(2)} & K_{31}^{(2)} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ K_{23}^{(1)} & K_{21}^{(1)}+K_{23}^{(2)} & 0 & K_{22}^{(1)}+K_{22}^{(2)} & K_{21}^{(2)} & 0 \\ 0 & K_{13}^{(2)} & 0 & K_{12}^{(2)} & K_{11}^{(2)} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}b_{3}^{(1)} \\ b_{1}^{(1)}+b_{3}^{(2)} \\ 0 \\ b_{2}^{(1)}+b_{2}^{(2)} \\ b_{1}^{(2)} \\ 0\end{array}\right]$
- Repeat the same steps for all elements

Incorporating a Boundary Condition of the $\mathbf{3}^{\text {rd }}$ Kind

- In this case γ and q are not zeroes
- The extra subfunctional $F_{b}(\varphi)=\int_{\Gamma_{2}}\left[\frac{\gamma}{2} \varphi^{2}-q \varphi\right] d \Gamma$ is added to the functional F
- Because Γ_{2} is comprised of M_{s} line segments, we may write

$$
F_{b}(\varphi)=\sum_{s=1}^{M_{s}} F_{b}^{s}\left(\varphi^{s}\right)
$$

- We approximate the function φ over the segment s by the linear expression $\varphi^{s}=\sum_{j=1}^{2} N_{j}^{s} \varphi_{j}^{s}, N_{1}^{s}=1-\xi, N_{2}^{s}=\xi$

- ξ is the normalized distance from node 1 to node 2

Incorporating a 3 ${ }^{\text {rd }}$ Kind BC (Cont'd)

$$
\begin{gathered}
F_{b}^{s}(\varphi)=\int_{s}\left[\frac{\gamma}{2} \varphi^{2}-q \varphi\right] d \Gamma \\
\curvearrowleft \text { Use the expansion } \\
F_{b}^{s}(\varphi)=\int_{s}\left(\frac{\gamma}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \varphi_{i}^{s} N_{i}^{s} N_{j}^{s} \varphi_{j}^{s}-q \sum_{i=1}^{2} N_{i}^{s} \varphi_{i}^{s}\right) d \Gamma \\
\sum \text { Differentiate and use } \mathrm{d} \Gamma=l^{s} \mathrm{~d} \xi \\
\frac{\partial F_{b}^{s}}{\partial \varphi_{i}^{s}}=\sum_{j=1}^{2} \varphi_{j}^{s} \int_{0}^{1} \gamma N_{i}^{s} N_{j}^{s} l^{s} d \xi-\int_{0}^{1} q N_{i}^{s} l^{s} d \xi, i=1,2 \\
\text { in matrix form } \frac{\partial F_{b}^{s}}{\partial \varphi^{s}}=\left[K^{s}\right]_{2 \times 2}\left[\varphi^{s}\right]_{2 \times 1}-\left[b^{s}\right] \times \times 1 \\
K_{i j}^{s}=\int_{0}^{1} \gamma N_{i}^{s} N_{j}^{s} l^{s} d \xi, b_{i}^{s}=\int_{0}^{1} q N_{i}^{s} l^{s} d \xi, i=1,2 \text { and } j=1,2
\end{gathered}
$$

- Assembly is then applied to store these coefficients

The Dirichlet Boundary Condition

- The Dirichlet boundary conditions are imposed by eliminating the known nodes by substituting for their values

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\boldsymbol{K}_{p p} & \boldsymbol{K}_{p u} \\
\boldsymbol{K}_{t p} & \boldsymbol{K}_{u u}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\varphi}_{p} \\
\boldsymbol{\varphi}_{u}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b}_{p} \\
\boldsymbol{b}_{u}
\end{array}\right] \quad \text { Original system }} \\
& \boldsymbol{K}_{u и} \boldsymbol{\varphi}_{u}=\left(\boldsymbol{b}_{u}-\boldsymbol{K}_{v p} \boldsymbol{\varphi}_{p}\right) \quad \text { Reduced system }
\end{aligned}
$$

An Example: A Shielded Microstrip Line

- The microstrip is kept at potential $\varphi=1$ while the external shielding box is kept at potential $\varphi=0$
- Symmetry may be employed to reduce the computational domain by one half
- The governing BVP is

EE757, 2016, Dr. Mohamed Bakr

An Example: A Shielded Microstrip Line (Cont'd)

$$
-\frac{\partial}{\partial x}\left(\varepsilon_{r} \frac{\partial \varphi}{\partial x}\right)-\frac{\partial}{\partial y}\left(\varepsilon_{r} \frac{\partial \varphi}{\partial y}\right)=\frac{\rho_{c}}{\varepsilon_{0}}
$$

with $\varphi=0$ on the outer conductor, $\varphi=1$ on the microstrip and $\partial \varphi / \partial n=0$ on the plane of symmetry

- It follows that we have $\alpha_{x}=\alpha_{y}=\varepsilon_{r}, \beta=0, f=0$
- The electric field is obtained through $\boldsymbol{E}=-\nabla \varphi$. But φ over each element is approximated by
$\varphi^{e}(x, y)=\sum_{j=1}^{3} N_{j}^{e}(x, y) \varphi_{j}^{e}, \quad N_{j}^{e}(x, y)=\frac{1}{2 A_{e}}\left(a_{j}^{e}+b_{j}^{e} x+c_{j}^{e} y\right), j=1,2,3$
$\boldsymbol{E}=-\frac{\partial \varphi}{\partial x} \boldsymbol{i}--\frac{\partial \varphi}{\partial y} \boldsymbol{j}=-\frac{1}{2 A_{e}} \sum_{j=1}^{3}\left(b_{j}^{e} \boldsymbol{i}+c_{j}^{e} j\right) \varphi_{j}^{e} \quad$ Over the eth element
$\overline{\text { EE757, 2016, Dr. Mohamed Bakr }}$

An Example: A Shielded Microstrip Line (Cont'd)

The Finite Element Method in Electromagnetics, Jianming Jin

An Example: A Shielded Microstrip Line (Cont'd)

The Finite Element Method in Electromagnetics, Jianming Jin

The equi-potential lines

