EE757
 Numerical Techniques in Electromagnetics
 Lecture 14

Nodal FEM vs. Vector FEM

- Nodal FEM is suitable for scalar problems or for field problems involving one field component only
- Nodal FEM in some problems can give rise to false (spurious) solutions
- Vector FEM is more suitable for field vector quantities
- The field over the 2D or 3D element is expressed as a linear combination of vector basis functions

Area Coordinates

$\Delta=$ area of triangle 123
$\Delta=\left|\begin{array}{lll}1 & x_{1}^{e} & y_{1}^{e} \\ 1 & x_{2}^{e} & y_{2}^{e} \\ 1 & x_{3}^{e} & y_{3}^{e}\end{array}\right|$
$\Delta_{1}=$ area of triangle P23
$\Delta_{1}=\left|\begin{array}{ccc}1 & x & y \\ 1 & x_{2}^{e} & y_{2}^{e} \\ 1 & x_{3}^{e} & y_{3}^{e}\end{array}\right|$
$\Delta_{2}=$ area of triangle P13
$\Delta_{3}=$ area of triangle P 12
$\Delta_{2}=\left|\begin{array}{ccc}1 & x & y \\ 1 & x_{1}^{e} & y_{1}^{e} \\ 1 & x_{3}^{e} & y_{3}^{e}\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{ccc}1 & x & y \\ 1 & x_{1}^{e} & y_{1}^{e} \\ 1 & x_{2}^{e} & y_{2}^{e}\end{array}\right|$
EE757, 2016, Dr. Mohamed Bakr

Area Coordinates (Cont'd)

- We define the nodal basis functions

$$
N_{1}(x, y)=\frac{\Delta_{1}}{\Delta}, N_{2}(x, y)=\frac{\Delta_{2}}{\Delta}, N_{3}(x, y)=\frac{\Delta_{3}}{\Delta}
$$

- Notice that these basis functions satisfy

$$
\begin{aligned}
& N_{i}\left(x_{j}^{e}, y_{j}^{e}\right)=\delta_{i j} \\
& N_{1}(x, y)+N_{2}(x, y)+N_{3}(x, y)=1, x, y \in \Omega_{e}
\end{aligned}
$$

- A possible expansion for 2D nodal FEM is

$$
\varphi(x, y)=\sum_{j=1}^{3} N_{j}(x, y) \varphi_{j}^{e}
$$

Vector (Edge) FEM

- We expand the unknown vector quantity using the expansion $\boldsymbol{F}=\sum_{j=1}^{3} F_{j}^{e} \boldsymbol{W}_{j}^{e}$
- F_{j}^{e} is the average value of the tangential field quantity over the j th edge
- \boldsymbol{W}_{j}^{e} is the edge basis function related to the j th edge
- One of the most commonly used edge basis functions are the Whitney basis functions given by

$$
\begin{aligned}
& \boldsymbol{W}_{1}^{e}=\ell_{12}\left(N_{1} \nabla N_{1}-N_{2} \nabla N_{2}\right) \\
& \boldsymbol{W}_{2}^{e}=\ell_{23}\left(N_{2} \nabla N_{2}-N_{3} \nabla N_{3}\right) \\
& \boldsymbol{W}_{3}^{e}=\ell_{31}\left(N_{3} \nabla N_{3}-N_{1} \nabla N_{1}\right)
\end{aligned}
$$

EE757, 2016, Dr. Mohamed Bakr

Vector FEM (Cont'd)

- The following properties can be proven for Whitney's basis functions:
$\boldsymbol{W}_{k}^{e} \cdot \boldsymbol{e}_{k}=1.0 \square$ unity tangential component along its edge $\boldsymbol{W}_{k}^{e} \cdot \boldsymbol{e}_{j}=0, j \neq k \square$ Only normal component along other edges
$\nabla \cdot \boldsymbol{W}_{k}^{e}=0, \quad \Rightarrow$ Divergenless over element

Vector FEM (Cont'd)

Volakis et al., Finite Element Method for Electromagnetics

Example

- The vector wave equation with no sources is given by

$$
\begin{gathered}
\nabla_{t} \times\left(\frac{1}{\mu_{r}} \nabla_{t} \times \boldsymbol{E}_{t}\right)-\left(k_{0}^{2} \varepsilon_{r}-\beta^{2}\right) \boldsymbol{E}_{t}=\mathbf{0} \\
\nabla_{t} \times\left(\frac{1}{\mu_{r}} \nabla_{t} \times \boldsymbol{E}_{t}\right)-\gamma^{2} \boldsymbol{E}_{t}=\mathbf{0}
\end{gathered}
$$

- Using Galerkin's approach we get

$$
\iint_{\Omega} \boldsymbol{T}_{i} \cdot\left[\nabla_{t} \times\left(\frac{1}{\mu_{r}} \nabla_{t} \times \boldsymbol{E}_{t}\right)-\gamma^{2} \boldsymbol{E}_{t}\right] d x d y=\mathbf{0}
$$

- Using vector identities we have

Example (Cont'd)

$\iint_{\Omega}\left[\left(\nabla_{t} \times \boldsymbol{T}_{i}\right) \cdot\left(\frac{1}{\mu_{r}} \nabla_{t} \times \boldsymbol{E}_{t}\right)-\gamma^{2} \boldsymbol{T}_{i} \cdot \boldsymbol{E}_{t}\right] d x d y=F=\mathbf{0}$

- Utilizing the vector expansion
$\boldsymbol{E}_{t}=\sum_{j=1}^{3} E_{j}^{e} \boldsymbol{W}_{j}^{e}$ over the e th element, we have the elemental subfuntional
$F_{e}=\sum_{j=1}^{3} E_{j}^{e} \iint_{\Omega_{[}}\left[\left(\nabla_{t} \times \boldsymbol{T}_{i}\right) \cdot\left(\frac{1}{\mu_{r}} \nabla_{t} \times \boldsymbol{W}_{j}^{e}\right)-\gamma^{2} \boldsymbol{T}_{i} \cdot \boldsymbol{W}_{j}^{e}\right] d x d y$
- Using $\boldsymbol{T}_{i}=\boldsymbol{W}_{i}^{e}$, we have
$F_{e}=\sum_{j=1}^{3} E_{j}^{e} \iint_{\Omega_{e}}\left[\left(\nabla_{t} \times \boldsymbol{W}_{i}^{e}\right) \cdot\left(\frac{1}{\mu_{r}} \nabla_{t} \times \boldsymbol{W}_{j}^{e}\right)-\gamma^{2} \boldsymbol{W}_{i}^{e} \cdot \boldsymbol{W}_{j}^{e}\right] d x d y$
EE757, 2016, Dr. Mohamed Bakr

Example (Cont'd)

- In matrix form, we have

$$
F_{e}=\left(\boldsymbol{K}_{\nabla}^{e}-\gamma^{2} \boldsymbol{K}^{e}\right) \boldsymbol{E}^{e},
$$

where

$$
\begin{aligned}
& K_{\nabla m n}^{e}=\frac{1}{\mu_{r}^{e}} \iint\left[\left(\nabla_{t} \times \boldsymbol{W}_{m}^{e}\right) \cdot\left(\nabla_{t} \times \boldsymbol{W}_{n}^{e}\right)\right] d x d y \\
& K_{m n}^{e}=\iint_{\Omega_{e}}^{e} \boldsymbol{W}_{m}^{e} \cdot \boldsymbol{W}_{n}^{e} d x d y
\end{aligned}
$$

- The process of assembly is then utilized to solve the global eigenvalue problem

$$
\left(\boldsymbol{K}_{\nabla}-\gamma^{2} \boldsymbol{K}\right) \boldsymbol{E}=\mathbf{0}
$$

Project 3

Utilize the FEM method to draw the equipotential lines and the field for this square coaxial cable

Project 3 (Cont'd)

Find the capacitance and the characteristic impedance for the shown shielded microstrip line using the finite element method

Project 3 (Cont'd)

Apply a vector finite element approach to find the cut-off frequencies of a rectangular waveguide.

