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Boundary Conditions 

 Maxwell’s Equations are partial differential equations 

 Boundary conditions are needed to obtain a unique 

solution 

 Maxwell’s differential equations do not apply on the 

boundaries because the fields are discontinuous 

 Our target is to determine the electric and magnetic fields 

in a certain region of space due to excitations satisfying the 

problem’s boundary conditions 

 



3 EE757, 2016, Dr. Mohamed Bakr 

Finite Conductivity Case 

 Applying Faraday’s law we get  

 As y 0, the RHS vanishes and we get 

 

   or alternatively,  

  It follows that the tangential component of the electric field 

is continuous (no magnetic current is assumed) 
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Finite Conductivity Case (Cont’d) 

 Similarly, starting with the modified Ampere’s law 

                            (no current J at the interface), we get 

 

or alternatively,  

 It follows that the tangential component of the magnetic 

field intensity is continuous if there are no boundary 

electric currents 
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Finite Conductivity Case (Cont’d)  

 Assuming there are no surface charges, Gauss’s law 

gives 

 It follows that 

  or alternatively, 

 But as 

 Normal components of the electric field are 

discontinuous across the interface                                     
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Finite Conductivity Case (Cont’d) 

  

 

 

 Similarly, by applying Gauss’s law for magnetic fields we 

get  

 It follows that  

   or alternatively,  

 But as  

 Normal components of the magnetic fields are 

discontinuous  
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Finite Conductivity Boundary Conditions 

                      , no interface surface magnetic currents 

                      , no interface surface electric currents 

                   , no interface surface electric charges 

 

                       discontinuous normal electric field   

                  

                    , no interface magnetic surface charges 
 

                   discontinuous normal magnetic field  
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Boundary Conditions with Sources 

 Boundary conditions must be changed to take into account 

the existence of surface currents and surface charges 

 

 

 

 Applying the modified Ampere’s law we get 

 

  Taking the limit as y 0, each integral term gives 
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Boundary Conditions with Sources (Cont’d) 
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Js  is the surface current density  A/m 

 It follows that  

or alternatively  
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 Tangential components of the magnetic field intensity 

are discontinuous if surface electric current density Js 

    (A/m) exists 

 If medium 2 is a perfect conductor, we have 

     

 Similarly, starting with Faraday’s Law 

 

 

   We can reach  

 For a perfect conductor we have 

 If no fictious magnetic current is assumed we have  

 

Boundary Conditions with Sources (Cont’d) 

JHn s 1 JH s
t 1
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Boundary Conditions with Sources (Cont’d) 

 Applying Gauss’s law for the shown cylinder we have 

 

 

   or alternatively,  

  Normal components of the electric flux density are 

discontinuous by the amount of surface charge density 
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Boundary Conditions with Sources (Cont’d) 

 If medium 2 is a perfect conductor, we have 

 Similarly, for the magnetic flux density we may show 

that  

 For perfect conductors with no magnetic charges we 

have   
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Summary of Boundary Conditions 
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Time-Harmonic Electromagnetic Fields 

 If sources are sinusoidal and the medium is linear then 

the fields everywhere are sinusoidal as well.  The field 

at each point is characterized by its amplitude and phase 

(Phasor) 

 Ex: f(x,t) = 3.0 cos(t-x)=3.0 Re(exp(j(t-x))) 

          f(x,t) = Re(3.0 exp(-jx) exp(jt)) 
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Time-Harmonic Electromagnetic Fields (Cont’d) 

  Similarly, for all field quantities we may write 
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Time-Harmonic Electromagnetic Fields (Cont’d) 

 Maxwell’s equations for the time-harmonic case are 

obtained by replacing each time vector by its 

corresponding phasor vector and replacing /t by j 

 Maxwell’s equations in the integral form are given by 
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Time-Harmonic Electromagnetic Fields (Cont’d) 
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 Maxwell’s equations in the differential form become 
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Energy and Power 

 We would like to derive equations governing EM energy and 

power 

 Starting with Maxwell’s equations 

                                                             (H) 

                                                             (E) 

    Subtracting we get 

 

   or alternatively,  
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Energy and Power (Cont’d) 

 Integrating over the volume of interest 

 

 Utilizing the divergence theorem, we get 

 

 Explanation of different terms 

P = EH  is the Poynting vector (W/m2) 

                     is the power flowing out of the surface S 

                                             is the supplied power (W) 
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Energy and Power (Cont’d) 
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   =dissipated power (W) 

 

                                              = magnetic power 

        magnetic energy 

 

                                           =electric power 

        electric energy  

                                                   conservation of EM energy 
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