EE757
Numerical Techniqgues in Electromagnetics
Lecture 2




Boundary Conditions

o Maxwell’s Equations are partial differential equations

« Boundary conditions are needed to obtain a unique
solution

« Maxwell’s differential equations do not apply on the
boundaries because the fields are discontinuous

« Our target is to determine the electric and magnetic fields




Finite Conductivity Case

&y My, Oy ~~

« Applying Faraday’s law we get { E.dl = “ot) ﬂ B.dS
« As Ay— 0, the RHS vanishes and we get




Finite Conductivity Case (Cont’d)

o Similarly, starting with the modified Ampere’s law
fH.dI :a% [|D.dS (no current J at the interface), we get
Co So

H.-Axay,— H,.Axa, =0 ——> Hi=H:
or alternatively, nx(H,—H,) =0

« It follows that the tangential component of the magnetic




Finite Conductivity Case (Cont’d)

n

& My, O

« Assuming there are no surface charges, Gauss’s law

gives {{DdsS=Q, C—> lim{DdS=0

Ay—0°g

. It follows that D;.A,a,— D2- Avay,=0 > D! = D}




Finite Conductivity Case (Cont’d)

o Similarly, by applying Gauss’s law for magnetic fields we
get lim§B.dS=0

Ay—0 S
. lItfollowsthat B..A,a,—B,. Ava,=0 =) Bl =B
or alternatively, n(g,—B,) =0

o BUtaS B]TZ:ﬂl’zH]r.],Z |:> H?=&H2




Finite Conductivity Boundary Conditions

nx(E;— E,) =0 , no interface surface magnetic currents

nx(H,—H,) =0, no interface surface electric currents

n.(D.— D,) =0 , no interface surface electric charges

U

El = g2 E> discontinuous normal electric field
&1




Boundary Conditions with Sources

« Boundary conditions must be changed to take into account
the existence of surface currents and surface charges

n

&y Hy, O A ~.

o Applying the modified Ampere’s law we get




Boundary Conditions with Sources (Cont’d)

lim § H.dl =(H,— H.).AXa,

Ay—0
Alﬂ]o jsj D.dS =0
AI)I/TO jsj J.ds = AI;I/TOJ AXAY a, = AI;rllo(JAy).Ax a, = AI)I/r—T)]O J..AXa,

J. IS the surface current density A/m




Boundary Conditions with Sources (Cont’d)

« Tangential components of the magnetic field intensity
are discontinuous If surface electric current density J,
(A/m) exists

« If medium 2 is a perfect conductor, we have

NxH;=J, ——> Hi=Js
o Similarly, starting with Faraday’s Law

9
jEdl=—[udS -~ [[BdS

We canreach —nx(g,—E,)=p,
- For a perfect conductor we have —nxEg,=pu,
« If no fictious magnetic current is assumed we have

—nxEg;=0 —> E; =0
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Boundary Conditions with Sources (Cont’d)

n

& My, O

o Applying Gauss’s law for the shown cylinder we have

ﬁDdS ﬂjqev dvV — lim ﬁDdS = lim [[[q,, dV

Ay— O Ay—0"y,
(D1

Dz)Aon_"m(q Ay)Ao Oes Ao




Boundary Conditions with Sources (Cont’d)

o If medium 2 is a perfect conductor, we have Di = 0,

« Similarly, for the magnetic flux density we may show
that N.(B;—B,) = d,.

« For perfect conductors with no magnetic charges we
have B,=B; =0




Summary of Boundary Conditions

nX(Hl_ HZ):JS

—Nx(E.— E») =M

n(Dl_ D2) — qes




Time-Harmonic Electromagnetic Fields

o If sources are sinusoidal and the medium is linear then
the fields everywhere are sinusoidal as well. The field
at each point is characterized by its amplitude and phase
(Phasor)

o EX: f(x,t) = 3.0 cos(at-/x)=3.0 Re(exp(j(at-X)))
f(x,t) = Re(3.0 exp(-}5x) exp(jat))

P~




Time-Harmonic Electromagnetic Fields (Cont’d)

« Similarly, for all field quantities we may write

E(x,Y,2,t) = Re(E(X, Y, z) exp( jot))
H(x,y,z,t)=Re(H(x, Y, 2)exp( jat))
D(X,VY,z,t) =Re( [~)~(x, V,z)exp( jat))
B(x, Y, z,t) = Re(B(x, y, z) eXp( jt))
J(X,Y,2,t) =Re(J (X, y, 2) exp(jat))
a(x, ¥, 2,t) = Re(@(x, y, 2) &xp( jt))
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Time-Harmonic Electromagnetic Fields (Cont’d)

« Maxwell’s equations for the time-harmonic case are
obtained by replacing each time vector by its
corresponding phasor vector and replacing o/t by jo

o Maxwell’s equations 1n the integral form are given by

—~

D.ds = (g, v =G,

S ~ ~
§BdS=[[[q,,dV=Q,,
S V

{E.dl =—[] mdS — jeo[[ B.dS
C — S— S —
{H.dl = [[J.dS + jeo[f DS
C . S _ S
§JdS =-joQ
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Time-Harmonic Electromagnetic Fields (Cont’d)

« Maxwell’s equations 1n the differential form become




Energy and Power

« We would like to derive equations governing EM energy and
power

 Starting with Maxwell’s equations
(VXE)=—p—— =— p;— H (-H)

oD
(VxH)=Ji+JC+E=Ji+JC+Jd (.E)
Subtracting we get




Energy and Power (Cont’d)
« Integrating over the volume of interest
[V (ExH)AV =—[[[H « (u, + p)dV —ij E.(Ji+Jc+Jq)dV
Vv Vv

o Utilizing the divergence theorem, we get
HExH)AS+[[[H« (s + py)dV +[[JE(Ji+Ic+Jg)dV =0
S \% \%

« Explanation of different terms

P = ExH is the Poynting vector (W/m?)




Energy and Power (Cont’d)

mE J.av = maE EdV = ma\E\ dv

—d|SS|pated power (W)

= ([H g0V = [/ H -2V = [ M v

B —m—ﬂ“"\ dv = %Wm = magnetlc power

— ma netic ener
W 9 gy °E

=([|E.JqdV = E-@dV= & «—dV




