EE757
 Numerical Techniques in Electromagnetics Lecture 3

Special Cases in Maxwell's Equations.

- With no sources, Maxwell's Equations are written as

$$
(\nabla \times \boldsymbol{E})=-\frac{\partial \boldsymbol{B}}{\partial t}, \quad(\nabla \times \boldsymbol{H})=\boldsymbol{J}_{c}+\frac{\partial \boldsymbol{D}}{\partial t}
$$

- In Cartesian coordinates we have

$$
\begin{aligned}
& \frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t} \\
& \frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\frac{\partial B_{y}}{\partial t} \\
& \frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-\frac{\partial B_{z}}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}=J_{x}+\frac{\partial D_{x}}{\partial t} \\
& \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=J_{y}+\frac{\partial D_{y}}{\partial t} \\
& \frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=J_{z}+\frac{\partial D_{z}}{\partial t}
\end{aligned}
$$

Special Cases (Cont'd)

- For a 1D case, the fields depend only on one coordinate (e.g. a uniform plane wave traveling in the x direction)
- For example, if $\partial / \partial y=\partial / \partial z=0$

$$
-\frac{\partial E_{z}}{\partial x}=-\frac{\partial B_{y}}{\partial t} \quad, \frac{\partial H_{y}}{\partial x}=J_{z}+\frac{\partial D_{z}}{\partial t} \quad(\text { propagation in }- \text { ve } x)
$$

or

$$
\frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t},-\frac{\partial H_{z}}{\partial x}=J_{y}+\frac{\partial D_{y}}{\partial t} \text { (propagation in }+\mathrm{ve} x \text {) }
$$

Notice that these two systems are decoupled

Special Cases (Cont'd)

- For the 2D problems, the fields depend only on two coordinates (e.g. TE10 mode in waveguides)
- For example, if $\partial / \partial y=0$

$$
\begin{array}{c|c}
\mathrm{TE}_{y} & \mathrm{TM}_{y} \\
-\frac{\partial H_{y}}{\partial z}=J_{x}+\frac{\partial D_{x}}{\partial t} \\
\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-\frac{\partial B_{y}}{\partial t} & -\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t} \\
\frac{\partial H_{y}}{\partial x}=J_{z}+\frac{\partial D_{z}}{\partial t} & \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=J_{y}+\frac{\partial D_{y}}{\partial t} \\
\frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t}
\end{array}
$$

Notice that the two systems are decoupled

Transient Response of a Transmission Line

- C_{d} capacitance per unit length F / m
L_{d} inductance per unit length H / m
u velocity of propagation
- After time Δt, the disturbance traveled a distance Δx. A charge $\Delta Q=C_{d} \Delta x V_{s}$ is transferred. It follows that
$i=\Delta Q / \Delta t \longrightarrow i=C_{d} V_{s}(\Delta x / \Delta t)=C_{d} V_{s} u$

Transient Response of a TL (Cont'd)

- The flow of current establishes a flux Φ associated with line inductance through $\Phi=L_{d} \Delta x i=L_{d} \Delta x C_{d} V_{s} u$
- Using Faraday's law we have

$$
V_{s}=\Delta \Phi / \Delta t=L_{d} C_{d} V_{s} u^{2} \Longleftrightarrow L_{d} C_{d} u^{2}=1.0
$$

$u=\frac{1}{\sqrt{C_{d} L_{d}}} \mathrm{~m} / \mathrm{s}$

- It follows that $i=C_{d} V_{s} u=V_{s} \sqrt{\frac{C_{d}}{L_{d}}}$

$$
Z_{\mathrm{o}}=\frac{\text { incident voltage }}{\text { incident current }}=\frac{V_{s}}{i}=\sqrt{\frac{L_{d}}{C_{d}} \Omega}
$$

Open-Ended Transmission Line

- After time τ, the incident voltage and current waves reach the open end. A reflected current wave of amplitude $I^{r}=-V_{s} / Z_{\mathrm{o}}$ is initiated to make the total current at the open end zero
- It follows that for an open-ended transmission line we have $V^{i}=V^{s}, I^{i}=V_{s} / Z_{0}$ and $V^{r}=V^{s}, I^{r}=-V_{s} / Z_{\text {。 }}$

Thevenin Equivalent of a Transmission Line

- The open circuit voltage is $2 V^{i}$ (open-ended line)
- The equivalent resistance is Z_{o}
- This Thevenin equivalent is valid only for limited time period where no reflections takes place on the line (same V^{i})

Example on Utilizing Thevenin's Equivalent of a TL

- Using Kirchtoff's voltage law we have $V=2 V^{i} \frac{R}{R+Z_{0}}$
- But $V=V^{i}+V^{r} \Longrightarrow V^{r}=V-V^{i}$

$$
V^{r}=2 V^{i} \frac{R}{R+Z_{\mathrm{o}}}-V^{i} \breve{V^{r}}=\left(\frac{R-Z_{\mathrm{o}}}{R+Z_{\mathrm{o}}}\right) V^{i}=\Gamma V^{i}
$$

- For open circuit termination $R=\infty, \Gamma=1, V^{r}=V^{i}$
- For short circuit termination $R=0, \Gamma=-1, V^{r}=-V^{i}$

Sinusoidal Steady-State Response of a TL

- Remember that for a steady-state sinusoidal analysis we need only the amplitude and phase at each point on the line $V(x, t)=\operatorname{Re}(\bar{V} \exp (j \omega t))$

$$
L_{d} \Delta x
$$

- Applying KVL, we get $\bar{V}(x)-\bar{V}(x+\Delta x)=j \omega L_{d} \Delta x \bar{I}(x)$

Leading to $-\frac{\partial \bar{V}(x)}{\partial x}=j \omega_{L_{d}} \bar{I}(x)$

- Applying KCL we get $\bar{I}(x)-\bar{I}(x+\Delta x)=j \omega C_{d} \Delta x \bar{V}(x+\Delta x)$

Leading to $-\frac{\partial \bar{I}(x)}{\partial x}=j \omega C_{d} \bar{V}(x)$

Sinusoidal Steady State of a TL (Cont'd)

- Differentiating to eliminate the current term we get

$$
\begin{gathered}
\frac{\partial^{2} \bar{V}(x)}{\partial x^{2}}=-\omega^{2} L_{d} C_{d} \bar{V}(x)=-\beta^{2} \bar{V}(x) \\
\bar{V}(x)=V^{i} \exp (-j \beta x)+V^{r} \exp (j \beta x)
\end{gathered}
$$

- Similarly $\bar{I}(x)=I^{i} \exp (-j \beta x)+I^{r} \exp (j \beta x)$
- Using the telegrapher's differential equations we can show that $I^{i}=V^{i} / Z_{\mathrm{o}}$ and $I^{r}=-V^{r} / Z_{\text {o }}$
- It follows that $\bar{V}(x)=V^{i} \exp (-j \beta x)+V^{r} \exp (j \beta x)$ and $\bar{I}(x)=\left(V^{i} / Z_{\mathrm{o}}\right) \exp (-j \beta x)-\left(V^{r} / Z_{\mathrm{o}}\right) \exp (j \beta x)$

ABCD Matrix of a TL Section

- At $x=0$, we have $\bar{V}(0)=V^{i}+V^{r}$ and $\bar{I}(0)=\left(V^{i} / Z_{\mathrm{o}}\right)-\left(V^{r} / Z_{\mathrm{o}}\right)$
- Expressing the solutions in terms of the amplitudes at $x=0$, we get

$$
\begin{aligned}
& {\left[\begin{array}{c}
\bar{V}(x) \\
\bar{I}(x)
\end{array}\right]=\left[\begin{array}{cc}
\cos (\beta x) & -j Z_{o} \sin (\beta x) \\
-j \sin (\beta x) / Z_{o} & \cos (\beta x)
\end{array}\right]\left[\begin{array}{l}
\bar{V}(0) \\
\bar{I}(0)
\end{array}\right]} \\
& {\left[\begin{array}{c}
\square \\
\bar{V}(0) \\
\bar{I}(0)
\end{array}\right]=\left[\begin{array}{cc}
\cos (\beta x) & j Z_{o} \sin (\beta x) \\
j \sin (\beta x) / Z_{o} & \cos (\beta x)
\end{array}\right]\left[\begin{array}{l}
\bar{V}(x) \\
\bar{I}(x)
\end{array}\right]}
\end{aligned}
$$

ABCD matrix of a TL section with length x

Discrete Models of Lumped Elements

- The lumped element is replaced by a section of a transmission line
- Using these models the voltages and currents are obtained only at discrete instants of time

- $C_{d} \Delta l=C, C_{d}$ is the capacitance per unit length
- $u=\Delta l / \Delta t=1 / \sqrt{L_{d} C_{d}} \quad \longrightarrow L_{d}=\left(\frac{\Delta t}{\Delta l}\right)^{2} \frac{1}{C_{d}}$

Discrete Models of Lumped Elements (Cont'd)

- $Z_{c}=\sqrt{\frac{L_{d}}{C_{d}}}=\frac{\Delta t}{C_{d} \Delta l}=\frac{\Delta t}{C}$
- $L_{e}=$ equivalent (parasitic) inductance $=L_{d} \Delta l=\frac{(\Delta t)^{2}}{C}$
- Δt is selected small enough such that the parasitic inductance is small

Modeling Steps:

1. Select $\Delta t, \Delta l$
2. evaluate C_{d}, L_{d} and Z_{c}
3. Assume certain incident voltage at the k th time step
4. Use Thevenin's equivalent to get the reflected voltages
5. Obtain incident impulses at the $(k+1)$ time step

Discrete Models of Lumped Elements (Cont'd)

- Using a similar derivation $C_{d} \Delta l=C$
$u=\Delta l /(\Delta t / 2)=1 / \sqrt{L_{d} C_{d}}$, notice that Δt is the round-trip time

$$
\begin{aligned}
& L_{d}=\left(\frac{\Delta t}{2 \Delta l}\right)^{2} \frac{1}{C_{d}}=\frac{\Delta t^{2}}{4 C \Delta l} \\
& Z_{c}=\sqrt{\frac{L_{d}}{C_{d}}}=\frac{\Delta t}{2 C}
\end{aligned}
$$

$$
L_{e}=L_{d} \Delta l=\frac{(\Delta t)^{2}}{4 C}=\text { error inductance }
$$

Example

- Evaluate the transient response of the shown circuit

- Evaluate the current $i_{k}=\left(V_{k}^{S}-2 V_{k}^{i}\right) /\left(Z_{c}+R\right)$
- Evaluate the capacitor voltage $V_{k}^{C}=2 V_{k}^{i}+Z_{c} i_{k}$
- Scattering: $V_{k}^{r}=V_{k}^{C}-V_{k}^{i}$
- Connection: $V_{k+1}^{i}=V_{k}^{r}$

Example (Cont'd)

Example (Cont'd)

[^0]Try It!

Link Model of an Inductor

- Using similar derivation to that of the capacitor we have
$L_{d} \Delta l=L$
$u=\Delta l / \Delta t=1 / \sqrt{L_{d} C_{d}} \quad \longrightarrow C_{d}=\left(\frac{\Delta t}{\Delta l}\right)^{2} \frac{1}{L_{d}}$
$Z_{L}=\sqrt{\frac{L_{d}}{C_{d}}}=\frac{L}{\Delta t}$
Error capacitance $C_{e}=C_{d} \Delta l=(\Delta t)^{2} / L$

Stub Model of an Inductor

- Using similar derivation we have
$L_{d} \Delta l=L$
$u=\Delta l /(\Delta t / 2)=1 / \sqrt{L_{d} C_{d}} \quad C_{d}=\left(\frac{\Delta t}{\Delta l}\right)^{2} \frac{1}{4 L_{d}}$
$Z_{L}=\sqrt{\frac{L_{d}}{C_{d}}}=\frac{2 L}{\Delta t}$
Error capacitance $C_{e}=C_{d} \Delta l=(\Delta t)^{2} /(4 L)$

Example

- Evaluate the transient response of the shown circuit

Example (Cont'd)

- Evaluate the current $i_{k}=\left(V_{k}^{S}-2 V_{k}^{i}\right) /\left(Z_{L}+R\right)$
- Evaluate the inductor voltage $V_{k}^{C}=2 V_{k}^{i}+Z_{L} i_{k}$
- Scattering: $V_{k}^{r}=V_{k}^{C}-V_{k}^{i}$
- Connection: $V_{k+1}^{i}=-V_{k}^{r}$

[^0]: for $\mathrm{k}=1: 10$
 \%repeat for only time steps
 Ik $=(\mathrm{Vs}-2 * \mathrm{Vi}) /(\mathrm{R}+\mathrm{Zc}) ;$ \%evaluate current
 CurrentValuesTLM $(\mathrm{k}, 1)=\mathrm{Ik}$; \%store current value
 CurrentValuesAnalytic(k,1)=(Vs/R)*exp(-(k-1)*dt/(R*C));
 $\mathrm{Vk}=2 * \mathrm{Vi}+\mathrm{Ik} * \mathrm{Zc}$;
 \%get capacitor voltage
 $\mathrm{Vr}=\mathrm{Vk}-\mathrm{Vi} ; \quad$ \%evaluate reflected voltage (scattering)
 $\mathrm{Vi}=\mathrm{Vr}$;
 end

