EE757
 Numerical Techniques in Electromagnetics Lecture 4

1D TLM

- We establish a one-to-one mapping between 1 D wave equations and a network of transmission lines

- C is the capacitance of a section of length $\Delta x, C=C_{d} \Delta x$
- L is the inductance of a section of length $\Delta x, L=L_{d} \Delta x$
- R and G represent series resistance and shunt conductance, respectively

EE757, 2016, Dr. Mohamed Bakr

1D TLM (Cont'd)

- Applying KVL and KCL, we get

$$
\Delta x \frac{\partial V}{\partial x}=-L \frac{\partial i}{\partial t}-i R \quad \text { and } \quad \Delta x \frac{\partial i}{\partial x}=-C \frac{\partial V}{\partial t}-G V
$$

- Differentiating the first equation w.r.t t and the second equation w.r.t. x we get

$$
\frac{\partial^{2} i}{\partial x^{2}}=\frac{G R}{(\Delta x)^{2}} i+\frac{G L+R C}{(\Delta x)^{2}} \frac{\partial i}{\partial t}+\frac{L C}{(\Delta x)^{2}} \frac{\partial^{2} i}{\partial t^{2}}
$$

- Similarly, we can show that

$$
\frac{\partial^{2} V}{\partial x^{2}}=\frac{G R}{(\Delta x)^{2}} V+\frac{G L+R C}{(\Delta x)^{2}} \frac{\partial V}{\partial t}+\frac{L C}{(\Delta x)^{2}} \frac{\partial^{2} V}{\partial t^{2}}
$$

EE757, 2016, Dr. Mohamed Bakr

Correspondence with Maxwell's Equations

- For a 1D source-free problem, the fields depend only on one coordinate (say x)
- Maxwell's equations are given by

$$
\begin{aligned}
& \frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t} \text { and }-\frac{\partial H_{z}}{\partial x}=J_{c y}+\frac{\partial D_{y}}{\partial t} \\
& \text { Similarly, we obtain } \frac{\partial^{2} E_{y}}{\partial x^{2}}=\mu \sigma \frac{\partial E_{y}}{\partial t}+\mu \varepsilon \frac{\partial^{2} E_{y}}{\partial t^{2}}
\end{aligned}
$$

- Comparing with case $R=0, \frac{\partial^{2} V}{\partial x^{2}}=\frac{G L}{(\Delta x)^{2}} \frac{\partial V}{\partial t}+\frac{L C}{(\Delta x)^{2}} \frac{\partial^{2} V}{\partial t^{2}}$

We obtain the one-to-one correspondence

$$
V \leftrightarrow E_{y}, \mu \leftrightarrow(L / \Delta x), \quad \varepsilon \leftrightarrow(C / \Delta x), \quad \sigma \leftrightarrow(G / \Delta x)
$$

- Solving the discretized TLM network obtains a solution of the corresponding EM problem

[^0]
Solution of the TLM Network

$$
Z_{\mathrm{o}}=\sqrt{\frac{L_{d}}{C_{d}}}=\sqrt{\frac{L}{C}}, \Delta t=\frac{\Delta x}{u}=\Delta x \sqrt{L_{d} C_{d}}=\sqrt{L C}
$$

- Consider the following model with N sections
- Node n is between sections $(n-1)$ and $n, \quad 1<n<(N+1)$

EE757, 2016, Dr. Mohamed Bakr

Solution of a TLM Network (Cont'd)

- Utilizing Thevenin's equivalent we get

- Using Superposition or Milliman's theorem, we get

$$
\begin{aligned}
& V_{n, k}=\frac{\frac{2 V_{L n, k}^{i}}{Z_{\mathrm{o}}}+\frac{2 V_{R n, k}^{i}}{Z_{\mathrm{o}}}}{\frac{1}{Z_{\mathrm{o}}}+G+\frac{1}{Z_{\mathrm{o}}+R}} \longrightarrow i_{n, k}=\frac{V_{n, k}-2 V_{R n, k}^{i}}{Z_{\mathrm{o}}+R} \\
& V_{R n, k}=2 V_{R n, k}^{i}+i_{n, k} Z_{\mathrm{o}}, \quad V_{L n, k}=V_{n, k}
\end{aligned}
$$

EE757, 2016, Dr. Mohamed Bakr

Solution of a TLM Network (Cont'd)

- Using all the voltages and current, we carry out the two fundamental steps of the TLM method:
- Scattering: Evaluate the reflected waves

$$
V_{R n, k}^{r}=V_{R n, k}-V_{R n, k}^{i}, \quad V_{L n, k}^{r}=V_{L n, k}-V_{L n, k}^{i}
$$

- Connection: determine the incident waves at the $(k+1)$ time step \Rightarrow reflected waves become incident waves on neighboring nodes at the next time step

$$
\begin{aligned}
& V_{L n,(k+1)}^{i}=V_{R(n-1), k}^{r} \\
& V_{R n,(k+1)}^{i}=V_{L(n+1), k}^{r}
\end{aligned}
$$

EE757, 2016, Dr. Mohamed Bakr

Solution of a TLM Network (Cont'd)

- For the source node we have

Solution of the TLM Network (Cont'd)

- For the load node we have

- Note that $Z_{L}=L_{0} /(\Delta t / 2) ~ \longleftrightarrow$ synchronization is preserved
- Derive the scattering and connection relationships for the load node

EE757, 2016, Dr. Mohamed Bakr

General Steps

- Given the parameters of the electromagnetic problem determine the parameters of the TLM network (Source, load, time step, L, C)
- Initialize incident impulses for all sections (left and right)
- Repeat for all time steps
* Evaluate intermediate quantities (voltages and currents)
* Evaluate reflected waves (scattering)
* Obtain incident waves at the next time step from the reflected impulses at the current time step (Connection) end

EE757, 2016, Dr. Mohamed Bakr

The Nonhomogenous Case

- To maintain synchronization, stubs should be used
- Example: a section of length Δx with double the permitivitty

$$
\begin{aligned}
& Z_{\mathrm{o}}=\sqrt{\frac{L}{C}} \quad, \quad u=\frac{\Delta x}{\sqrt{L C}} \\
& \Delta t=\frac{\Delta x}{u}=\sqrt{L C}
\end{aligned}
$$

For the stub we have $Z_{s}=\frac{\Delta t}{2 C}$
EE757, 2016, Dr. Mohamed Bakr

2D TLM using Shunt Nodes

- Using KVL along the x direction

$$
V_{y}(x+\Delta x)=V_{y}(x)-L \Delta x \partial I_{x} / \partial t \longmapsto \frac{\partial V_{y}}{\partial x}=-L \frac{\partial I_{x}}{\partial t}
$$

- Using KVL along the z direction we have

$$
V_{y}(z+\Delta z)=V_{y}(z)-L \Delta z \partial I_{z} / \partial t \square \frac{\partial V_{y}}{\partial z}=-L \frac{\partial I_{z}}{\partial t}
$$

- Using KCL we have $I_{z}(z)+I_{x}(x)=I_{z}(z+\Delta z)+I_{x}(x+\Delta x)+2 C \Delta l \frac{\partial V_{y}}{\partial t}$
$\Leftrightarrow-\frac{\partial I_{z}}{\partial z} \Delta l-\frac{\partial I_{x}}{\partial x} \Delta l=2 C \Delta l \frac{\partial V_{y}}{\partial t} \longleftrightarrow \frac{\partial I_{z}}{\partial z}+\frac{\partial I_{x}}{\partial x}=-2 C \frac{\partial V_{y}}{\partial t}$
EE757, 2016, Dr. Mohamed Bakr

2D TLM using Shunt Nodes (Cont'd)

- Combining these equations we get $\frac{\partial^{2} V_{y}}{\partial x^{2}}+\frac{\partial^{2} V_{y}}{\partial z^{2}}=2 L C \frac{\partial^{2} V_{y}}{\partial t^{2}}$
- Maxwell's equations for the lossless TM_{y} case are

$$
\frac{\partial E_{y}}{\partial z}=\mu \frac{\partial H_{x}}{\partial t}, \quad \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=\varepsilon \frac{\partial E_{y}}{\partial t}, \frac{\partial E_{y}}{\partial x}=-\mu \frac{\partial H_{z}}{\partial t}
$$

- Combining these equations, we get $\frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial^{2} E_{y}}{\partial z^{2}}=\mu \varepsilon \frac{\partial^{2} E_{y}}{\partial t^{2}}$ $E_{y} \leftrightarrow V_{y}, H_{z} \leftrightarrow I_{x}, H_{x} \leftrightarrow-I_{z}, \mu \leftrightarrow L, \varepsilon \leftrightarrow 2 C$
- network velocity=medium velocity $1 / \sqrt{\mu \varepsilon}=1 / \sqrt{2 C L}$
- The link velocity v_{l} is $v_{l}=1 / \sqrt{L C}=\sqrt{2} / \sqrt{\mu \varepsilon}=\sqrt{2} v_{n}$
- The link characteristic impedance is
$Z_{l}=\sqrt{L / C}=\sqrt{2} \sqrt{\mu / \varepsilon}=\sqrt{2} Z_{n}$
EE757, 2016, Dr. Mohamed Bakr

Scattering in Shunt TLM Nodes (Lossless Case)

- The computational domain is filled with TLM cells

- We replace each section by its Thevenin's equivalent
- Using Superposition we have $V_{y}=0.5\left(V_{1}^{i}+V_{2}^{i}+V_{3}^{i}+V_{4}^{i}\right)$

EE757, 2016, Dr. Mohamed Bakr

Scattering in Shunt TLM Nodes (Cont'd)

- It follows that we have

$$
\begin{aligned}
& V_{1}^{r}=V_{y}-V_{1}^{i}=0.5\left(-V_{1}^{i}+V_{2}^{i}+V_{3}^{i}+V_{4}^{i}\right) \\
& V_{2}^{r}=V_{y}-V_{2}^{i}=0.5\left(V_{1}^{i}-V_{2}^{i}+V_{3}^{i}+V_{4}^{i}\right) \\
& V_{3}^{r}=V_{y}-V_{3}^{i}=0.5\left(V_{1}^{i}+V_{2}^{i}-V_{3}^{i}+V_{4}^{i}\right) \\
& V_{4}^{r}=V_{y}-V_{4}^{i}=0.5\left(V_{1}^{i}+V_{2}^{i}+V_{3}^{i}-V_{4}^{i}\right)
\end{aligned}
$$

- Or in matrix form

$$
\left[\begin{array}{l}
V_{1}^{r} \\
V_{2}^{r} \\
V_{3}^{r} \\
V_{4}^{r}
\end{array}\right]=0.5\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
V_{1}^{i} \\
V_{2}^{i} \\
V_{3}^{i} \\
V_{4}^{i}
\end{array}\right]
$$

EE757, 2016, Dr. Mohamed Bakr

Connection in Shunt TLM Nodes

- Reflected impulses at the k th time step become incident on neighboring nodes at the $k+1$ time step

$$
\begin{aligned}
& \left(V_{1}^{i}(x, z)\right)_{k+1}=\left(V_{3}^{r}(x+\Delta x, z)\right)_{k}^{1},\left(V_{2}^{i}(x, z)\right)_{k+1}=\left(V_{4}^{r}(x, z-\Delta z)\right)_{k} \\
& \left(V_{3}^{i}(x, z)\right)_{k+1}=\left(V_{1}^{r}(x-\Delta x, z)\right)_{k},\left(V_{4}^{i}(x, z)\right)_{k+1}=\left(V_{2}^{r}(x, z+\Delta z)\right)_{k}
\end{aligned}
$$

Modeling of Free Space

- To model free space, the following two conditions must be satisfied
$\frac{1}{\sqrt{2 L C}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \quad \Longrightarrow \sqrt{2 L C}=\frac{1}{v_{0}}=3.0 \mathrm{e} 8 \mathrm{~m} / \mathrm{s}$
$\sqrt{\frac{L}{2 C}}=\sqrt{\frac{\mu_{\mathrm{o}}}{\varepsilon_{\mathrm{o}}}}=\eta_{\mathrm{o}}=377 \Omega$
- It follows that $L=\eta_{\mathrm{o}} / v_{\mathrm{o}}=\mu_{\mathrm{o}}$ and $C=1 /\left(2 \eta_{\mathrm{o}} \nu_{\mathrm{o}}\right)=\varepsilon_{\mathrm{o}} / 2$
- $v_{L}=$ link velocity $=1 / \sqrt{L C}=v_{0} \sqrt{2} \mathrm{~m} / \mathrm{s}$
- $Z_{L}=$ link characteristic impedance $=\sqrt{L / C}=\sqrt{2} \eta_{0} \Omega$
- Unit time step $\Delta t=\Delta / / v_{L}=\Delta / /\left(v_{\mathrm{o}} \sqrt{2}\right) \mathrm{sec}$

EE757, 2016, Dr. Mohamed Bakr

Modeling of a General Lossy Medium

- Additional losses and capacitances are modeled by matched shunt stubs and open ended shunt stubs, respectively

- y_{0} : normalized admittance of the $\Delta l / 2$ shunt capacitance stub
- g_{0} : normalized admittance of the $\Delta l / 2$ shunt loss stub

EE757, 2016, Dr. Mohamed Bakr

Modeling of a General Lossy Medium (Cont'd)

- Normalizing admittance is $Y_{L}=\sqrt{C / L}$

$$
Y_{\mathrm{o}}=y_{\mathrm{o}} \sqrt{C / L} \text { and } G_{\mathrm{o}}=g_{\mathrm{o}} \sqrt{C / L}
$$

- We choose C_{s} and L_{s} for the permitivitty stub to be $C_{s}=C y_{o}$ and $L_{s}=L / y_{o} \longmapsto 1 / \sqrt{L_{s} C_{s}}=1 / \sqrt{L C} \sqrt{\frac{C_{s}}{L_{s}}}=Y_{\mathrm{o}}=y_{\mathrm{o}} Y_{L}$
- Similarly for the loss stub we have
$C_{g}=C g_{o}$ and $L_{g}=L / g_{o} \square 1 / \sqrt{L_{g} C_{g}}=1 / \sqrt{L C}, \sqrt{\frac{C_{g}}{L_{g}}}=G_{o}=g_{o} Y_{L}$
- The permitivitty stub represents a capacitance of value
$C C_{s} \Delta l / 2=C y_{o} \Delta l / 2 \square$ Total cell capacitance $=C y_{o} \Delta l / 2+2 C$

$$
C_{t}=2 C \Delta l\left(1+\frac{y_{\mathrm{o}}}{4}\right)
$$

EE757, 2016, Dr. Mohamed Bakr

Modeling of a General Lossy Medium (Cont'd)

- For small cell size, the cell now has the equivalent lumped presentation

- Equations governing this lossy node are

$$
\begin{array}{ll}
\partial V_{y} / \partial x=-L \partial I_{x} / \partial t & \text { (KVL in the } x \text { direction }) \\
\partial V_{y} / \partial z=-L \partial I_{z} / \partial t & \text { (KVL in the } z \text { direction }
\end{array}
$$

$$
\begin{equation*}
\frac{\partial I_{z}}{\partial z}+\frac{\partial I_{x}}{\partial x}=-2 C\left(1+y_{\mathrm{o}} / 4\right) \frac{\partial V_{y}}{\partial t}-\frac{g_{\mathrm{o}} \sqrt{C / L}}{\Delta l} V_{y} \tag{KCL}
\end{equation*}
$$

EE757, 2016, Dr. Mohamed Bakr

Correspondence with Maxwell's Equations

- Maxwell's equations for the lossy 2D TMy case are

$$
\begin{aligned}
& \partial E_{y} / \partial x=-\mu \partial H_{z} / \partial t \\
& \partial E_{y} / \partial z=\mu \partial H_{x} / \partial t \\
& \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=\varepsilon \frac{\partial E_{y}}{\partial t}+\sigma E_{y}
\end{aligned}
$$

- It follows that we can establish the 1-1 correspondence
$E_{y} \leftrightarrow V_{y}, \quad H_{z} \leftrightarrow I_{x}, \quad H_{x} \leftrightarrow-I_{z}$
$\mu \leftrightarrow L, \quad \varepsilon \leftrightarrow 2 C\left(1+\frac{y_{0}}{4}\right), \quad \sigma \leftrightarrow \frac{g_{0} \sqrt{C / L}}{\Delta l}$
EE757, 2016, Dr. Mohamed Bakr

Some Practical Points

- L and C are usually selected to model free space with $L=\mu_{\mathrm{o}}$ and $C=\varepsilon_{0} / 2$
- y_{o} is adjusted at each node to model the local permitivitty $\varepsilon=2 C\left(1+\frac{y_{\mathrm{o}}}{4}\right) \quad \varepsilon_{r}=\left(1+\frac{y_{\mathrm{o}}}{4}\right) \longmapsto y_{\mathrm{o}}=4.0\left(\varepsilon_{r}-1\right)$
- g_{o} is adjusted at each node to model the local conductivity

$$
\sigma=\frac{g_{\mathrm{o}} \sqrt{C / L}}{\Delta l}
$$

References

P.B. Johns, The solution of inhomogeneous waveguide problems using a transmission-line matrix, IEEE Transactions MTT-22, 209-215, 1974
W.J.R. Hoefer, "The transmission-line matrix method-theory and applications," IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 882-893, Oct. 1985.

[^0]: EE757, 2016, Dr. Mohamed Bakr

