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Scattering and Connection (the General Lossy Case) 

 Six links exist for the general lossy case 

 We, however, do not care about the value of the reflected 

impulses on the loss stub (energy is just being absorbed) 

 Also, no incident wave appear on the loss stub because it 

is matched 

 It follows that the scattering matrix can be reduced in 

dimension by 1 (SR55) 

 Following a similar approach to that used in the lossless 

case we derive the scattering relationship 
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Scattering and Connection (Cont’d) 

Where y=4+yo+go ,                            ,                                                                 
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Modeling of Boundaries 

 In establishing the equivalence between Maxwell’s 

equations and a network of TLM nodes we noted that 

node voltage models the electric field and that link 

currents model the magnetic field 

 It follows that the boundary resistive load represents the 

wave impedance 

 Lossless nondispersive boundaries include open and short 

circuit (magnetic and electric walls, respectively) 
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Modeling of Boundaries (Cont’d) 

 

 For a magnetic wall we have                  , link reflection 

coefficient is 1,   

 For an  electric wall we have                  , link reflection 

coefficient is -1,   
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  The general expression of the link reflection coefficient 

due to a non dispersive load RL is 
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Modeling of Boundaries (Cont’d) 

 For a lossy boundary with surface resistance Rs the link  

reflection coefficient  

 For TEM waves propagating in free space, the wave 

impedance is o  regardless of the wave frequency.  It 

follows that a wideband Absorbing Boundary Condition 

(ABC) has an impulse reflection coefficient   

 

 For TEM waves propagating in a dielectric with r , wave 

impedance is o/           regardless of the wave frequency.  It  

 follows that 
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Modeling of Boundaries (Cont’d) 

 

 

 For TEno modes in a rectangular waveguide, the wave 

impedance above cut-off is real but dispersive.  It follows 

that an ABC using a real impulse reflection coefficient is 

feasible only at one frequency 

 

 

    g is the guide wavelength and   is the open medium 

wavelength 

  A wideband ABC is obtained in this case using the John’s 

matrix 
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Discrete Time-Domain Green’s Function 
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Excite with an impulse at node i and register all impulses 

coming out at all links for all time steps 
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The Johns Matrix 

 This matrix is also denoted as the Johns’ matrix 

 The Johns matrix is a three-dimensional matrix 

 The ith row of this matrix is obtained by exciting an 

impulse at the ith node and registering all impulses 

coming out at all links for all time steps 

 This is repeated for all links, so N TLM analyses are 

required  

 Sequences of the form g(m,n,k) are being generated.  Here 

g(m,n,k) is the reflected impulse at the mth node at the kth 

time step due to a unit incident impulse at the nth node at 

the 0th time step  
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 Using convolution summation we have 

 

 

 

 

 

 Johns’ Matrix is utilized in partioning of a large structure 

into small substructures and in time-domain modeling of 

wideband ABC in non-TEM waveguides  

The Johns’ Matrix (Cont’d) 





















)(..)(

....

...)(

)()()(

)(

1

21

11211

kgkg

kg

kgkgkg

k

NNN

N

G



   VkknmgV
i
n k

N

n

k

k

r

m k 
 
  

1 0

),,(

Alternatively 

)()()(
0

kkkk i
k

k

r  


VGV



11 
EE757, 2016, Dr. Mohamed Bakr 

The Modal Johns’ Matrix 

EW 

EW 

EW 

1 

2 

N 

. 

. 

. 

   Excite with an impulsive source and the desired mode 

profile all the links simultaneously 

   Record all the impulsive emerging from this structure at 

just one link 

    The three-dimensional Johns’ matrix is reduced to just a 

one-dimensional vector g(k) 
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Dispersion in a 2D TLM Mesh 

 We first study propagation at 45 

 

 

 

Christos, Transmission Line Modeling (TLM) 
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Dispersion in a 2D TLM Mesh (Cont’d) 

 Exciting ports 1 and 2 by 1V results in                      and          

                    .  These reflected impulses travel to become 

incident on neighboring nodes at the next time step.  This 

will give                       and                      .  It took 2 time 

steps to travel a distance of  l    

 The network velocity is 

                                         regardless of frequency 

  It follows that no dispersion appears for this case 
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Dispersion in a 2D TLM Mesh (Cont’d) 

 For propagation in the direction of one of the axes, 

symmetry allows us to represent the network by a cascade 

of periodic structures 
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Dispersion in a 2D TLM Mesh (Cont’d) 

 It follows that we have 

 

 

 

 Equating this product to the ABCD of a single section 

of transmission line 
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Dispersion in a 2D TLM Mesh (Cont’d) 

 It follows that we have 

 But 

and 

 Combining the above equations we obtain the dispersion 

relationship    

 Notice that vN depends on the ratio l/o 

 Also, for l<<o  ,   
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Dispersion in a 2D TLM Mesh (Cont’d) 

Christos, Transmission Line Modeling (TLM) 
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3D TLM 

 The symmetric condensed node (SCN) is the most 

widely used node 

 

  The SCN has 6 branches with 2 transmission lines in each 

branch  
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3D TLM (Cont’d) 

 For modeling free space S 1212 

 Components of S are determined through conservation of 

energy 

 Open and short circuit stubs are used to model the proper 

capacitance and inductance in the x,y and z directions 

 In this case S1818 
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