EE757
 Numerical Techniques in Electromagnetics Lecture 5

Scattering and Connection (the General Lossy Case)

- Six links exist for the general lossy case
- We, however, do not care about the value of the reflected impulses on the loss stub (energy is just being absorbed)
- Also, no incident wave appear on the loss stub because it is matched
- It follows that the scattering matrix can be reduced in dimension by $1\left(\boldsymbol{S} \in R^{5 \times 5}\right)$
- Following a similar approach to that used in the lossless case we derive the scattering relationship

Scattering and Connection (Cont'd)

$$
\left[\begin{array}{c}
V_{1}^{r} \\
V_{2}^{r} \\
V_{3}^{r} \\
V_{4}^{r} \\
V_{5}^{r}
\end{array}\right]=\frac{1}{y}\left[\begin{array}{ccccc}
2-y & 2 & 2 & 2 & 2 y_{\mathrm{o}} \\
2 & 2-y & 2 & 2 & 2 y_{\mathrm{o}} \\
2 & 2 & 2-y & 2 & 2 y_{\mathrm{o}} \\
2 & 2 & 2 & 2-y & 2 y_{\mathrm{o}} \\
2 & 2 & 2 & 2 & 2 y_{\mathrm{o}}-y
\end{array}\right]\left[\begin{array}{c}
V_{1}^{i} \\
V_{2}^{i} \\
V_{3}^{i} \\
V_{4}^{i} \\
V_{5}^{i}
\end{array}\right]
$$

Where $y=4+y_{0}+g_{\mathrm{o}}, \quad y_{\mathrm{o}}=4.0\left(\varepsilon_{r}-1\right), \quad g_{\mathrm{o}}=\frac{\sigma \Delta l}{\sqrt{C / L}}$

Modeling of Boundaries

- In establishing the equivalence between Maxwell's equations and a network of TLM nodes we noted that node voltage models the electric field and that link currents model the magnetic field
- It follows that the boundary resistive load represents the wave impedance
- Lossless nondispersive boundaries include open and short circuit (magnetic and electric walls, respectively)

EE757, 2016, Dr. Mohamed Bakr

Modeling of Boundaries (Cont'd)

- The general expression of the link reflection coefficient due to a non dispersive load R_{L} is

$$
\Gamma=\frac{R_{L}-\eta_{\mathrm{o}} \sqrt{2}}{R_{L}+\eta_{\mathrm{o}} \sqrt{2}}
$$

- For a magnetic wall we have $V_{k+1}^{i}=V_{k}^{r}$, link reflection coefficient is $1, \Gamma_{m}=\lim _{R_{L} \rightarrow \infty} \frac{R_{L}-\eta_{\mathrm{o}} \sqrt{2}}{R_{L}+\eta_{\mathrm{o}} \sqrt{2}}=1.0$
- For an electric wall we have $V_{k+1}^{i}=-V_{k}^{r}$, link reflection coefficient is $-1, \Gamma_{e}=\lim _{R_{L} \rightarrow 0} \frac{R_{L}-\eta_{\mathrm{o}} \sqrt{2}}{R_{L}+\eta_{\mathrm{o}} \sqrt{2}}=-1.0$

Modeling of Boundaries (Cont'd)

- For a lossy boundary with surface resistance R_{s} the link reflection coefficient $\Gamma_{s}=\frac{R_{s}-\eta_{\mathrm{o}} \sqrt{2}}{R_{s}+\eta_{\mathrm{o}} \sqrt{2}}, V_{k+1}^{i}=\Gamma_{s} V_{k}^{r}$
- For TEM waves propagating in free space, the wave impedance is η_{o} regardless of the wave frequency. It follows that a wideband Absorbing Boundary Condition (ABC) has an impulse reflection coefficient

$$
\Gamma=\frac{\eta_{\mathrm{o}}-\eta_{\mathrm{o}} \sqrt{2}}{\eta_{\mathrm{o}}+\eta_{\mathrm{o}} \sqrt{2}}=-0.17157, \quad V_{k+1}^{i}=\Gamma V_{k}^{r}
$$

- For TEM waves propagating in a dielectric with ε_{r}, wave impedance is $\eta_{o} / \sqrt{\varepsilon_{r}}$ regardless of the wave frequency. It follows that $\Gamma=\frac{\eta_{0} / \sqrt{\varepsilon_{r}}-\eta_{\mathrm{o}} \sqrt{2}}{\eta_{\mathrm{o}} / \sqrt{\varepsilon_{r}}+\eta_{\mathrm{o}} \sqrt{2}}, V_{k+1}^{i}=\Gamma V_{k}^{r}$
EE757, 2016, Dr. Mohamed Bakr

Modeling of Boundaries (Cont'd)

- For TEno modes in a rectangular waveguide, the wave impedance above cut-off is real but dispersive. It follows that an ABC using a real impulse reflection coefficient is feasible only at one frequency

$$
\Gamma=\frac{\left(\eta_{\mathrm{o}} / \sqrt{\varepsilon_{r}}\right) \frac{\lambda_{g}}{\lambda}-\eta_{\mathrm{o}} \sqrt{2}}{\left(\eta_{\mathrm{o}} / \sqrt{\varepsilon_{r}}\right)}, V_{k+1}^{i}=\Gamma V_{k}^{r}
$$

λ_{g} is the guide wavelength and λ is the open medium wavelength

- A wideband ABC is obtained in this case using the John's matrix

EE757, 2016, Dr. Mohamed Bakr

Discrete Time-Domain Green's Function

Excite with an impulse at node i and register all impulses coming out at all links for all time steps

EE757, 2016, Dr. Mohamed Bakr

The Johns Matrix

- This matrix is also denoted as the Johns' matrix
- The Johns matrix is a three-dimensional matrix
- The i th row of this matrix is obtained by exciting an impulse at the i th node and registering all impulses coming out at all links for all time steps
- This is repeated for all links, so N TLM analyses are required
- Sequences of the form $g(m, n, k)$ are being generated. Here $g(m, n, k)$ is the reflected impulse at the m th node at the $k t$ th time step due to a unit incident impulse at the nth node at the $0^{\text {th }}$ time step

EE757, 2016, Dr. Mohamed Bakr

The Johns' Matrix (Cont'd)

- Using convolution summation we have
$\left(V_{m}^{r}\right)_{k}=\sum_{n=1 k^{\prime}=0}^{N} \sum_{0}^{k} g\left(m, n, k-k^{\prime}\right)\left(V_{n}^{i}\right)_{k^{\prime}}$
Alternatively $\boldsymbol{G}(k)=\left[\begin{array}{cccc}g_{11}(k) & g_{12}(k) & \cdots & g_{1 N}(k) \\ g_{21}(k) & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ g_{N 1}(k) & \cdot & \cdot & g_{N N}(k)\end{array}\right]$

$$
\boldsymbol{V}^{r}(k)=\sum_{k^{\prime}=0}^{k} \boldsymbol{G}\left(k-k^{\prime}\right) \boldsymbol{V}^{i}\left(k^{\prime}\right)
$$

- Johns' Matrix is utilized in partioning of a large structure into small substructures and in time-domain modeling of wideband ABC in non-TEM waveguides

EE757, 2016, Dr. Mohamed Bakr

The Modal Johns' Matrix

- Excite with an impulsive source and the desired mode profile all the links simultaneously
- Record all the impulsive emerging from this structure at just one link
- The three-dimensional Johns' matrix is reduced to just a one-dimensional vector $g(k)$

EE757, 2016, Dr. Mohamed Bakr

Dispersion in a 2D TLM Mesh

- We first study propagation at 45°

Christos, Transmission Line Modeling (TLM)
EE757, 2016, Dr. Mohamed Bakr

Dispersion in a 2D TLM Mesh (Cont'd)

- Exciting ports 1 and 2 by 1 V results in $V_{1}^{r}=V_{2}^{r}=0 V$ and $V_{3}^{r}=V_{4}^{r}=1 V$. These reflected impulses travel to become incident on neighboring nodes at the next time step. This will give $V_{1}^{r}=V_{2}^{r}=1 V$ and $V_{3}^{r}=V_{4}^{r}=0 V$. It took 2 time steps to travel a distance of $\Delta l \sqrt{2}$
- The network velocity is

$$
v_{N}=\frac{\Delta l \sqrt{2}}{2 \Delta t}=\frac{v_{L}}{\sqrt{2}}=v_{0} \quad \text { regardless of frequency }
$$

- It follows that no dispersion appears for this case

Dispersion in a 2D TLM Mesh (Cont'd)

- For propagation in the direction of one of the axes, symmetry allows us to represent the network by a cascade of periodic structures

$$
\left[\begin{array}{l}
\Gamma
\end{array}\right]=\left[\begin{array}{ll}
\Gamma_{1}
\end{array}\right]\left[\begin{array}{ll}
\Gamma_{2}
\end{array}\right]\left[\begin{array}{ll}
\Gamma_{3}
\end{array}\right]
$$

Dispersion in a 2D TLM Mesh (Cont'd)

- It follows that we have

$$
\begin{aligned}
& {[\boldsymbol{T}]=\left[\begin{array}{cc}
\operatorname{Cos} \theta & j Z_{L} \operatorname{Sin} \theta \\
\frac{j \operatorname{Sin} \theta}{Z_{L}} & \operatorname{Cos} \theta
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\frac{2 j \tan \theta}{Z_{L}} & 1
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Cos} \theta & j Z_{L} \operatorname{Sin} \theta \\
\frac{j \operatorname{Sin} \theta}{Z_{L}} & \operatorname{Cos} \theta
\end{array}\right]} \\
& \theta=\frac{\omega \Delta t}{2}
\end{aligned}
$$

- Equating this product to the ABCD of a single section of transmission line

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{Cos} \beta \Delta l & j Z_{L} \operatorname{Sin} \beta \Delta l \\
\frac{j \operatorname{Sin} \beta \Delta l}{Z_{L}} & \operatorname{Cos} \beta \Delta l
\end{array}\right]\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

Dispersion in a 2D TLM Mesh (Cont'd)

- It follows that we have $\sin (\beta \Delta / / 2)=\sqrt{2} \sin (\omega \Delta t / 2)$
- But $\omega \frac{\Delta t}{2}=\frac{\omega}{2} \frac{\Delta l}{v_{L}}=\frac{2 \pi f}{2} \frac{\Delta l}{v_{L}}=\pi \frac{v_{L}}{\lambda_{0}} \frac{\Delta l}{v_{L}}=\pi \frac{\Delta l}{\lambda_{\mathrm{o}}}$
and $v_{N}=\frac{\omega}{\beta}=\frac{2 \pi f}{\beta}=\frac{2 \pi}{\beta} \frac{v_{L}}{\lambda_{0}} \quad \longleftrightarrow \beta=\frac{2 \pi}{\lambda_{\mathrm{o}}} \frac{v_{L}}{v_{N}}$
- Combining the above equations we obtain the dispersion relationship $\frac{v_{N}}{v_{L}}=\frac{\pi\left(\Delta / / \lambda_{0}\right)}{\sin ^{-1}\left(\sqrt{2} \sin \left(\pi \Delta / / \lambda_{0}\right)\right)}$
- Notice that v_{N} depends on the ratio $\Delta l / \lambda_{o}$
- Also, for $\Delta l \ll \lambda_{o}, v_{N} \approx v_{L} / \sqrt{2}$

EE757, 2016, Dr. Mohamed Bakr

Dispersion in a 2D TLM Mesh (Cont'd)

Christos, Transmission Line Modeling (TLM)
EE757, 2016, Dr. Mohamed Bakr

3D TLM

- The symmetric condensed node (SCN) is the most widely used node

- The SCN has 6 branches with 2 transmission lines in each branch

EE757, 2016, Dr. Mohamed Bakr

3D TLM (Cont'd)

- For modeling free space $S \in \Re^{12 \times 12}$
- Components of S are determined through conservation of energy
- Open and short circuit stubs are used to model the proper capacitance and inductance in the x, y and z directions
- In this case $S \in \mathfrak{R}^{18 \times 18}$

References

Eswarappa; Costache, G.I.; Hoefer, W.J.R, Transmission line matrix modeling of disperse wide-band absorbing boundaries with time-domain diakoptics for S-parameter extraction, IEEE Transactions on Microwave Theory and Techniques,Volume: 38 , Issue: 4 , April 1990, Pages:379-386.

So, P.P.M.; Eswarappa; Hoefer, W.J.R., A two-dimensional transmission line matrix microwave field simulator using new concepts and procedures, IEEE Transactions on Microwave Theory and Techniques,Volume: 37, Issue: 12, Dec 1989 Pages:1877-1884.

Johns, P.B., A Symmetrical Condensed Node for the TLM Method, IEEE Transactions on Microwave Theory and Techniques ,Volume: 35, Issue: 4, Apr 1987 Pages:370-377.

Hoefer, W.J.R., The discrete time domain Green's Function or Johns' Matrix- an new powerful concept in TLM, Internationa Journal of Numerical Modelling, Volume 2, 1989, Pages: 215-225.

EE757, 2016, Dr. Mohamed Bakr

