EE757 Numerical Techniques in Electromagnetics Lecture 6

1

Modeling of a Homogenuous Medium

- The Scattering matrix has 12 rows and 12 columns
- Only few of these components are non zeros

EE757, 2016, Dr. Mohamed Bakr

Decomposition of the SCN

Decomposition of the SCN (Cont'd)

$$E_y = -V_y / \Delta y$$
, $E_x = -V_x / \Delta x$, $E_z = -V_z / \Delta z$

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} = \varepsilon \frac{\partial E_x}{\partial t}$$
$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -\mu \frac{\partial H_z}{\partial t}$$

- Incident Impulses at port 1 can give rise to reflected impulses on ports 1, 2, 9, 12, 3, 11 because of Maxwell's equations
- Similar approach can be applied to all other links

EE757, 2016, Dr. Mohamed Bakr

The Scattering Matrix (Cont'd)

• Applying the unitary conditions *S^TS*=*I*, and Maxwell's equations we obtain the components

EE757, 2016, Dr. Mohamed Bakr

		0	1	1	0	0	0	0	0	I	0	-1	0
		1	0	0	0	0	I	0	0	0	-l	0	l
		1	0	0	1	0	0	0	ł	0	0	0	— i
		0	0	1	0	1	0	-1	0	0	0	1	0
		0	0 0 1 0	j	0	—]	0	l	0	0			
s	= 0.5	0	I	0	0	1	0	1	0	-]	0	0	0
	U.C.	0	0	0	-1	0	1	0	j	0	1	0	0
		0	0	1	0	— J	0	1	0	0	0	1	0
		1	0	0	0	0	$-\mathbf{I}$	0	0	0	1	0	ł
		0	1	0	0	1	0	1	0	1	0	0	0
		I	0	0	1	0	0	0	1	0	0	0	Ì
		0	1		0	0	0	0	0	1	0	1	0_

• The capacitance of a space block in the y direction is $\varepsilon \Delta x \Delta z / \Delta y$

Link Properties (Cont'd)

• The inductance of a space block in the y-zplane is $\mu \Delta y \Delta z / \Delta x$ $L_d = \mu / 2$ 2_{v_0} ,

 Z_{0}

Connection in the SCN

• Reflected impulses become incident on neighboring nodes in the next time step

EE757, 2016, Dr. Mohamed Bakr

Boundaries in the SCN

• Johns' matrix may be used to simulate wideband ABCs **EE757, 2016, Dr. Mohamed Bakr**

TLM Network Ouput

EE757, 2016, Dr. Mohamed Bakr

TLM Network Output (Cont'd)

$$E_{y=-(V_{3}^{i}+V_{4}^{i}+V_{8}^{i}+V_{11}^{i})/(2\Delta l)$$

$$E_{x=-(V_{1}^{i}+V_{2}^{i}+V_{9}^{i}+V_{12}^{i})/(2\Delta l)$$

$$E_{z=-(V_{5}^{i}+V_{6}^{i}+V_{7}^{i}+V_{10}^{i})/(2\Delta l)$$

TLM Network Output (Cont'd)

 $H_{x} = I_{x} / \Delta l$ \bigcup $H_{x=(V_{4}^{i} + V_{7}^{i} - V_{5}^{i} - V_{8}^{i}) / (2Z_{0}\Delta l)$

TLM Network Output (Cont'd)

y

The Variable Mesh SCN

3 open circuit stubs are used to model the permitivitty in the x, y and z directions

3 short circuit stubs are used to model the permeability in the x, y and z directions

• We choose the inductance and capacitance of the regular links to model free space

EE757, 2016, Dr. Mohamed Bakr

Modeling the Extra Inductance

The Scattering Matrix

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	a	b	d					1	b		- <i>d</i>	с	g		-		1	i
	2	b	a				d			с	- <i>d</i>		b	g				-i	
	3	d		a	b				b			с	- <i>d</i>		g				- <i>i</i>
	4			b	a	d		- <i>d</i>	с			b	1		g		i		
	5				d	a	b	с	- <i>d</i>		b		1			g	-i		
	6		d			b	a	b		-d	с	1	1			g		i	
	7				-d	с	b	a	d		b		1.3			g	i		
	8			b	с	-d		d	a			b			g		-i		
	9	b	с				-d			a	d		b	g				i	
	10		-d			b	с	b		d	a					g		-i	
	11	-d	18	C	b				b			a	d	-	g		-		i
	12	с	b	- <i>d</i>						b		d	a	g					- <i>i</i>
	13	е	е							е		1	е	h					
	14			е	е				е			е		1	h				
	15					е	е	е			е	5.	- 1-		2	h			
	16				f	-f		f	-f								j		
	17		-f				f		1.23	f	-f							j	
	18	f		-f			1		101	and a	02:04	f	-f			1			j