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Differential Equations Vs. Integral Equations

e Integral equations may take several forms, e.g.,
b
f(x) =] K(x t)p(t)dt
a b
f(X) = p(x) - A] K(x,D)e(t) dt

e Most differential equations can be expressed as integral
equations, e.g.,
d’pld x*=F(x,¢), a<x<b




Green’s Functions

e Green’s functions offer a systematic way of converting a
Differential Equation (DE) to an Integral Equation (IE)

e A Green’s function 1s the solution of the DE corresponding
to an impulsive (unit) excitation

e Consider the differential equation L& =g, where L is a
differential operator, @ is the unknown field and g is the
known given excitation

e For this problem, the Green’s function G(r,r) is the
solution of the DE LG =4(r) subject to the same boundary
conditions

e For an arbitrary excitation we have = [g(r)G(r,r’)dv’
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Green’s Functions: Examples

e Obtain the Green’s function for the DE (8%/0x% + 8%10 Y@ =g
subject to @ =f on the boundary B

e The Green’s function 1s the solution of

VG(X, Y, X, y) =8(X—X)3(y—Y')
e G can be decomposed into a particular integral and a
homogeneous solution G=F+U with F and U satisfying
V' F=5(x=-x)5(y-y), v’U=0

e Switching to polar form we get ii[pﬁj =0, Vx=X,y=Y'
pop\  Op
— >F=Alnp+C; 6
: F
e A is obtained using L'L”ofgd' =1 ) 27A=1 @ R

X,y
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Green’s Function: Examples (Cont’d)

e The method of images can also be applied to obtain an
infinite series expansion of Green’s functions

e Consider the case of a line charge between two
conducting planes

e G(x,y,x,y’) represents the potential at (X, y) due to a
line charge of value 1.0 ¢/m located at (x, )




Green’s Function: Examples (Cont’d)

( ®+(Q

h+y{ (-0

| An infinite number of
h-y charges is required to
°+q maintain the same




Green’s Function: Examples (Cont’d)

e The potential caused by a 1 ¢/m line charge in an unbounded
medium is given by
1

V(P)Zﬁlnpz

e Using the figure, we conclude that the Green’s function i1s
given by the infinite series

1 In|(x=x')2+ (y—=y")° |- In(x=x)? + (y+y')2 )+
G(x, Y, X, y’):% £y In[(x—x’)2+(y+y’—2nh)2]—In[(x—x’)2+(y—y’—2nh)2
n-1 In [(x—x’)2 +(y+ y'+2nh)2]— In [(x—x’)2 +(y—y'+2nh)’

e Special mathematical techniques are usually utilized to sum
such a slowly convergent series
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Green’s Function: Examples (Cont’d)

e The Green’s function can also be expanded in terms of
the eigenfunctions of the homogeneous problem

e As an example consider the wave equation
oy oY

+k’w =0, Subject to aa—"”=o or w=0 onB
n

ox* 0y’
e Let the eigenvalues and eigenfunctions be k;and v

VZWj_I_k?Wj =0




Green’s Function: Examples (Cont’d)

e We then expand the Green’s function in terms of the
eigenfunctions G(x,y,X,y")=Xa;w (X Y)
j=1

¢ But as the Green’s function satisfy

(V2 +K?)G(%, Y, X, Y) = 5(x—X)S(y - y')
ﬂ Substitute for G

Za,(k —kiy;=8(x=x)5(y~y)




Green’s Function: Examples (Cont’d)

e Using Green’s functions, construct the solution for the
vV azv
— f (X’ Y),

Poisson’s equation O

ox° 8y
Subject to V(0, y)=V(a, y)=V(X, 0)=V(X, b)=0
Show that v, = %Sln(—)sm( —)

sm(mﬂxljsin(nﬂy'j
m°z° n°z’° 2 a b




Dyadic Green’s Functions

e Dyadic Green’s functions are used to express the situation
where a source In one direction gives rise to fields in
different directions

e In general, a dyadic Green’s function will have 9
components

G(X,Y,Z,X,Y,Z) =Gl + Gy 1]+ Gy IK+
Gy Ji + Gy Jl + Gy JK+GoKi + G Kj + G KK
e For a unit source in the x direction J =is(x—x)o(y-Vy)o(z-12")
we obtain the field E=G.J = G i +Gy j +GxK
e For a general source (arbitrary distribution and orientations)
E(x,y,2) =[[[G(XY,z,X,y,2).I (X, Yy z")adV
o
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Inner Products

e The inner product of two functions is a scalar that must
satisfy the following conditions:

<f,g>=<qg,f> commutative

<df + g, h>=a< fh>+<g,h> distributive
<f,. f>>0 if f=0

*




Adjoint Operators

e For an operator L, we sometimes define an adjoint operator
L defined by < Lf g>=<f, | 2g>

e For the DE —d*f/dx* =9(x) , f(0)=f(1)=0=) L=—¢g?/dx?
o We utilize the inner product < f(x), g(x) >=} f (x)g(x)dx

zg(x)dx — g% +jf( 3gjdx
0 X

1
<Lf,g>=j—
0

dx

-
Ny




Method of Moments (MoM)

e MoM aims at obtaining a solution to the inhomogeneous
equation Lf = g, where L is a known linear operator, g Is a
known excitation and f is unknown

e Letf be expanded in a series of known basis functions f;, f,,
e ooy fN |:> f :Zan fn

n
e Substituting in the equation we get

L an | > an L(f One equation in N unknowns




MoM (Cont’d)

e Taking the inner product of both sides with the mth weighting
function we obtain
> otn <Wm, L(f ) >=<wn,g> m=12--- N

(N equations in N unknowns)

e In matrix form we can write [| mn][Oln]: [g m]




MoM (Cont’d)

_051_ _<W1,g >
< ,J >

[an]: 022 ) [gm]: W2: )
| N | _<WN1g>_

e The unknown coefficients are thus given by [an]= [I mnTl [gm]




MoM Example
e Solve d?f/dx°=1+4x?, f(0)=f(1)=0 using MoM
e \We choose the basis functions as f =x—x"*1, n=1, 2, ..., N

@ f 1s thus approximated by f = Zan (x—x"")

e Also we choose w,=f, n=1, 2, ... N (Galerkin’s approach)

1
e our inner product is < f,g>=[f(x)g(x)dx
0




MoM Example (Cont’d)

e For N=1, we have 1,,=1/3, 9,=11/30 —) a,=11/10

S

e For N=2, we have

1/3 112 en] [11/30
1/2 415\ g.| | 7112

e For N=3, we have




Types of Basis Functions

e Entire domain basis functions f, are defined for the entire
domain of the function f

e Subsectional basis functions are defined only over a
subsection of the domain of the function f

1 a %y On+1
+
P(X'Xn) -2 - Oh+2




Types of Basis Functions (Cont’d)

T(X-X,)

1
/\ ’
| | | >




Types of Weighting Functions

e Recall that

> otn < W, L(f.) >=<wy, 0> m=12.-- N

e |If we choose w,=f,, n=1, 2, ..., N (Galerkin matching)
San<f ,L(f)>=<f_,g> m=12--N

e |f we choose w.,=o(r-r,), n=1, 2, ..., N (Point matching)




