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Differential Equations Vs. Integral Equations 

 Integral equations may take several forms, e.g.,   
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Green’s Functions 

 Green’s functions offer a systematic way of converting a 

Differential Equation (DE) to an Integral Equation (IE) 

 A Green’s function is the solution of the DE corresponding 

to an impulsive (unit) excitation 

 Consider the differential equation L = g, where L is a 

differential operator,  is the unknown field and g is the 

known given excitation 

 For this problem, the Green’s function G(r,r’) is the 

solution of the DE LG =(r’) subject to the same boundary 

conditions 

 For an arbitrary excitation we have   
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Green’s Functions: Examples 

 Obtain the Green’s function for the DE 

subject to  =f on the boundary B 

 The Green’s function is the solution of  

  

 G can be decomposed into a particular integral and a 

homogeneous solution G=F+U with F and U satisfying 

 

 Switching to polar form we get  
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Green’s Function: Examples (Cont’d) 

 The method of images can also be applied to obtain an 

infinite series expansion of Green’s functions 

  Consider the case of a line charge between two 

conducting planes 

  G(x,y,x’,y’) represents the potential at (x, y) due to a 

line charge of value 1.0 c/m located at (x’, y’)  

Original problem 
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Green’s Function: Examples (Cont’d) 
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 The potential caused by a 1 c/m line charge in an unbounded 

medium is given by 

 

 Using the figure, we conclude that the Green’s function is 

given by the infinite series 

 

 

 

 Special mathematical techniques are usually utilized to sum 

such a slowly convergent series 
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Green’s Function: Examples (Cont’d) 
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Green’s Function: Examples (Cont’d) 

 The Green’s function can also be expanded in terms of 

the eigenfunctions of the homogeneous problem 

 As an example consider the wave equation 

 

 Let the eigenvalues and eigenfunctions be kj and j  

 

 The set j  is an orthonormal set, i.e.,  
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Green’s Function: Examples (Cont’d) 

 We then expand the Green’s function in terms of the 

eigenfunctions 

 But as the Green’s function satisfy 
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Green’s Function: Examples (Cont’d) 

 Using Green’s functions, construct the solution for the 

Poisson’s equation 

   Subject to V(0, y)=V(a, y)=V(x, o)=V(x, b)=0 

   Show that  
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Dyadic Green’s Functions 

 Dyadic Green’s functions are used to express the situation 

where a source in one direction gives rise to fields in 

different directions 

 In general, a dyadic Green’s function will have 9 

components 
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 For a unit source in the x direction 

   we obtain the field E=G.J = 

 For a general source (arbitrary distribution and orientations) 
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Inner Products 

 The inner product of two functions is a scalar that must 

satisfy the following conditions: 

 fggf ,,
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Adjoint Operators 

 For an operator L, we sometimes define an adjoint operator 

La defined by   gL fgLf a,,

 For the DE                              ,    f(0)=f(1)=0 

 We utilize the inner product  
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Method of Moments (MoM) 

 MoM aims at obtaining a solution to the inhomogeneous 

equation Lf = g, where L is a known linear operator, g is a 

known excitation and f is unknown 

 Let f  be expanded in a series of known basis functions f1, f2, 

, fN 

  Substituting in the equation we get  
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MoM (Cont’d) 

N  m    gwfLw m
n

nmn ,,2,1,,)(,  

(N equations in N unknowns) 

 Taking the inner product of both sides with the mth weighting 

function we obtain 

 In matrix form we can write     gl mnmn 
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MoM (Cont’d) 
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 The unknown coefficients are thus given by      gl mmnn
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 The unknown function f can now be expressed in the 

compact form 
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MoM Example 

 Solve d2f/dx2=1+4x2, f(0)=f(1)=0 using MoM 

 We choose the basis functions as fn=xxn+1, n=1, 2, , N 

    f  is thus approximated by 

  Also we choose wn=fn, n=1, 2,  N (Galerkin’s approach) 

  our inner product is  

  We have Lfn=d2fn /dx2=n(n+1)xn-1 

  Show that lmn=<wm, Lfn>=mn/(m+n+1)  

 

 



N

n

n
n xxf

1

1)(


1

0

)()(, dxxgxfgf

))4)(2(2/()83(,  mmmmgwg mm



18 EE757, 2016, Dr. Mohamed Bakr 

MoM Example (Cont’d) 

 For N=1, we have l11=1/3, g1=11/30          1=11/10 

 For N=2, we have 

 

 

 For N=3, we have 

 

 

 

 Exact solution is obtained for N=3! 
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Types of Basis Functions 

 Entire domain basis functions fn are defined for the entire 

domain of the function f 

 Subsectional basis functions are defined only over a 

subsection of the domain of the function f 
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Types of Basis Functions (Cont’d) 
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Types of Weighting Functions 

N  m    gwfLw m
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 Recall that 

 If we choose wn=fn , n=1, 2, , N  (Galerkin matching) 
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 If we choose wn=(r-rn) , n=1, 2, , N  (Point matching) 
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 The two sides of the system equation are matched at a    

number of space points 


