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Differential Equations Vs. Integral Equations 

 Integral equations may take several forms, e.g.,   
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 Most differential equations can be expressed as integral 

equations, e.g.,   
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Green’s Functions 

 Green’s functions offer a systematic way of converting a 

Differential Equation (DE) to an Integral Equation (IE) 

 A Green’s function is the solution of the DE corresponding 

to an impulsive (unit) excitation 

 Consider the differential equation L = g, where L is a 

differential operator,  is the unknown field and g is the 

known given excitation 

 For this problem, the Green’s function G(r,r’) is the 

solution of the DE LG =(r’) subject to the same boundary 

conditions 

 For an arbitrary excitation we have   

volume
excitation
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Green’s Functions: Examples 

 Obtain the Green’s function for the DE 

subject to  =f on the boundary B 

 The Green’s function is the solution of  

  

 G can be decomposed into a particular integral and a 

homogeneous solution G=F+U with F and U satisfying 

 

 Switching to polar form we get  
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Green’s Function: Examples (Cont’d) 

 The method of images can also be applied to obtain an 

infinite series expansion of Green’s functions 

  Consider the case of a line charge between two 

conducting planes 

  G(x,y,x’,y’) represents the potential at (x, y) due to a 

line charge of value 1.0 c/m located at (x’, y’)  

Original problem 
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Green’s Function: Examples (Cont’d) 
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 The potential caused by a 1 c/m line charge in an unbounded 

medium is given by 

 

 Using the figure, we conclude that the Green’s function is 

given by the infinite series 

 

 

 

 Special mathematical techniques are usually utilized to sum 

such a slowly convergent series 
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Green’s Function: Examples (Cont’d) 
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Green’s Function: Examples (Cont’d) 

 The Green’s function can also be expanded in terms of 

the eigenfunctions of the homogeneous problem 

 As an example consider the wave equation 

 

 Let the eigenvalues and eigenfunctions be kj and j  

 

 The set j  is an orthonormal set, i.e.,  
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Green’s Function: Examples (Cont’d) 

 We then expand the Green’s function in terms of the 

eigenfunctions 

 But as the Green’s function satisfy 
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Green’s Function: Examples (Cont’d) 

 Using Green’s functions, construct the solution for the 

Poisson’s equation 

   Subject to V(0, y)=V(a, y)=V(x, o)=V(x, b)=0 

   Show that  
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Dyadic Green’s Functions 

 Dyadic Green’s functions are used to express the situation 

where a source in one direction gives rise to fields in 

different directions 

 In general, a dyadic Green’s function will have 9 

components 
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 For a unit source in the x direction 

   we obtain the field E=G.J = 

 For a general source (arbitrary distribution and orientations) 

)()()( zzyyxx  iJ

kji GGG zxyxxx 

vdzyxz,y,xz,y,(x,zy,x
V

 


),,(.)),( JGE



12 EE757, 2016, Dr. Mohamed Bakr 

Inner Products 

 The inner product of two functions is a scalar that must 

satisfy the following conditions: 

 fggf ,,
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Adjoint Operators 

 For an operator L, we sometimes define an adjoint operator 

La defined by   gL fgLf a,,

 For the DE                              ,    f(0)=f(1)=0 

 We utilize the inner product  
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Method of Moments (MoM) 

 MoM aims at obtaining a solution to the inhomogeneous 

equation Lf = g, where L is a known linear operator, g is a 

known excitation and f is unknown 

 Let f  be expanded in a series of known basis functions f1, f2, 

, fN 

  Substituting in the equation we get  

 

 We define a set of N weighting functions w1, w2, , wN 
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MoM (Cont’d) 
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n

nmn ,,2,1,,)(,  

(N equations in N unknowns) 

 Taking the inner product of both sides with the mth weighting 

function we obtain 
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MoM (Cont’d) 
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 The unknown coefficients are thus given by      gl mmnn
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 The unknown function f can now be expressed in the 

compact form 
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MoM Example 

 Solve d2f/dx2=1+4x2, f(0)=f(1)=0 using MoM 

 We choose the basis functions as fn=xxn+1, n=1, 2, , N 

    f  is thus approximated by 

  Also we choose wn=fn, n=1, 2,  N (Galerkin’s approach) 

  our inner product is  

  We have Lfn=d2fn /dx2=n(n+1)xn-1 

  Show that lmn=<wm, Lfn>=mn/(m+n+1)  
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MoM Example (Cont’d) 

 For N=1, we have l11=1/3, g1=11/30          1=11/10 

 For N=2, we have 

 

 

 For N=3, we have 

 

 

 

 Exact solution is obtained for N=3! 
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Types of Basis Functions 

 Entire domain basis functions fn are defined for the entire 

domain of the function f 

 Subsectional basis functions are defined only over a 

subsection of the domain of the function f 
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Pulse functions in 1D 
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Types of Basis Functions (Cont’d) 

xn-1 xn-2 xn xn+1 xn+2 
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Triangular functions in 1D 
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Types of Weighting Functions 

N  m    gwfLw m
n
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 Recall that 

 If we choose wn=fn , n=1, 2, , N  (Galerkin matching) 
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 If we choose wn=(r-rn) , n=1, 2, , N  (Point matching) 
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 The two sides of the system equation are matched at a    

number of space points 


