In your report for this section, carefully explain the theory behind your method. Include plots of any pertinent waveforms.

## 2. Design of a Time Constant

Design a resistive circuit with 2 or 3 nodes or meshes that includes one 0.1 uF capacitor. The design objective is to get the time constant of the voltage waveform across the capacitor to be as close as possible to 0.1 mS . Use the resistor values supplied.

Explain carefully your theoretical analysis for this question. Explain how you arrived at your design. Compare your theoretical analysis with your measured responses. Include relevant waveforms in your report.

## 3. Square Wave Oscillator Circuit:

Please note that the 555 timer comes in an 8-pin Dual Inline Package (DIP) IC package. The dot on the top of the package marks pin 1. The remaining pins are numbered sequentially in a counterclockwise direction from pin one.

Refer to the internal block diagram of the 555 timer in Figure 1 on Page 5 (of the 555 timer book).. The blocks labeled ' $\mathbf{C 1}$ ' and ' $\mathbf{C} 2$ ' are comparators: whenever the external input exceeds the input connected to the internal voltage divider chain, the output goes high (to Vcc, or +15 V ). Otherwise the output is low (Ground or 0 volts). Note that the comparators have high impedance inputs, which means that for the most part it is safe to assume that connecting the comparator input to your external circuit won't affect the external circuit. The flip-flop (FF) is a digital logic block with the following properties:

1) If the input B is HIGH and the input A goes from LOW (LO) to HIGH the output goes to HIGH

| A | B | OUT |
| :---: | :---: | :---: |
| $\square$ | HIGH | HIGH |

2) If input $A$ is LOW and the input $B$ goes from HIGH to LOW, then the output goes to LOW


When the FF output is HIGH, the output transistor is turned ON. When the transistor is ON, the collector-emitter path has very low resistance. When the transistor is OFF (which
is the case when the FF output is LOW), the transistor has very high resistance in its collector-emitter path. Note: In this application the transistor is being used as a switch.

Now refer to the Basic Astable Circuit of Figure 2 on Page 7 (of the 555 timer book). When the power supply is first turned on, the capacitor voltage is zero and the capacitor begins to be charged by the power supply (Vcc) through R1 and R2. At this stage, the FF output is low, and the transistor is OFF, so pin 7 appears as an open circuit. As the capacitor charges, the voltage on pins 2 and 6 rises. It rises to the point where comparator C1 goes HIGH, but this does not affect the output of the flip-flop, which remains LOW. As the capacitor voltage continues to rise, eventually it turns on comparator C 2 . As a result, condition 1) described above for the FF is satisfied, and the FF output goes to HIGH. Then pin 7 becomes essentially a short circuit to ground. The capacitor then starts to discharge through R2 to ground. Comparator C2 goes to LOW (this does not affect the FF output yet). After the capacitor has sufficiently discharged, comparator C1 will eventually go to LOW, thereby satisfying condition 2). Thus, the FF output goes to LOW, the transistor turns off, and the cycle resumes. An illustration of this entire process is shown in the figure below.


Exercise: Design a circuit using the 555 timer, so that the waveform on output pin 3 is a periodic square wave, which is high for 0.667 mS and low for 0.333 mS .

Explain carefully your design procedure, using the appropriate formulas. Build your circuit and compare your predicted theoretical response with your measured response. Note: Ideally, the timing values are independent of the supply voltage. However, in practice this is not necessarily so. The use of a 9 V power supply is recommended.

555/556 PIN OUTLINES


| FUNCTION | 555 | $556(1)$ | $5 \$ 6(2)$ |
| :--- | :---: | :---: | :---: |
| GROUND | 1 | 7 | 7 |
| TRIGGE | 2 | 6 | 8 |
| OUT FUT | 3 | 5 | 9 |
| RESET | 4 | 4 | 10 |
| CONTROL V | 5 | 3 | 11 |
| TARESHOLD | 6 | 2 | 12 |
| DISCHARGE | 7 | 1 | 13 |
| VCG | 8 | 14 | 14 |


| 555 SPECIFICATIONS |  |
| :---: | :---: |
| SUPPLY VOLTAGE (VEC) | 4.5 T0 15 V |
| SUPPLY CURRENT (VCC $=+5 V$ ) | 3 T06 m A |
| SUPPLY CURRENT ( $U_{C G}=+15 V$ ) | 10 TO 15 mA |
| OUTPUT CWRRENT (MAXIMUM) | 200 mA |
| POWGER DISSIPATION | 6000 mw |
| OPERATING TEMPERATURE | 0 To $70^{\circ} \mathrm{C}$ |

1 VALUES SHOWN APPLY TD NE555.





