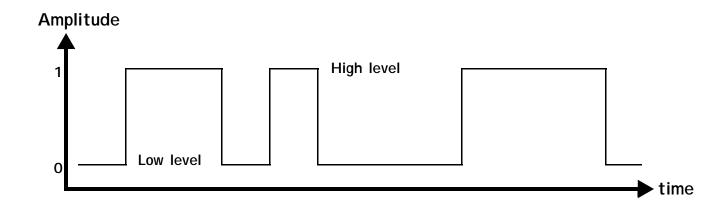
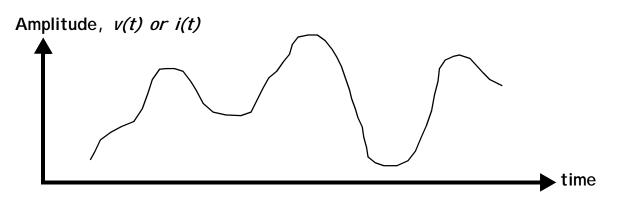
ECE 2EI4: Lecture #2


Introduction to Electronics

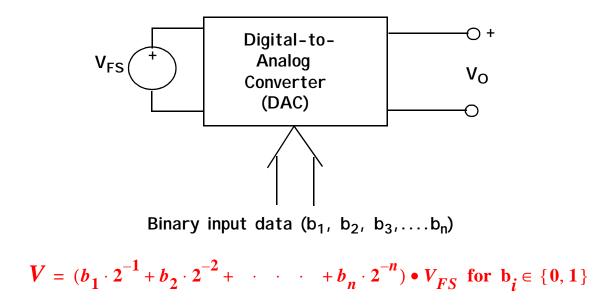
Jaeger Chapter 1, Spencer Chapter 1 1.10, 1.12, 1.15, 1.25, 1.26, 1.29, 1.32, 1.33

Outline/Learning Objectives:


- Digital and analog signals, DAC and ADC
- Notational conventions, R and G, types of sources, amplifiers, principle of superposition numeric precision.
- Miscellaneous useful information (pages 7 to16)

Digital Signals

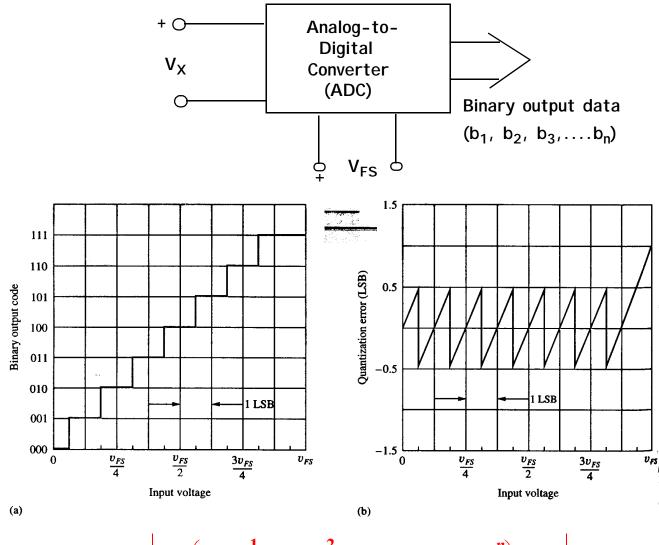
 $V_H = 5$, 3.3, 2.5, 1.5V (-0.8V in ECL) $V_L = 0V$ (-2V in ECL) Digital families - CMOS, NMOS, PMOS, TTL, ECL


Analog Signals

Analog processes - sense of vision, taste, smell, touch

Analog signals - temperature, humidity, pressure, light intensity or sound Use analog transducer to convert analog signal into a i(t) or v(t) typically.

Digital-to-Analog Converter



Typical values of V_{FS} are 2.5, 5, 5.12, 10 or 10.24V.

The LSB b_n or resolution of the DAC is $V_{LSB} = 2^{-n} \cdot V_{FS}$ The MSB b₁ of the DAC is $V_{MSB} = 2^{-1} \cdot V_{FS}$

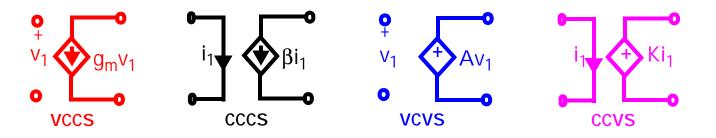
Example: 10 bit DAC, $V_{\text{REF}} = 5.12V$, input data (11 0001 0001)₂. $V_{LSB} = 5.12 \times 2^{-10} = 5mV$ $V_{MSB} = 5.12 \times 2^{-1} = 2.16V$ $v_O = (2^{-1} + 2^{-2} + 2^{-6} + 2^{-10}) \times 5.12 = 0.7666 \times 5.12 = 3.925V$

Analog-to-Digital Converter (ADC)

$$V_{\varepsilon} = \left| v_X - \left(b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \cdots + b_n \cdot 2^{-n} \right) \bullet V_{FS} \right|$$

Example: 8 bit ADC, $V_{\text{REF}} = 5V$. $V_{\text{LSB}} = ?$ and 1.2V = ? $V_{LSB} = 5 \times 2^{-8} = 19.53 mV$ $\frac{1.2}{5} \times 2^8 = 61.44 = 32 + 16 + 8 + 4 + 1 = (0011 \ 1101)_2$

ECE 2EI4, McMaster University, Lecture 1


Notational Conventions

DC Components: V_{DC} or I_{DC} Variations from DC values: v_{ac} or i_{ac} Total quantities: $v_T = V_{DC} + v_{ac}$ or $i_T = I_{DC} + i_{ac}$ $v_{BE} = V_{BE} + v_{be}$ or $i_D = I_D + i_d$

Resistance and Conductance

Conductance $G_X = \frac{1}{R_X}$ or $g_\pi = \frac{1}{r_\pi}$; G is Siemens (S) or mhos, R in Ohms (Ω)

Dependent Sources

Amplifiers - characteristics of analog signals are most often manipulated using linear amplifiers that affect the amplitude and/or phase of the signal without changing its frequency

Linearity - can apply the <u>principle of superposition</u> (the total effect of several causes acting simultaneously is the same as the sum of the effects of the individual causes acting one at a time)

Input signal - $v_s = V_s \sin(\omega_s t + \phi)$ or $\overrightarrow{V_s} = V_s \angle \phi$ Output signal - $v_o = V_o \sin(\omega_o t + \phi + \theta)$ or $\overrightarrow{V_o} = V_o \angle (\phi + \theta)$ Voltage gain - $A = \frac{v_o}{v_s} = \frac{V_o \angle (\phi + \theta)}{V_s \angle \phi} = \frac{V_o}{V_s} \angle \theta$ Amplitude of voltage gain is $\frac{V_o}{V_s}$ and phase shift is θ . $\omega_s t, \phi, \theta$ must all have the same units - radians. π radians = 180^0 <u>Numeric Precision</u>

Components can have tolerances ranging from $\pm 1\%$ to $\pm 50\%$. Therefore, calculating more than three (3) significant digits is generally meaningless.

Three significant digits - 2.03 mA, 5.72 V, 0.0436 μ A.

ECE 2EI4, McMaster University, Lecture 1

Please read the the remaining pages. It is useful information that is self-explanatory.

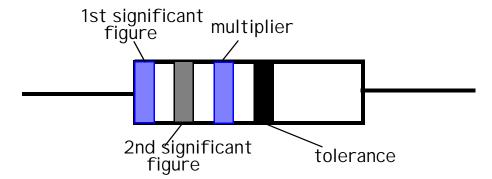


Table 1: Resistor Color Scheme

Significant Figures	Color	Multiplier	Color	Tolerance
0	Black	1	Black or	±20%
1	Brown	10	no color	±20%
2	Red	100	Silver	±10%
3	Orange	1,000	Gold	±5%
4	Yellow	10,000		
5	Green	100,000		
6	Blue	1,000,000		
7	Violet			
8	Gray			
9	White	0.1		
	Gold			
	Silver	0.01		

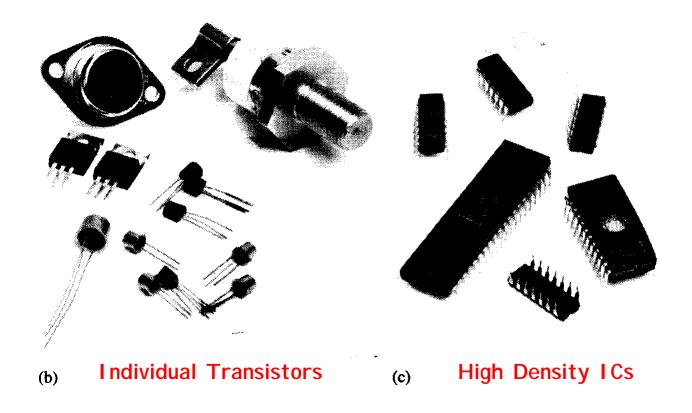
For example, blue, gray, blue and black would be 68×10^6 or $68 M\Omega$, 20% tolerance

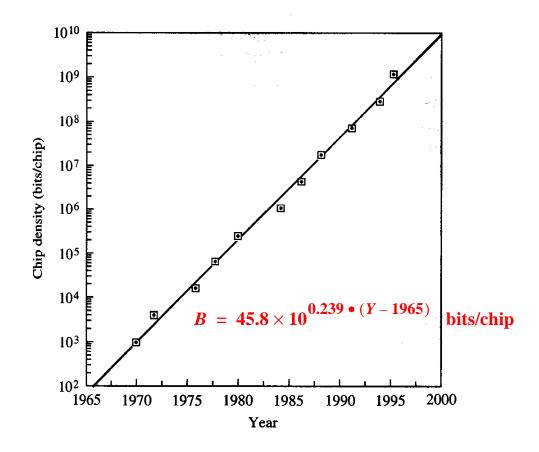
Category	Frequency Range	
Audible sounds	20 Hz - 20 kHz	
Baseband video television signals	0 - 4.5 MHz	
AM radio broadcasting	540 - 1600 kHz	
HF radio broadcasting	1.6 - 54 MHz	
VHF television (channels 2 to 6)	54 - 88 MHz	
FM radio broadcasting	88 - 108 MHz	
VHF radio communication	108 - 174 MHz	
VHF television (channels 7 to 13)	174 - 216 MHz	
UHF television (channels 14 to 69)	470 - 806 MHz	
Cellular telephones	824 - 892 MHz	
Satellite television	3.7 - 4.2 GHz	

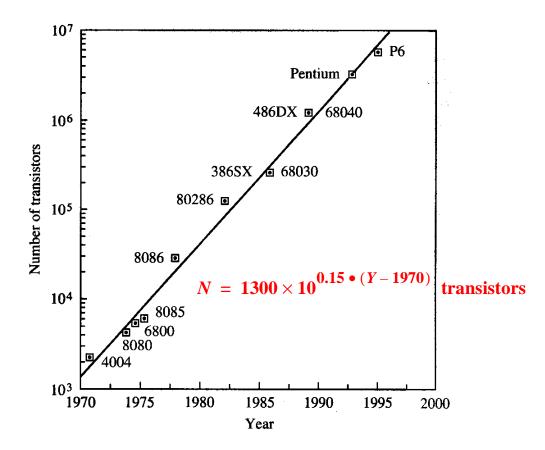
Table 2: Frequencies of common signals

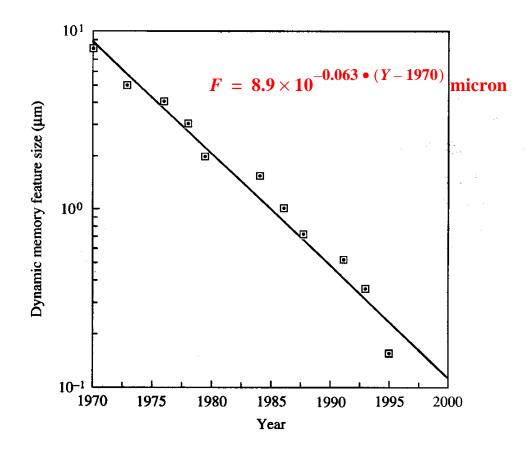
Review of History of Electronics

Table 3: Milestones in Electronics


Year	Event
1884	American Institute of Electrical Engineers (AME) formed
1895	Marconi makes first radio transmissions
1904	Fleming invents diode vacuum tube - Age of Electronics begins
1906	Pickard creates solid-state point-contact diode (silicon)
1906	Deforest invents triode vacuum tube (audion)
1910-11	"Reliable" tubes fabricated
1912	Institute of Radio Engineers (IRE) founded
1907-27	First radio circuits developed from diodes and triodes
1920	Armstrong invents super heterodyne receiver
1925	TV demonstrated
1925	Lilienfeld files patent application on the field-effect device
1927-36	Multigrid tubes developed
1933	Armstrong invents FM modulation
1935	Heil receives British patent on a field-effect device
1940	Radar developed during World War 11-TV in limited use
1947	Bardeen, Brattain, and Shockley at Bell Laboratories invent bipolar transistors
1950	First demonstration of color TV
1952	Shockley describes the unipolar field-effect transistor
1952	Commercial production of silicon bipolar transistors begins at Texas Instruments


Year	Event
1956	Bardeen, Brattain & Shockley receive Nobel Prize - invention of bipolar transistors
1958	IC developed simultaneously by Kilby at TI; Noyce & Moore at Fairchild Semicon.
1961	First commercial digital IC available from Fairchild Semiconductor
1963	AIEE and IRE merge to become the IEEE: Your Professional Society!
1967	First semiconductor RAM (64 bits) discussed at the IEEE ISSCC
1968	First commercial IC Op-Amp -the μ A-709-introduced by Fairchild Semiconductor
1970	One-transistor dynamic memory cell invented by Dennard at IBM
1971	4004 microprocessor introduced by Intel
1972	First 8-bit microprocessor-the 8008-introduced by Intel
1974	First commercial 1-kbit memory chip developed; 8080 microprocessor introduced
1978	First 16-bit microprocessor developed
1984	Megabit memory chip introduced
1995	Experimental gigabit memory chip presented at the IEEE ISSCC


Table 3: Milestones in Electronics (Continued)



(a) Vacuum Tubes

Table 4: Levels of Integration

Date	Historical Reference	Components/chip
1950	Discrete components	1-2
1960	SSI - Small-scale integration	< 10 ²
1966	MSI - Medium-scale integration	$10^2 - 10^3$
1969	LSI - Large-scale integration	10 ³ - 10 ⁴
1975	VLSI - Very-large-scale integration	10 ⁴ - 10 ⁹
1990	ULSI - Ultra-large-scale integration	> 10 ⁹