```
Lecture # 3
```

From Chapter 10 of Jaeger, Section 6.5.1 of Spencer
$10.11,10.12,10.20,10.21,10.27,10.28,10.40,10.48,10.57,10.58,10.59$

Outline/Learning Objectives:

- Describe the concept of linear amplification (and nonlinear distortion).
- Define the quantities used to measure the performance of analog amplifiers, including voltage gain, current gain, power gain, input and output resistances.
- Express the voltage, current, and power gain in terms of the decibel, or dB.
- Describe amplifier biasing for linear operation.
- Model linear amplifiers using simple two-port representations (g-parameters, h-parameters, y-parameters, and z-parameters).
- Define unilateral two-port representations of linear amplifiers.
- Describe mismatched conditions at the input and output ports of an amplifier and the concepts of ideal voltage and current amplifiers.
- Use the electronics laboratory to investigate the electrical behaviour of simple circuits and devices.
- From Chapter 10 in Jaeger

Example of Analog Electronic System

$$
\mathcal{R F}=0.5-50 \mathscr{M H} z ; \mathcal{V H \mathcal { F }}=50-150 \mathfrak{M H z} ; \mathfrak{U H F}=150-1000 \mathfrak{M H z}
$$

Table 1: FAM Stereo Receiver

Line ar Circuit Function	\mathcal{N} on-Cinear Circuit Function
RF amplification	DC power supply (rectification) Frequency conversion (mixing) Detection/demodulation
$\mathcal{A} u$ dio frequency amplification	
Frequency selection (tuning)	
Impedance matching (75S input)	
Tailoring $\mathcal{A F}$ response	
Localoscillator	

Large \mathcal{V}, I and P gains required in going from $\mathcal{V H \mathcal { F }}$ signal received from antenna to $100 \mathcal{W}$ audio signal delivered to speaker.

Receiver input matched to 75Ω impedance of coaxial transmission line coming from antenna.

Receiver requires circuits with high frequency selectivity at input.
$\mathcal{L O}$ used to tune receiver. $\mathfrak{V H \mathcal { H }}$ signal mixed down to IF.
$\mathcal{A} u$ dio information se parated from $\mathcal{R F}$ carrier by demodulation.

Sinusoids

1. Many natural pfenomena are sinusoidal - vibration of a guitar string, current in oscillating circuits etc.
2. Sinusoids are important in generation and transmission of electric power and in communication of intelligence. Sinusoidal source always produces sinusoids in line ar circuits (derivatives and integrals are sinusoids themse(ves).
3. Periodic waves can be represented by a series of sinusoids using fourier analys is.
$a=\mathscr{A} \cdot \cos (\omega t+\theta) ; \quad a=$ instantane ous value.
$\mathcal{A}=$ maximum value or amplitude;
$\mathrm{t}=$ time, seconds.
$\omega=$ angular frequency, radians $/$ second $; \quad \theta=$ phase angle in radians.
$f=\frac{\omega}{2 \pi}=$ frequency in cycles/second or hertz. $T=\frac{1}{f}=$ period, secs.

Amplification

$$
v_{O}=\mathcal{V}_{O} \sin \left(\omega_{s} t+\theta\right) ; v_{\mathcal{S}}=\mathcal{V}_{\mathcal{S}} \sin \left(\omega_{s} t\right), \mathcal{V}_{S}=1 m \mathcal{V}
$$

Audio amplifier channelfrom $\mathcal{F M}$ receiver

Amplifier output power is $\mathcal{P}_{O}=\binom{\mathcal{V}_{O}}{-\frac{1}{\sqrt{2}}}^{2}, \mathscr{R}_{\mathcal{L}}, \mathcal{V}_{O}, \boldsymbol{R M S}=\binom{\mathcal{V}_{O}}{-\frac{1}{2}}$.

Output Voltage $\mathcal{V}_{O}=\sqrt{2 \mathcal{P}_{O} \mathcal{R}_{\mathcal{L}}} \cdot \mathcal{P}_{O}=100 \mathcal{W}, \mathcal{R}_{\mathcal{L}}=8 \Omega=>\mathcal{V}_{O}=40 \mathcal{V}$

Output Current is $i_{O}=I_{O} \bullet \sin \left(\omega_{\mathcal{S}} t+\theta\right) \Rightarrow I_{O}=5 \mathcal{A}$
$\mathcal{V}_{\text {Oltage }}$ gain $\mathcal{A}_{\mathcal{V}}=\frac{v_{O}}{v_{S}}=\frac{\mathcal{V}_{O} \angle \theta}{\mathcal{V}_{\mathcal{S}} \angle 0}=\frac{\mathcal{V}_{O}}{\mathcal{V}_{\mathcal{S}}} \angle \theta=\left|\mathcal{A}_{\chi}\right| \cdot \angle \mathcal{A}_{\mathcal{V}} \cdot\left|\mathcal{A}_{\mathcal{V}}\right|=4 \times 10^{4}$

Current gain

Amplification

$$
v_{O}=\mathcal{V}_{O} \sin \left(\omega_{s} t+\theta\right) ; v_{\mathcal{S}}=\mathcal{V}_{S} \sin \left(\omega_{s} t\right), \quad v_{S}=1 m \mathcal{V}
$$

Audio amplifier channel from $\mathcal{F M}$ receiver

$$
I_{S}=\frac{1 m V}{55 k \Omega}=18.18 n A
$$

Amplifier output power is $\mathcal{P}_{O}=\binom{\mathscr{V}_{O}}{\hdashline-\frac{1}{2}}^{2}, \mathcal{V}_{O, R M S}=\binom{\mathcal{V}_{O}}{-\frac{1}{2}}$.

Output Voltage $\mathcal{V}_{O}=\sqrt{2 \mathcal{P}_{O} \mathcal{R}_{\mathcal{L}}} \cdot \mathcal{P}_{O}=100 \mathcal{W}, \mathcal{R}_{\mathcal{L}}=8 \Omega=>\mathcal{V}_{O}=40 \mathcal{V}$

Output Current is $i_{O}=I_{O} \bullet \sin \left(\omega_{s} t+\theta\right) \Rightarrow I_{O}=5 \mathcal{A}$
Voltage gain $\mathcal{A}_{\mathcal{V}}=\frac{v_{O}}{v_{S}}=\frac{\mathcal{V}_{O} \angle \theta}{\mathcal{V}_{S} \angle 0}=\frac{\mathcal{V}_{O}}{\mathcal{V}_{S}} \angle \theta=\left|\mathcal{A}_{\psi}\right| \cdot \angle \mathcal{A}_{\mathcal{V}} \cdot\left|\mathcal{A}_{\mathcal{V}}\right|=4 \chi 10^{4}$
Current gain $\mathscr{A}_{I}=\frac{i_{0}}{-_{S}}=\frac{I_{0} \angle \theta}{I_{S} \angle 0}=\frac{I_{0}}{I_{S}} \angle \theta=\left|\mathscr{A}_{I}\right| \cdot \angle \mathcal{A}_{I} \cdot\left|\mathcal{A}_{I}\right|=2.75 \times 10^{8}$

Power gain $\mathcal{A}_{\boldsymbol{P}}=\frac{\mathscr{P}_{O}}{\mathscr{P}_{S}}=\frac{\left(\frac{\mathcal{V}_{O}}{\sqrt{2}} \cdot \frac{I_{O}}{\sqrt{2}}\right) \angle \theta}{\left(\frac{\mathcal{V}_{S}}{\sqrt{2}} \cdot \frac{I_{S}}{\sqrt{2}}\right)}=\frac{\mathcal{V}_{O}}{\mathcal{V}_{S}} \cdot \frac{I_{O}}{I_{S}}=\left|\mathcal{A}_{\mathcal{A}}\right| \bullet\left|\mathcal{A}_{A}\right|$

$$
\mathscr{A}_{P}=\left|\mathscr{A}_{\nsim} \downarrow\right| \mathscr{A}_{\lambda} \mid=4 \times 10^{4} \cdot 2.75 \times 10^{8}=1.1 \times 10^{13}
$$

DecibelScale $\mathcal{A}_{\mathcal{P}, \mathcal{d} \mathcal{B}}=10 \bullet \log \mathcal{A}_{\mathcal{P}}$ or $\mathcal{A}_{\mathcal{V}, \mathcal{A} \mathcal{B}}=\left.20 \bullet \log \right|_{\mathcal{A}}$

Power - Decibel Scale $\mathcal{A}_{\mathcal{P}, \mathcal{d} B}=10 \bullet \log 1.1 \times 10^{13}=130.4 d B$

Voltage - Decibelscale $\mathscr{A}_{\mathcal{V}, \mathfrak{A} \mathcal{B}}=20 \bullet \log \mid \mathcal{A}_{\mathcal{H}}=20 \cdot \log 4 \times 10^{4}=92 \mathrm{~dB}$

Current-DecibelScale $\mathcal{A}_{I, \dot{d} \mathcal{B}}=20 \bullet \log \left|\mathcal{A}_{I}\right|=20 \cdot \log 2.75 \times 10^{8}=168.8 \mathrm{~dB}$

Amplifier Biasing for Line ar Operation

\mathcal{N} Non-inverting amplifier since Input and Output are in phase.

Explain how to set up the bias point and limits on values of input voltage. For example, at bias $\mathcal{V}_{I}=0.45 \mathcal{V}=>v_{i} \leq 0.05 \mathcal{H}$.

Iwo-Port Models for Amplifiers

For each representation, explain how to get the $\chi_{i j}$ parameters where χ is g, h, y or z.

Also explain what each of the four components of x mean.
The g-parameters

Example: Calculate the g-parameters for the following circuit.

$g_{11}=\left.\frac{i_{1}}{v_{1}}\right|_{i_{2}=0}=\frac{1}{2 k \Omega}=0.500 \mathrm{mS}$. Since $i_{2}=0$, all $i_{1} f$ fows into $2 \mathrm{k} \Omega$.
$g_{12}=\left.\frac{i_{1}}{i_{2}}\right|_{v_{1}=0}=-1$. Since $v_{1}=0, i_{1}=i_{2}$. Have a short since $v_{1}=0$ in $/ /$ with $2 \mathrm{k} \Omega$.
$g_{21}=\left.\frac{v_{2}}{v_{1}}\right|_{i_{2}=0} \quad \therefore v_{2}=v_{1}+0.3 v_{1}(10 \mathrm{k} \Omega) \rightarrow g_{21}=3001$. Since $i_{2}=0,0.3 v_{1} \cdots>10 \mathrm{k} \Omega$.
$g_{\mathbf{2 2}}=\left.\frac{\nu_{\mathbf{2}}}{\boldsymbol{i}_{\mathbf{2}}}\right|_{\nu_{1}=\mathbf{0}}=10 \mathrm{k} \Omega$. Since $v_{1}=0$, have a short // with $2 k \Omega$ and $0.3 v_{1}=0$.

Fourier Series (should Know from Engine ering Math):

For a periodic function $f(t)$ that is
(1) piecewise continuous,
(2) fas isolated maxima and minima, and
(3) is absolutely integrable over a period, that is $\int_{0}^{T}|f(t)| d t<\infty$, then

$$
\begin{aligned}
& f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \bullet \cos \left\{n \omega_{o} t\right\}+b_{n} \bullet \sin \left\{n \omega_{o} t\right\}\right) \text { with } \\
& a_{n}=\frac{2}{T} \int_{t_{o}}^{T+t_{o}} f(t) \cdot \cos \left\{n \omega_{o} t\right\} d t, b_{n}=\frac{2}{T} \int_{t_{o}}^{T+t_{o}} f(t) \cdot \sin \left\{n \omega_{o} t\right\} d t .
\end{aligned}
$$

Frequency Spectrum of Electronic Signals

$\mathcal{F o u r i e r ~ S e r i e s , ~ F o u r i e r ~} \mathcal{A n}$ nalysis - give an example
Fourier \mathcal{T} feory - complex signals are actually composed of a continuum of sinusoids, each fiaving a distinct amplitude, frequency and phase.
Frequency spectrum - amplitude and phase of the components of the signalversus frequency

$v(t)=V_{D C}+\frac{2 V_{O}}{\pi}\left(\sin \omega_{o} t+\frac{1}{3} \sin 3 \omega_{o} t+\frac{1}{5} \sin 5 \omega_{o} t+\right.$
$\omega_{o}=\frac{2 \pi}{T}$ radians $/$ second - fundamental radian frequency
$f_{o}=\frac{1}{T} \mathcal{H e r t z} \cdot$ fundamentalsignalfrequency
$2 f_{o}, 3 f_{o}, 4 f_{o}, \quad, \quad$ are $2 n d, 3 r d, 4 t$ hirmonic frequencies

Example: Find the Fourier series for the sawtooth wave
$f(t)=t$ for $-\pi<t<\pi$ and $f(t+2 \pi)=f(t)$

\mathcal{N} Now, the period $\boldsymbol{T}=\mathbf{2} \pi$, so $\boldsymbol{\omega}_{\boldsymbol{o}}=\mathbf{2} \boldsymbol{\pi} / \boldsymbol{T}$. Choose $\boldsymbol{t}_{\boldsymbol{o}}=-\pi$
For $n=0$, we get $\boldsymbol{a}_{\boldsymbol{o}}=\frac{1}{\pi} \int_{-\pi}^{\pi} \boldsymbol{t d t}=\mathbf{0}$. Case $n=0$ had to be considered separately because of appearance of n^{2} in denominator in the generalcase. Also, $a_{0} / 2$ is the average value of value of the sawtooth wave, then by inspection, we see that $a_{0}=0$.

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} t \cdot \cos \{n t\} d t=\left.\frac{1}{n^{2} \pi}\{\cos (n t)+\boldsymbol{n} t \cdot \sin (n t)\}\right|_{-\pi} ^{\pi}=0 \cdot n=1,2,3, \ldots \\
n & =\frac{1}{\pi} \int_{-\pi}^{\pi} t \cdot \sin \{n t\} d t=\left.\frac{1}{n^{2} \pi}\{\sin (n t)+\boldsymbol{n} t \cdot \cos (n t)\}\right|_{-\pi} ^{\pi} \cdot n=1,2,3, \ldots
\end{aligned}
$$

$b_{n}=-\frac{2 \cos n \pi}{n}=\frac{2(-1)^{n+1}}{n} f(t)=2\left(\sin t-\frac{\sin 2 t}{2}+\frac{\sin 3 t}{3}+\ldots\right)$
Periodic Signal

From Fourier analysis, can represent any periodic comple χ signal as

$$
v_{s}=\sum_{i} V_{i} \bullet \sin \left(\omega_{i} t+\phi_{i}\right)
$$

\mathcal{N} ote that this expression is the same as that on page 19 that is composed of a sum of sines and cosines.

$$
\begin{gathered}
v_{S}=\sum_{i=1}^{\infty}\left(V_{i} \bullet \sin \phi_{i} \bullet \cos \left\{i \omega_{o} t\right\}+V_{i} \bullet \cos \phi_{i} \bullet \sin \left\{i \omega_{o} t\right\}\right) \\
I \mathcal{P} \operatorname{signa} v_{S}=V_{S} \bullet \sin \left(\omega_{S} t\right) ; O P \operatorname{signa} v_{O}=V_{O} \bullet \sin \left(\omega_{S} t+\theta\right)
\end{gathered}
$$

