Example of CS Amplifier

Lecture 22 22 - 1

DC Analysis (p. 631)

$$V_{DS} = 10 - 2 \times 10^4 (I_{DS} + I_1)$$

$$I_{DS} = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \text{ for } V_{DS} \ge (V_{GS} - V_{TN}) \text{ and } \lambda \approx 0.$$

Lecture 22

Since
$$I_G$$
 = 0 , then, I_1 = $\frac{V_{DS}}{R_{G3}+R_{G2}+R_{G1}}$ = $\frac{V_{DS}}{5\times10^6}$

$$V_{GS} = \frac{R_{G1}}{R_{G3} + R_{G2} + R_{G1}} V_{DS} = \frac{2 \times 10^6}{5 \times 10^6} V_{DS} = 0.4 V_{DS}$$

$$V_{DS} = 10 - 2 \times 10^4 \left\{ \frac{5 \times 10^{-4}}{2} (0.4 V_{DS} - V_{TN})^2 \right\} + \frac{V_{DS}}{5 \times 10^6}$$

 $0.8V_{DS}^2 - 3V_{DS} - 5 = 0$. Solving, $V_{DS} = 5V$ or $V_{DS} = -1.25V$.

For $V_{DS}=5V$, $V_{GS}=2V$ and $I_{DS}=250\mu A$.

Since $V_{DS} \ge V_{GS} - V_{TN}$, then our assumption is correct.

Quiescent Point is $(I_{DS}, V_{DS}) = (250 \mu A, 5V)$.

AC Analysis

Lecture 22 22 - 4

Transconductance -
$$g_m = \sqrt{2K_nI_{DS}(1+\lambda V_{DS})} = 5.20 \times 10^{-4}S$$

Output Resistance of MOSFET -
$$r_o = \frac{(1/\lambda) + V_{DS}}{I_{DS}} = 260k\Omega$$

Output Voltage
$$v_o = (-g_m v_{gd})(r_o \parallel 16.4k) = -8.02v_{gs}$$
 and $v_{gs} = 0.990v_s$,

so
$$A_V = \frac{v_o}{v_s} = -8.02 \times 0.990 = -7.94$$

Lecture 22

What is the amplification factor μ_f of the MOSFET above and how does it compare with Av? $\mu_f=g_m r_o=135~$ and $~A_V \ll \mu_f$

What is the largest value of v_s of the circuit that corresponds to a small-signal for the amplifier for the circuit at the top of page 22-1? What is the largest value of v_o that corresponds to a small-signal for this amplifier?

$$v_s = \frac{v_{gs}}{0.990} = \frac{0.2(V_{GS} - V_{TN})}{0.990} = 202mV$$
 and $v_o = A_V v_s = 1.60V$

Input Resistance

Is limited by gate bias resistors since input gate impedance is ∞ .

$$|R_{IN} = R_{G1} || R_{G2} = 1M\Omega$$

Output Resistance

$$|R_{OUT} = R_D || R_{G3} || r_o = 18.2k\Omega$$

Lecture 22