Lecture #25

Chapter 5 of Jaeger, Chapter 2 of Spencer Bipolar Junction Transistors

Outline/Learning Objectives:

- Describe the physical structure of the bipolar junction transistor (BJT).
- Identify the npn and pnp BJT circuit diagram symbols.
- Describe qualitatively and quantitatively the physical operating principles of the BJT.
- Describe qualitatively and quantitatively the i-v characteristics (output and transfer) of the BJT.
- Determine the regions of operation (cutoff, forward-active, and saturation).

•

Selected problems:

• 5.32, 5.61, 5.65, 5.73, 5.74, 5.82, 5.91, 5.95, 5.98

•

•

Physical Structure of the BJT

Simplified Cross-Section of an npn BJT

Currents are for "Normal" Operation

Idealized npn BJT and Circuit Symbol

Forward Characteristics

BE voltage $--> i_E$

 i_E is composed of i_F & i_B

$$i_C = i_F = I_S \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\}$$

with
$$10^{-18} A \le I_S \le 10^{-9} A$$

 I_S is proportional to the cross-sectional area of the active base region.

$$i_B = \frac{i_F}{\beta_F} = \frac{I_S}{\beta_F} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\}$$
 with $20 \le \beta_F \le 500$.

$$i_E = i_C + i_B = \left(I_S + \frac{I_S}{\beta_F}\right) \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\} = \frac{I_S}{\alpha_F} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\} \quad \text{with } 0.95 \le \alpha_F < 1.$$

$$\boxed{\alpha_F = \frac{\beta_F}{\beta_F + 1}} \text{ and } \boxed{\beta_F = \frac{\alpha_F}{1 - \alpha_F}}.$$

$$i_C = \beta_F i_B$$
, $i_E = i_B + i_C = (\beta_F + 1)i_B$ and $i_C = \alpha_F i_E$.

Reverse Characteristics

BC voltage $\rightarrow i_R \& i_R/\beta_R$

$$i_R = I_S \left\{ \exp\left(\frac{v_{BC}}{V_T}\right) - 1 \right\}$$
 and $i_E = -i_R$

$$i_B = \frac{i_R}{\beta_R} = \frac{I_S}{\beta_R} \left\{ \exp\left(\frac{v_{BC}}{V_T}\right) - 1 \right\}$$

 $0 < \beta_R \le 20$ and β_R is the reverse CE current gain.

$$i_C = i_E - i_B = -\left(I_S + \frac{I_S}{\beta_R}\right) \left\{ \exp\left(\frac{v_{BC}}{V_T}\right) - 1 \right\} = \frac{-I_S}{\alpha_R} \left\{ \exp\left(\frac{v_{BC}}{V_T}\right) - 1 \right\} \quad \text{with } 0 < \alpha_R \le 0.95.$$

$$\alpha_R = rac{eta_R}{eta_R + 1}$$
 and $\beta_R = rac{lpha_R}{1 - lpha_R}$.

$lpha_F$ or $lpha_R$	$eta_F = rac{lpha_F}{1-lpha_F} \; extbf{or} \; eta_R = rac{lpha_R}{1-lpha_R}$	
0.1	0.11	
0.5	1	
0.9	9	
0.99	499	

Full Transport Model Equations - Arbitrary Bias Conditions

$$i_C = I_S \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - \exp\left(\frac{v_{BC}}{V_T}\right) \right\} - \frac{I_S}{\beta_R} \left\{ \exp\left(\frac{v_{BC}}{V_T}\right) - 1 \right\}.$$

$$i_E = I_S \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - \exp\left(\frac{v_{BC}}{V_T}\right) \right\} + \frac{I_S}{\beta_F} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\}.$$

$$i_B = \frac{I_S}{\beta_F} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\} + \frac{I_S}{\beta_R} \left\{ \exp\left(\frac{v_{BC}}{V_T}\right) - 1 \right\}$$

Require 4 parameters - I_S , β_F , β_R and T to characterize an individual BJT.

Example

Determine i_C, i_E and i_B if $I_S = 10^{-15} A$, $V_T = 25 mV$, $\beta_F = 100$ and $\beta_R = 2$.

$$V_{BB} = V_{BE} = 0.7V$$
 and $V_{BC} = V_{BB} - V_{CC} = -3.3V$

$$I_C = I_S \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - \exp\left(\frac{v_{BC}}{V_T}\right) \right\} - \frac{I_S}{\beta_R} \left\{ \exp\left(\frac{v_{BC}}{V_T}\right) - 1 \right\} = 1.45 \text{mA}$$

$$I_E = I_S \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - \exp\left(\frac{v_{BC}}{V_T}\right) \right\} + \frac{I_S}{\beta_F} \left\{ \exp\left(\frac{v_{BE}}{V_T}\right) - 1 \right\} = 1.46 \text{mA}$$

$$I_{B} = \frac{I_{S}}{\beta_{F}} \left\{ \exp\left(\frac{v_{BE}}{V_{T}}\right) - 1 \right\} + \frac{I_{S}}{\beta_{R}} \left\{ \exp\left(\frac{v_{BC}}{V_{T}}\right) - 1 \right\} = 14.5 \mu A$$

Lecture 25

PNP Transistor

$$i_C = I_S \left\{ \exp\left(\frac{v_{EB}}{V_T}\right) - \exp\left(\frac{v_{CB}}{V_T}\right) \right\} - \frac{I_S}{\beta_R} \left\{ \exp\left(\frac{v_{CB}}{V_T}\right) - 1 \right\}$$

$$i_E = I_S \left\{ \exp\left(\frac{v_{EB}}{V_T}\right) - \exp\left(\frac{v_{CB}}{V_T}\right) \right\} + \frac{I_S}{\beta_F} \left\{ \exp\left(\frac{v_{EB}}{V_T}\right) - 1 \right\}$$

$$i_B = \frac{I_S}{\beta_F} \left\{ \exp\left(\frac{v_{EB}}{V_T}\right) - 1 \right\} + \frac{I_S}{\beta_R} \left\{ \exp\left(\frac{v_{CB}}{V_T}\right) - 1 \right\}$$

Lecture 25

Operating Regions of the Bipolar Transistor

Each pn junction may be independently biased.

Have 4 regions of operation.

Both pn junctions reverse biased - cut-off region.

Both pn junctions forward biased - saturation region (closed switch).

Lecture 25

BE junction forward and BC junction reverse biased - forward active region (normal mode). Have high current, high voltage and high power gains. ECL logic switch between cut-off and forward active (fastest bipolar logic).

BE junction reverse and BC junction forward biased - reverse active region (inverse active mode). Have low semmon emitten sain and this mode is not

(inverse-active mode). Have low common emitter gain and this mode is not often used. It is used in TTL circuits and for some analog switching applications.

Base-Emitter Junction	Base-Collector Junction	
	Forward Bias	Reverse Bias
Forward Bias	Saturation Region (Closed Switch)	Forward-Active Region (good amplifier)
Reverse Bias	Reverse-Active Region (poor amplifier)	Cut-Off Region (open switch)