ECE 2EI4 Quiz 1

1) An 8 bit analog to digital converter has a reference voltage of $V_{\text {ref }}=10.24 \mathrm{~V}$. If the input voltage is 3.34 V , the corresponding output word and the sign of the quantization error are
a) $01010010,+v e$
b) 01010100 , +ve
c) 01010100 , -ve
d) 01010010 , -ve
e) 01010101 , +ve
2) The frequency expression of a low-pass voltage amplifier with a mid-band gain of 40 dB and a cut-off frequency of 5 MHz is
a) $\frac{10^{8} \pi s}{\left(s+10^{7} \pi\right)}$
b) $\frac{10^{8} \pi}{\left(s+10^{7} \pi\right)}$
c) $\frac{100}{\left(s+10^{7} \pi\right)}$
d) $\frac{10^{9} \pi}{\left(s+10^{7} \pi\right)}$
e) $\frac{40}{\left(s+10^{7} \pi\right)}$
3) The figure to the right shows the transfer function of a voltage amplifier. What are the values of V_{a} and V_{b}, respectively, such that the amplifier has a maximum gain of 32 dB and can linearly amplify ac signals with amplitudes up to 0.05 V without distortion?
a) $0.2 \mathrm{~V}, 0.35 \mathrm{~V}$
b) $0.2 \mathrm{~V}, 0.3 \mathrm{~V}$
c) $0.2 \mathrm{~V}, 0.25 \mathrm{~V}$
d) $0.25 \mathrm{~V}, 0.3 \mathrm{~V}$
e) $0.05 \mathrm{~V}, 0.10 \mathrm{~V}$

4) We have to choose an appropriate amplifier for a sensor application. The input voltage is 1.0 mV in series with a source resistance of $50 \mathrm{~K} \Omega$. To obtain $v_{I D} \geq 0.99 \mathrm{mV}$, the input resistance of the amplifier should satisfy
a) $R_{I D} \leq 4.95 \mathrm{M} \Omega$
b) $R_{I D} \leq 5 \mathrm{M} \Omega$
c) $R_{I D} \geq 6 \mathrm{G} \Omega$
d) $R_{I D} \geq 5 \mathrm{M} \Omega$
e) $R_{I D} \geq 4.95 \mathrm{M} \Omega$
5) The Thevenin's equivalent voltage and resistance seen between point a and point b are approximately
a) $1.09 \mathrm{~V}, 111 \mathrm{~K} \Omega$
b) $1.09 \mathrm{~V}, 12.1 \mathrm{~K} \Omega$
c) $0.12 \mathrm{~V}, 120 \mathrm{~K} \Omega$
d) $0.12 \mathrm{~V}, 11 \mathrm{~K} \Omega$
e) $10.9 \mathrm{~V}, 99 \mathrm{~K} \Omega$

6) The g-parameter representation of a two port network is given by:

$$
\begin{aligned}
& \mathrm{i}_{1}=\mathrm{g}_{11} \mathrm{v}_{1}+\mathrm{g}_{12} \mathrm{i}_{2} \\
& \mathrm{v}_{2}=\mathrm{g}_{21} \mathrm{v}_{1}+\mathrm{g}_{22} \mathrm{i}_{2}
\end{aligned}
$$

What is g_{21} for the shown circuit?

a) $100 \mathrm{~V} / \mathrm{V}$
b) 10 Ohm
c) 10 S
d) $0.001 \mathrm{~A} / \mathrm{A}$
e) 0.1 Ohm
7) You are asked to design an amplifier with input resistance $\geq 20 \mathrm{k}$ and a negative gain with amplitude of 100 . Which of the designs below meets these criteria?

8) Consider the below circuit shown below. The magnitude and phase of the voltage gain are
a) $200,0^{\circ}$
b) $201,0^{\circ}$
c) $200,180^{\circ}$
d) $201,90^{\circ}$
e) $201,180^{\circ}$

9) In the circuit below, the total forward transconductance (i_{o} / v_{s}) is given by:

a) 101
b) 100
c) 50
d) 98
e) 49
10) Below, you are shown five source circuits. Identify the one case where the use of a unity gain non-inverting amplifier is required in order to deliver a drive current > 50 uA to a 100 ohm load.
a)

b)

c)

d)

e)

