Advanced Engineering Electromagnetics, ECE750

LECTURE 10

THE FDTD METHOD – PART II

9. Some excitation functions (sources)
The problem of choosing the proper space-time dependence
of the excitation $g(x,y,z,t)$ requires special attention. Here,
we confine our attention to the time-dependence of the
Sinusoidal excitation
$\sin(\omega t) = \sin\left(n\frac{2\pi}{T} \Delta t\right), n = 0, 1, 2, 3, \dots$
Assuming that $\Delta t = T/32 \implies g^n = \sin\left(\frac{\pi}{16}n\right), n = 0, 1, 2, \dots$
<u>Gaussian pulse</u>

 $g(t) = e^{-\alpha(t-t_0)^2}$

Gaussian pulse

ശ

Gaussian pulse

$$g(t) = e^{-\alpha(t-t_0)^2}$$

$$g^n = e^{-\alpha_{\Delta}t^2(n-n_0)}$$

2

numerical constants: α and b, where b denotes the half The discrete Gaussian excitation is controlled by two pulse width. Recommended b: b > 30

At the truncation level: $|n - n_0| = b$

Set truncation level at $e^{-\eta^2}$

$$e^{-lpha \Delta t^2 b^2} = e^{-\eta^2} \Rightarrow \left[\alpha_{\Delta} t^2 = A = (\eta/b)^2 \right] \quad \Longrightarrow \quad g^n = e^{-A(n-n_0)^2}$$

truncation at exp(-16). For double precision (12 significant digits), recommended value is $\eta = 4$. This corresponds to precision of numbers. For single precision (6 significant The truncation level should be comparable with the digits), $\eta = 5$. The pulse width in terms of b is determined according to the desired width of the excitation frequency spectrum.

9. Some excitation functions (sources) – cont.
The Fourier transform of the Gaussian pulse is a Gaussian function of frequency.
$\tilde{g}(f) \simeq e^{-\pi^2 f^2 / \alpha}$
We require that the spectral value at the highest frequency of interest is at 0.3 of the maximum:
$e^{-\pi^2 f_{\max}^2 / lpha} = 0.3$
$-\frac{\pi^2 f_{\text{max}}^2}{\alpha} = \ln 0.3 \Longrightarrow A = \frac{\pi^2 f_{\text{max}}^2 \Delta t^2}{\ln(10/3)} = \left(\frac{\eta}{b}\right)^2$
$ b = \frac{\eta \sqrt{\ln(10/3)}}{\pi f_{\max} \Delta t} $
f we set $f_{\max \Delta t} = \Delta t / T_{\min} = 1/32$ then $b = \frac{\eta 32 \sqrt{\ln(10/3)}}{\pi}$

Typically, the spatial step is first determined according to the finest detail of the structure

$$b = \frac{\eta \sqrt{\ln(10/3)}}{\pi \alpha} \frac{\lambda_{\min}}{\Delta h}, \quad \alpha = \frac{c \Delta t}{\Delta h} \leq 1/\sqrt{D}$$

where D denotes the dimensionality of the problem (D=1,2,3).

Band-limited excitations

(a) sine wave modulated with a Gaussian pulse

$$g(t) = e^{-\alpha(t-t_0)^2} \sin(\omega t)$$

(b) sine wave modulated by a Blackman-Harris window

 $B(t) = a_0 - a_1 \cdot \cos(\omega_w t) + a_2 \cdot \cos(2\omega_w t) - a_3 \cdot \cos(3\omega_w t),$ $\omega_w = \omega/N \quad (N = 7...10)$ $g(t) = B(t)\sin(\omega t),$

 $a_0 = 0.35875$ $a_1 = 0.48829$ $a_2 = 0.14128$ $a_3 = 0.01168$

10. Time-domain May free medium	cwell equations for a dispersion-
The FDTD algorithm is	based on the Maxwell curl equations
$-\nabla \times \mathbf{E}(\mathbf{r},t) = \frac{\partial \mathbf{B}(\mathbf{r},t)}{\partial t} + \mathbf{J}$	$\mathbf{J}_m(\mathbf{r},t) + \mathbf{J}_m^i(\mathbf{r},t)$
$\nabla \times \mathbf{H}(\mathbf{r},t) = \frac{\partial \mathbf{D}(\mathbf{r},t)}{\partial t} + \mathbf{e}_{\mathbf{r}}$	$\mathbf{J}_{e}(\mathbf{r},t) + \mathbf{J}_{e}^{i}(\mathbf{r},t)$
constitutive relations	in dispersion-free isotropic medium
$\mathbf{D}=F_{D}\left\{ \mathbf{E},\mathbf{H} ight\}$	$\mathbf{D}(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$
$\mathbf{B}=F_{B}\left\{ \mathbf{E},\mathbf{H} ight\}$	$\mathbf{B}(\mathbf{r},t) = \mu \mathbf{H}(\mathbf{r},t)$
$\mathbf{J}_{e}=F_{J}^{e}\left\{ \mathbf{E},\mathbf{H}\right\}$	$\mathbf{J}_{e}(\mathbf{r},t) = \boldsymbol{\sigma}_{e} \mathbf{E}(\mathbf{r},t)$
$\mathbf{J}_m = \boldsymbol{F}_J^m \left\{ \mathbf{E}, \mathbf{H} \right\}$	$\mathbf{J}_m(\mathbf{r},t) = \boldsymbol{\sigma}_m \mathbf{H}(\mathbf{r},t)$

$$\neg \nabla \times \mathbf{E}(\mathbf{r},t) = \mu \frac{\partial \mathbf{H}(\mathbf{r},t)}{\partial t} + \sigma_m \mathbf{H}(\mathbf{r},t) + \mathbf{J}_m^i(\mathbf{r},t)$$
$$\bigtriangledown \nabla \times \mathbf{H}(\mathbf{r},t) = \varepsilon \frac{\partial \mathbf{E}(\mathbf{r},t)}{\partial t} + \sigma_e \mathbf{E}(\mathbf{r},t) + \mathbf{J}_e^i(\mathbf{r},t)$$

In rectangular coordinates, the above is written as

$$\mu \frac{\partial H_x}{\partial t} + \sigma_m H_x = -\left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right) - J_{mx}^i$$
$$\mu \frac{\partial H_y}{\partial t} + \sigma_m H_y = -\left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) - J_{my}^i$$
$$\mu \frac{\partial H_z}{\partial t} + \sigma_m H_z = -\left(\frac{\partial E_y}{\partial x} - \frac{\partial E_z}{\partial y}\right) - J_{mz}^i$$

$$\varepsilon \frac{\partial E_x}{\partial t} + \sigma_e E_x = \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - J_{ex}^i$$

$$\varepsilon \frac{\partial E_y}{\partial t} + \sigma_e E_y = \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} - J_{ey}^i$$

$$\varepsilon \frac{\partial E_z}{\partial t} + \sigma_e E_z = \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y} - \frac{\partial H_x}{\partial y} - J_{ez}^i$$

Reduction to 2-D problems

Consider a field and its sources, which do not depend on systems of equations, each of which involves only three one of the spatial coordinates, e.g., the x coordinate. Maxwell's equation then reduce to two decoupled field components.

<u>1</u>3

	5					Lí T
 Time-domain Maxwell equations for a dispersion- free medium – cont. 	Important note: The field decomposition into TE and Th modes in 2-D problems is different from the 3-D TE and TM decomposition you know from waveguide theory!	Consider the TE _z and TM _z modes in a waveguide and the TE _z and TM _z modes in a 2-D problem.	(a) In 2-D problems – the field is independent of z.	(b) In a waveguide – the field depends on z.	(c) In 2-D problems – the 2-D field has only 3 nonzero components (TE _z : E_X, E_Y, H_Z ; TM _z : H_X, H_Y, E_Z).	(d) In a waveguide – the 3-D modal field has 5 nonzero components (TEz: <i>Ez</i> =0; TMz: <i>Hz</i> =0)

ions for a dispersion-	The 3-D TE _z mode $\mathbf{F} = \hat{\mathbf{z}}F(x, y, z, t)$	$\mathbf{E} = -\nabla \times \mathbf{F}$ $\mu \frac{\partial \mathbf{H}}{\partial t} + \sigma_m \mathbf{H} = \nabla \times \nabla \times \mathbf{F}$	$E_z = 0$ $E_x = -\frac{\partial F}{\partial v}; E_y = \frac{\partial F}{\partial x}$	$\mu \frac{\partial H_x}{\partial t} + \sigma_m H_x = \frac{\partial^2 F}{\partial x \partial z}$	$\mu \frac{\partial H_y}{\partial t} + \sigma_m H_y = \frac{\partial^2 F}{\partial y \partial z}$ 16
10. Time-domain Maxwell equati free medium – cont.	The 2-D TE _z mode $\mu \frac{\partial H_z}{\partial x} + \sigma_m H_z = -\left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial x}\right)$	$\varepsilon \frac{\partial E_x}{\partial t} + \sigma_e E_x = \frac{\partial H_z}{\partial y} - J_{ex}^i$	$\varepsilon \frac{\partial E_y}{\partial t} + \sigma_e E_y = -\frac{\partial H_z}{\partial x} - J_{ey}^i$	$\mu \frac{\partial H_z}{\partial t} + \sigma_m H_z = \frac{\partial^2 F}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2}$	$= -\left(\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}\right)$

uations for a dispersion-	
ll equ	
Maxwel	– cont.
domain	edium
Time-(free m
10.	

The 2-D TM_z mode

$$\varepsilon \frac{\partial E_z}{\partial t} + \sigma_e E_z = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} - J_{ez}^i$$
$$u \frac{\partial H_x}{\partial t} + \sigma_m H_x = -\frac{\partial E_z}{\partial y}$$
$$u \frac{\partial H_y}{\partial t} + \sigma_m H_y = \frac{\partial E_z}{\partial x}$$

$$\varepsilon \frac{\partial E_z}{\partial t} + \sigma_e E_z = \frac{\partial^2 A}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2}$$
$$= -\left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2}\right)$$

The 3-D TM_z mode

$$\begin{bmatrix} \mathbf{A} = \hat{\mathbf{z}}A(x, y, z, t) \\ \mathbf{A} = \hat{\mathbf{z}}A(x, y, z, t) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{H} = \nabla \times \mathbf{A} \\ \mathbf{B} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{H} = \nabla \times \mathbf{A} \\ \mathbf{B} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\partial} \mathbf{E} \\ \mathbf{\partial} t \\ \mathbf{D} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\partial} \mathbf{E} \\ \mathbf{\partial} t \\ \mathbf{D} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\partial} \mathbf{E} \\ \mathbf{D} \\ \mathbf{D} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\partial} \mathbf{E} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\partial} \mathbf{E} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\partial} \mathbf{E} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{\partial} \mathbf{E} \\ \mathbf{D} \\ \mathbf{D} \\ \mathbf{D} \end{bmatrix}$$

17

There are no TM_{z0m} waveguide modes

 $\frac{\partial A_z}{\partial x} = 0$ and the boundary conditions

 $A_z(x=0) = 0, A_z(x=b) = 0$

make only the trivial solution possible:

 $A_{z}(x, y, z, t) = 0$

