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Duality

 Duality means that two differential/integral equations
describing the behavior of two different variables have the
same mathematical forms—) solutions are identical

 Equations describing the case (J# 0, M=0) are dual to
equations describing the case (J= 0, M # 0)

OXEa=—]WU Ha
[IXHA=J + JWEE A
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Duality (Cont’d)

Ha= (1 )0 % A | Er=(-1/&)OxF
Ea=—]aA-(J/aue)(D(O.A) || He=-JaF = () / aue)(O(0.F))

It follows that the following quantities are identical
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Example

Using Duality, find the fields resulting from an infinitesimal
magnetic dipole| =a l

The fields resulting from an electric dipole are

Z
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Example (Cont’d)

It follows that the fields resulting from the magnetic dipole
are given by

| ] 1.,
H, =———cosf(l+—) ¥
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Unigueness Theorem

» Thistheorem establishes the conditions under which a
unigue solution exists for a given problem

e Assume that a closed surface S encloses amaterial with
sources J.,, M. and complex parameters £ =¢ — | &,

U=l

* |f there are two possible solutions E2, H2 and EP, H®, they
must satisfy Maxwell’ s equations

OxXE*=-Mi—JwuH® , [OXH*=J,+0E*+ jaweE®

OXE"=-M;— jauH® OxH°=J,+0E"+ jax E"
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Uniqueness Theorem (Cont’d)

 Subtracting the corresponding equations we get
OxE =—jawudH , UOxMH =(0+ jwe)dkE
where dE=E2*-EPand JH=H?a-H"

e Notice that the differential fields satisfy the source-free
Maxwell’ s equations

e Applying the source-free conservation of energy relation for
oe and oH we get

(G xaH") ds =[] [E.(+ jwe) &' + 3" (jr)n ] o

éE\2+ wu"

i}(éExaH*).ds:—ij (0 +we") H ) dv
]Il (o M) dv
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Uniqueness Theorem (Cont’d)

 Now if we have §§(JE xdH).ds=0 , thisimplies that
ce=d1=0 everywﬁere Inside S. Notice that the assumption of
losses existence Is important!

» Using the vector identity A-BxC= B.CxA= C.AxB, we have
F(EXMH)dsn=H(N*xXE).0H ds=f(H* n).dEds
S S S

e |t followsthat the condition {§(JdE xJdH").ds=0 impliesthat
one of the following three casesis satisfied:

a) The tangential component of the E field is specified on S
l.e.nxdkE=00onS
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Uniqueness Theorem (Cont’d)
b) The tangential component of the H field is specified on S
.e.nxdH =0onS—> Hxn=00onS

c) Thetangential component of the E field is specified on
part of Sand the tangential component of the H field is
specified ontherest of S I.e.

nxdE =0o0nS
nxoH =0on S

S=SUS,
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lmage Theory

Actua source direct

reflection
EO’ IL{O

VAV AN ST AN A AN NN

7
7
e
e
Il
4
7

Virtua source

g =0

* |mage theory enables us to evaluate the field generated by
sources placed near infinite perfectly conducting boundary

e Virtual sources are added to maintain the same tangential
field boundary conditions for the original problem
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lmage Theory (Cont’d)

Actual source

gO’ IL{O

80’ ILIO

Virtual source

* Image of avertical electric dipole is another vertical
electric dipole (same orientation)

 Notice that the tangential eectric field components
cancel out
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lmage Theory (Cont’d)

Actual source

gO’ IL{O

80’ ILIO

Virtual source

Image for a horizontal electric dipole has the same value
but opposite orientation (Prove it!)
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Example

4 | =18,
h Eor My

JAVANVAVAY YAV A A AN A e N NN

=

e Obtain an expression for the far fields generated by a
vertical electric dipole of length | placed near an infinite
conducting wall
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Example (Cont’d)

h Eor Hy
h go! /’lo
For the far fields we have
J’7,B| | -iB — Jl]ﬁlel - | Br
sin noand E; = sing,e "
Es = A7Tr 4 018 ° Ay,

2+n2-2rhcosg ~ >>h r,=r —hcosé

E r,=r +hcosé

2
s —
rs=r?+h*+2r hcosé@
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Example (Cont’d)

e Further, we can use for the amplitude r=r=r,

* Thetotal field in the top half space isthe sum of the
field generated by both the actual and virtual sources

1nel. 1. | | |
Eg = Eé + EHZ — J,Z]f?re Snge-l,@r (eJ,BhCOSH+e-J,[>’hcose)

z=20
E~0, z<0

e Combining terms we get

. o |
Eg = 120181 sin @ e '*" cos( Shcos &)
4w [

-
element factor array factor

\—
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Reciprocity Theorem

 Reciprocity theorem in circuit theory states that we can
change the location of the source and observation points
without affecting the measured values

o A similar theorem can be derived for e ectromagnetics

» Assume that two sets of sourcesJ,, M, and J,, M, radiate
within alinear isotropic medium

« Using Maxwell’ s equations, we have
OXE;==M1— JWuUH; UXE,=—M.~ JWUH>
OxH,=J,+ JWEE, [IXH,=J,+ JWEE,

EE750, 2003, Dr. Mohamed Bakr 16



Reciprocity Theorem (Cont’d)

Dot multiplying the H, curl equation by E, and dot
multiplying the E, curl equation by H, and subtracting we
get

E+:0OxH,—HOXE1=E1.J,tH2M1t+ JWEEL.Eat JWUH1-H>

|

—U(E1*H2) =E1.J2tH2 M1+ JWEE.Eot JW H1-H
e Similarly, we obtain

—0.(E2XH) = E2.JitHi-M2+ JWEE,.E1+ JWU H . Hy
e Subtracting these two expressions, we obtain

_D-(EleZ_EZXHl) —E1.J2tTH2M17E2.Ji—Hi1-M>
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Reciprocity Theorem (Cont’d)

o Applying divergence theorem, we obtain the Lorentz
reciprocity theorem

—f#(E1XH.—E2XHyds= [[[(E;-J>.+H2-M1—E2-Ji—Hi-M2)dV
S v

e For a source-free region we have
—g§(E1XH2—E2XHy)-ds=0
S

e |f Sistaken as asphere of infinite radius, we have
J[[(E;d2+H2-M1—E2.Ji—Hi-M»)dV =0
V

U

JII(E1-d2=Hi-M2)AV =|[[(E2-J1—H2- M)AV
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Surface Equivalence Theorem

* Thistheorem is based on the uniqueness theorem

* |t obtains the fields outside an imaginary surface by
placing el ectric and magnetic sources on the boundary so
that the same boundary conditions are satisfied

» Assume that sources J, and M, radiate in an unbounded
medium

* We place avirtual surface Sthat encloses these sources
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Surface Equivalence Theorem (Cont’d)

V Vs, Remove the sources and assume
S 1. M b arbitrary fieldsE, H inside S For
ATl ' E..H .
;> > | E1 N1 the boundary conditionsto be
' ‘vt &0 ML satisfied we add the boundary
By Hy sources J,=nx(H:;—H)
""""" Ms=-nx(E;~E)
T V2
V, N AsE and H are chosen
S'e - & # abitrarily we may choose
5. El’ H1 E=0, H=0
T M
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Surface Equivalence Theorem (Cont’d)

As J, and M represent the
tangential components of the
H, and E, fields, only one of
them Is needed according to
unigueness theorem

 Electric Conductor’  E;, H;  Notice that J,is shorted out

T ME-n XE,
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Surface Equivalence Theorem (Cont’d)

e 2
> D EL
Magnetic Conductor’  E,, H, Notice that M is shorted out
| A ME0

________ o
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Application: H-plan Horn Antenna

AX

* At the surface we know E and H,

* Equivalent sources are given by J =H, and M,=E,
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