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Duality

• Duality means that two differential/integral equations
describing the behavior of two different variables have the
same mathematical forms solutions are identical

• Equations describing the case (J≠ 0, M=0) are dual to
equations describing the case (J= 0, M ≠ 0)

HE AA jωµ−=×∇ EH FF jωε=×∇

EJH AA jωε+=×∇ HME FF jωµ−−=×∇
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Duality (Cont’d)

AH ×∇= )/1( µA FE ×∇−= )/1( εF

)).()(/( AAE ∇∇−−= ωµεω jjA )).()(/( FFH ∇∇−−= ωµεω jjF

It follows that the following quantities are identical

E A H F H A E− F J M

A F ε µ εµ

ββ 1/ηη
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Example

Using Duality, find the fields resulting from an infinitesimal
magnetic dipole Im=azIm

The fields resulting from an electric dipole are
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Example (Cont’d)

It follows that the fields resulting from the magnetic dipole
are given by
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Uniqueness Theorem

• This theorem establishes the conditions under which a
unique solution exists for a given problem

• Assume that a closed surface S encloses a material with
sources Ji, Mi and complex parameters ,

• If there are two possible solutions Ea, Ha and Eb , Hb, they
must satisfy Maxwell’s equations

εεε ′′−′= j
µµµ ′′−′= j

HME a
i

a jωµ−−=×∇

HME b
i

b jωµ−−=×∇
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i

a jωεσ ++=×∇,

, EEJH bb
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Uniqueness Theorem (Cont’d)

•••• Subtracting the corresponding equations we get

HE ωµδδ j−=×∇ EH δωεσδ )( j+=×∇,

where δE=Ea−Eb and δH=Ha-Hb

•••• Notice that the differential fields satisfy the source-free
Maxwell’s equations

•••• Applying the source-free conservation of energy relation for
δE and δH we get
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Uniqueness Theorem (Cont’d)

• Now if we have , this implies that

δE=δH=0 everywhere inside S. Notice that the assumption of

losses existence is important!

• Using the vector identity A•B×C= B•C×A= C•A×B, we have

0).( =∫∫ × dsHE δδ *

S

dsdsds
S

**

S

*

S

EnHHEnnHE δδδδδδ ).().().( ∫∫ ×=∫∫ ×=∫∫ ×

•••• It follows that the condition implies that

one of the following three cases is satisfied:

0).( =∫∫ × dsHE δδ *

S

a) The tangential component of the E field is specified on S,
i.e. n ×δE =0 on S
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Uniqueness Theorem (Cont’d)

b) The tangential component of the H field is specified on S,
i.e. n ×δH =0 on S δH*× n =0 on S

c) The tangential component of the E field is specified on
part of S and the tangential component of the H field is
specified on the rest of S, i.e.

n ×δE =0 on S1

n ×δH =0 on S2

S=S1∪ S2
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Image Theory

• Image theory enables us to evaluate the field generated by
sources placed near infinite perfectly conducting boundary

•••• Virtual sources are added to maintain the same tangential
field boundary conditions for the original problem

εo, µo

σ =∞

direct

reflection

Actual source

Virtual source
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Image Theory (Cont’d)

εo, µo
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• Image of a vertical electric dipole is another vertical
electric dipole (same orientation)

• Notice that the tangential electric field components
cancel out
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Image Theory (Cont’d)

εo, µo

Actual source

Virtual source

εo, µo

h

h

Image for a horizontal electric dipole has the same value
but opposite orientation (Prove it!)
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Example

εo, µo

σ =∞

h

Ie=Ieaz

•••• Obtain an expression for the far fields generated by a
vertical electric dipole of length l placed near an infinite
conducting wall
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Example (Cont’d)
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Example (Cont’d)

• Further, we can use for the amplitude r=r1=r2

• The total field in the top half space is the sum of the
field generated by both the actual and virtual sources
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Reciprocity Theorem

• Reciprocity theorem in circuit theory states that we can
change the location of the source and observation points
without affecting the measured values

• A similar theorem can be derived for electromagnetics

• Assume that two sets of sources J1, M1 and J2, M2 radiate
within a linear isotropic medium

• Using Maxwell’s equations, we have

HME 111 ωµj−−=×∇ HME 222 ωµj−−=×∇

EJH 111 ωεj+=×∇ EJH 222 ωεj+=×∇
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Reciprocity Theorem (Cont’d)

•••• Dot multiplying the H2 curl equation by E1 and dot
multiplying the E1 curl equation by H2 and subtracting we
get

HHEEMHJEEHHE 212112211221 ...... ωµωε jj +++=×∇−×∇

HHEEMHJEHE 2121122121 ....).( ωµωε jj +++=×∇−

•••• Similarly, we obtain

HHEEMHJEHE 1212211212 ....).( ωµωε jj +++=×∇−

•••• Subtracting these two expressions, we obtain

MHJEMHJEHEHE 211212211221 ....).( −−+=×−×∇−
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Reciprocity Theorem (Cont’d)

•••• Applying divergence theorem, we obtain the Lorentz
reciprocity theorem

=∫∫ ×−×−
S

dsHEHE ).( 1221 ∫∫∫ −−+
V
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•••• For a source-free region we have
0)( 1221 =∫∫ ×−×− •

S

dsHEHE

•••• If S is taken as a sphere of infinite radius, we have
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Surface Equivalence Theorem

• This theorem is based on the uniqueness theorem

• It obtains the fields outside an imaginary surface by
placing electric and magnetic sources on the boundary so
that the same boundary conditions are satisfied

• Assume that sources J1 and M1 radiate in an unbounded
medium

• We place a virtual surface S that encloses these sources
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Surface Equivalence Theorem (Cont’d)

V1

V2

E1, H1

E1, H1

S J1 M1

Remove the sources and assume
arbitrary fields E, H inside S. For
the boundary conditions to be
satisfied we add the boundary
sources )( 1 HHnJ −×=s

)( 1 EEnM −×−=s

ε1, µ1ε1, µ1

V1

V2

E1, H1

E, H

S ε1, µ1ε1, µ1

Js

Ms

As E and H are chosen
arbitrarily we may choose
E=0, H=0
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Surface Equivalence Theorem (Cont’d)

V1

V2

E1, H1

0, 0

S ε1, µ1ε1, µ1

Js=n×H1

Ms=-n ×E1

As Js and Ms represent the
tangential components of the
H1 and E1 fields, only one of
them is needed according to
uniqueness theorem

V2

E1, H1

S ε1, µ1

Js=0

Ms=-n ×E1

Electric Conductor Notice that Js is shorted out
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V2

E1, H1

S ε1, µ1

Ms=0

Js=n ×H1

Magnetic Conductor Notice that Ms is shorted out

Surface Equivalence Theorem (Cont’d)
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Application: H-plan Horn Antenna

z

x

• At the surface we know Ey and Hx

• Equivalent sources are given by Jy=Hx and Mx=Ey


