EE750
 Advanced Engineering Electromagnetics

Lecture 12

Duality

- Duality means that two differential/integral equations describing the behavior of two different variables have the same mathematical forms \square solutions are identical
- Equations describing the case $(\boldsymbol{J} \neq \mathbf{0}, \boldsymbol{M}=\mathbf{0})$ are dual to equations describing the case $(\boldsymbol{J}=\mathbf{0}, \boldsymbol{M} \neq \mathbf{0})$

$$
\begin{array}{l||l}
\nabla \times \boldsymbol{E}_{A}=-j \omega \mu \boldsymbol{H}_{A} & \nabla \times \boldsymbol{H}_{F}=j \omega \varepsilon \boldsymbol{E}_{F} \\
\nabla \times \boldsymbol{H}_{A}=\boldsymbol{J}+j \omega \varepsilon \boldsymbol{E}_{A} \\
\nabla^{2} \boldsymbol{A}+\beta^{2} \boldsymbol{A}=-\mu \boldsymbol{J} & \nabla \times \boldsymbol{E}_{F}=-\boldsymbol{M}-j \omega \mu \boldsymbol{H}_{F} \\
\boldsymbol{A}=\frac{\mu}{4 \pi} \iint_{V^{\prime}} \frac{\boldsymbol{J}}{R} e^{-j \beta R} d V^{\prime} & \boldsymbol{\nabla}=\frac{\boldsymbol{\varepsilon}}{4 \pi} \iiint_{V^{\prime}} \frac{\boldsymbol{M}}{R} e^{-j \beta R} d V^{\prime}
\end{array}
$$

Duality (Cont'd)

$$
\left.\begin{array}{c|c}
\boldsymbol{H}_{A}=(1 / \mu) \nabla \times \boldsymbol{A} \\
\boldsymbol{E}_{A}=-j \omega \boldsymbol{A}-(j / \omega \mu \boldsymbol{\varepsilon})(\nabla(\nabla \cdot \boldsymbol{A}))
\end{array}\right] \begin{gathered}
\boldsymbol{E}_{F}=(-1 / \boldsymbol{\varepsilon}) \nabla \times \boldsymbol{F} \\
\boldsymbol{H}_{F}=-j \omega \boldsymbol{F}-(j / \omega \mu \boldsymbol{\varepsilon})(\nabla(\nabla \cdot \boldsymbol{F}))
\end{gathered}
$$

It follows that the following quantities are identical

$$
\begin{array}{rl}
\boldsymbol{E}_{A} \Leftrightarrow \boldsymbol{H}_{F} & \boldsymbol{H}_{A} \Leftrightarrow \boldsymbol{E}_{F} \\
\boldsymbol{A} & \boldsymbol{J} \Leftrightarrow \boldsymbol{M} \\
\beta & \varepsilon \Leftrightarrow \mu \\
\beta & \mu \Leftrightarrow \varepsilon
\end{array}
$$

Example

Using Duality, find the fields resulting from an infinitesimal magnetic dipole $\boldsymbol{I}_{m}=\boldsymbol{a}_{z} I_{m}$

The fields resulting from an electric dipole are

$$
\begin{aligned}
E_{r} & =\frac{\eta I_{e} l}{2 \pi r^{2}} \cos \theta\left(1+\frac{1}{j \beta r}\right) e^{-j \beta r} \\
E_{\theta} & =\frac{j \eta \beta I_{e} l}{4 \pi r} \sin \theta\left(1+\frac{1}{j \beta r}-\frac{1}{(\beta r)^{2}}\right) e^{-j \beta r} \\
H_{\varphi} & =\frac{j \beta I_{e} l}{4 \pi r} \sin \theta\left(1+\frac{1}{j \beta r}\right) e^{-j \beta r}
\end{aligned}
$$

Example (Cont'd)

It follows that the fields resulting from the magnetic dipole are given by

$$
\begin{aligned}
& H_{r}=\frac{I_{m} l}{2 \eta \pi r^{2}} \cos \theta\left(1+\frac{1}{j \beta r}\right) e^{-j \beta r} \\
& H_{\theta}=\frac{j \beta I_{m} l}{4 \eta \pi r} \sin \theta\left(1+\frac{1}{j \beta r}-\frac{1}{(\beta r)^{2}}\right) e^{-j \beta r} \\
& E_{\varphi}=\frac{-j \beta I_{m} l}{4 \pi r} \sin \theta\left(1+\frac{1}{j \beta r}\right) e^{-j \beta r}
\end{aligned}
$$

Uniqueness Theorem

- This theorem establishes the conditions under which a unique solution exists for a given problem
- Assume that a closed surface S encloses a material with sources $\boldsymbol{J}_{i}, \boldsymbol{M}_{i}$ and complex parameters $\varepsilon=\varepsilon^{\prime}-j \varepsilon^{\prime \prime}$, $\mu=\mu^{\prime}-j \mu^{\prime \prime}$
- If there are two possible solutions $\boldsymbol{E}^{a}, \boldsymbol{H}^{a}$ and $\boldsymbol{E}^{b}, \boldsymbol{H}^{b}$, they must satisfy Maxwell's equations

$$
\begin{array}{ll}
\nabla \times \boldsymbol{E}^{a}=-\boldsymbol{M}_{i}-j \omega \mu \boldsymbol{H}^{a}, & \nabla \times \boldsymbol{H}^{a}=\boldsymbol{J}_{i}+\sigma \boldsymbol{E}^{a}+j \omega \varepsilon \boldsymbol{E}^{a} \\
\nabla \times \boldsymbol{E}^{b}=-\boldsymbol{M}_{i}-j \omega \mu \boldsymbol{H}^{b}, & \nabla \times \boldsymbol{H}^{b}=\boldsymbol{J}_{i}+\sigma \boldsymbol{E}^{b}+j \omega \varepsilon \boldsymbol{E}^{b}
\end{array}
$$

Uniqueness Theorem (Cont'd)

- Subtracting the corresponding equations we get

$$
\begin{aligned}
& \nabla \times \delta \boldsymbol{E}=-j \omega \mu \boldsymbol{\delta} \boldsymbol{H}, \quad \nabla \times \delta \boldsymbol{H}=(\sigma+j \omega \varepsilon) \delta \boldsymbol{E} \\
& \text { where } \delta \boldsymbol{E}=\boldsymbol{E}^{a}-\boldsymbol{E}^{b} \text { and } \boldsymbol{\delta} \boldsymbol{H}=\boldsymbol{H}^{a}-\boldsymbol{H}^{b}
\end{aligned}
$$

- Notice that the differential fields satisfy the source-free Maxwell's equations
- Applying the source-free conservation of energy relation for δE and $\delta \boldsymbol{H}$ we get

$$
\begin{gathered}
\oiint_{S}\left(\delta \boldsymbol{E} \times \delta \boldsymbol{H}^{* \prime}\right) \cdot \boldsymbol{d s}=-\iiint_{V}\left[\delta \boldsymbol{E} \cdot(\sigma+j \omega \varepsilon) \delta \boldsymbol{E}^{*}+\delta \boldsymbol{H}^{* *} \cdot(j \omega \boldsymbol{\mu}) \delta \boldsymbol{H}\right] d v \\
\begin{array}{l}
\Omega \\
\oiint_{S}\left(\delta \boldsymbol{E} \times \delta \boldsymbol{H}^{*}\right) \cdot \boldsymbol{d s}=-\iiint_{V}^{\left(\left(\sigma+\omega \varepsilon^{\prime \prime}\right)|\delta \boldsymbol{E}|^{2}+\omega \mu^{\prime \prime}|\delta \boldsymbol{H}|^{2}\right) d v} \\
-j \iiint_{V}\left(-\omega \varepsilon^{\prime}|\delta \boldsymbol{E}|^{2}+\omega \mu^{\prime}|\delta \boldsymbol{H}|^{2}\right) d v
\end{array}
\end{gathered}
$$

Uniqueness Theorem (Cont'd)

- Now if we have $\oiint\left(\delta \boldsymbol{E} \times \delta \boldsymbol{H}^{*}\right) \cdot d \boldsymbol{d}=0$, this implies that $\delta \boldsymbol{E}=\boldsymbol{\delta} \boldsymbol{H}=\mathbf{0}$ everywhere inside S. Notice that the assumption of losses existence is important!
- Using the vector identity $\boldsymbol{A} \cdot \boldsymbol{B} \times \boldsymbol{C}=\boldsymbol{B} \cdot \boldsymbol{C} \times \boldsymbol{A}=\boldsymbol{C} \cdot \boldsymbol{A} \times \boldsymbol{B}$, we have $\oiint_{S}\left(\delta \boldsymbol{E} \times \delta \boldsymbol{H}^{*}\right) \cdot d s \boldsymbol{n}=\oiint_{S}(\boldsymbol{n} \times \delta \boldsymbol{E}) \cdot \delta \boldsymbol{H}^{*} d s=\oiint_{S}\left(\delta \boldsymbol{H}^{*} \times \boldsymbol{n}\right) \cdot \delta \boldsymbol{E} d s$
- It follows that the condition $\oiint\left(\delta \boldsymbol{E} \times \delta \boldsymbol{H}^{*}\right) \cdot \boldsymbol{d s}=0$ implies that one of the following three cases is satisfied:
a) The tangential component of the \boldsymbol{E} field is specified on S, i.e. $\boldsymbol{n} \times \delta \boldsymbol{E}=\mathbf{0}$ on S

Uniqueness Theorem (Cont'd)

b) The tangential component of the \boldsymbol{H} field is specified on S, i.e. $\boldsymbol{n} \times \boldsymbol{\delta} \boldsymbol{H}=\mathbf{0}$ on $S \longmapsto \delta \boldsymbol{H}^{*} \times \boldsymbol{n}=\mathbf{0}$ on S
c) The tangential component of the \boldsymbol{E} field is specified on part of S and the tangential component of the \boldsymbol{H} field is specified on the rest of S, i.e.

$$
\begin{aligned}
& \boldsymbol{n} \times \boldsymbol{\delta}=\mathbf{0} \text { on } S_{1} \\
& \boldsymbol{n} \times \boldsymbol{\delta} \boldsymbol{H}=\mathbf{0} \text { on } S_{2} \\
& S=S_{1} \cup S_{2}
\end{aligned}
$$

Image Theory

Virtual source

- Image theory enables us to evaluate the field generated by sources placed near infinite perfectly conducting boundary
- Virtual sources are added to maintain the same tangential field boundary conditions for the original problem

Image Theory (Cont'd)

Actual source

Virtual source

- Image of a vertical electric dipole is another vertical electric dipole (same orientation)
- Notice that the tangential electric field components cancel out

Image Theory (Cont'd)

Actual source

Virtual source
Image for a horizontal electric dipole has the same value but opposite orientation (Prove it!)

Example

- Obtain an expression for the far fields generated by a vertical electric dipole of length l placed near an infinite conducting wall

Example (Cont'd)

For the far fields we have
$E_{\theta}^{1}=\frac{j \eta \beta I_{e} l}{4 \pi r_{1}} \sin \theta_{1} e^{-j \beta r_{1}}$ and $E_{\theta}^{2}=\frac{j \eta \beta I_{e} l}{4 \pi r_{2}} \sin \theta_{2} e^{-j \beta r_{2}}$
$r_{1}^{2}=r^{2}+h^{2}-2 r h \cos \theta \quad r \gg h$
$r_{2}^{2}=r^{2}+h^{2}+2 r h \cos \theta$$\stackrel{\square}{r_{1}=r-h \cos \theta} \begin{aligned} & r_{2}=r+h \cos \theta\end{aligned}$

Example (Cont'd)

- Further, we can use for the amplitude $r=r_{1}=r_{2}$
- The total field in the top half space is the sum of the field generated by both the actual and virtual sources

$$
\begin{aligned}
& E_{\theta}=E_{\theta}^{1}+E_{\theta}^{2}=\frac{j \eta \beta I_{e} l}{4 \pi r} \sin \theta e^{-j \beta r}\left(e^{j \beta h \cos \theta}+e^{-j \beta h \cos \theta}\right) \\
& E_{\theta}=0, \quad \mathrm{z}<0
\end{aligned}
$$

- Combining terms we get

$$
E_{\theta}=\underbrace{\frac{j 2 \eta \beta I_{e} l}{4 \pi r} \sin \theta e^{-j \beta r}}_{\text {element factor }} \underbrace{\cos (\beta h \cos \theta)}_{\text {array factor }}
$$

Reciprocity Theorem

- Reciprocity theorem in circuit theory states that we can change the location of the source and observation points without affecting the measured values
- A similar theorem can be derived for electromagnetics
- Assume that two sets of sources $\boldsymbol{J}_{1}, \boldsymbol{M}_{1}$ and $\boldsymbol{J}_{2}, \boldsymbol{M}_{2}$ radiate within a linear isotropic medium
- Using Maxwell's equations, we have

$$
\begin{array}{l|l}
\nabla \times \boldsymbol{E}_{1}=-\boldsymbol{M}_{1}-j \omega \mu \boldsymbol{H}_{1} & \nabla \times \boldsymbol{E}_{2}=-\boldsymbol{M}_{2}-j \omega \mu \boldsymbol{H}_{2} \\
\nabla \times \boldsymbol{H}_{1}=\boldsymbol{J}_{1}+j \omega \varepsilon \boldsymbol{E}_{1} & \nabla \times \boldsymbol{H}_{2}=\boldsymbol{J}_{2}+j \omega \varepsilon \boldsymbol{E}_{2}
\end{array}
$$

Reciprocity Theorem (Cont'd)

- Dot multiplying the \boldsymbol{H}_{2} curl equation by \boldsymbol{E}_{1} and dot multiplying the \boldsymbol{E}_{1} curl equation by \boldsymbol{H}_{2} and subtracting we get
$\boldsymbol{E}_{1} \cdot \nabla \times \boldsymbol{H}_{2}-\boldsymbol{H}_{2} \cdot \nabla \times \boldsymbol{E}_{1}=\boldsymbol{E}_{1} \cdot \boldsymbol{J}_{2}+\boldsymbol{H}_{2} \cdot \boldsymbol{M}_{1}+j \omega \varepsilon \boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2}+j \omega \mu \boldsymbol{H}_{1} \cdot \boldsymbol{H}_{2}$

$-\nabla \cdot\left(\boldsymbol{E}_{1} \times \boldsymbol{H}_{2}\right)=\boldsymbol{E}_{1} \cdot \boldsymbol{J}_{2}+\boldsymbol{H}_{2} \cdot \boldsymbol{M}_{1}+j \omega \varepsilon \boldsymbol{E}_{1} \cdot \boldsymbol{E}_{2}+j \omega \mu \boldsymbol{H}_{1} \cdot \boldsymbol{H}_{2}$
- Similarly, we obtain
$-\nabla .\left(\boldsymbol{E}_{2} \times \boldsymbol{H}_{1}\right)=\boldsymbol{E}_{2} \cdot \boldsymbol{J}_{1}+\boldsymbol{H}_{1} \cdot \boldsymbol{M}_{2}+j \omega \varepsilon \boldsymbol{E}_{2} \cdot \boldsymbol{E}_{1}+j \omega \mu \boldsymbol{H}_{2} \cdot \boldsymbol{H}_{1}$
- Subtracting these two expressions, we obtain
$-\nabla \cdot\left(\boldsymbol{E}_{1} \times \boldsymbol{H}_{2}-\boldsymbol{E}_{2} \times \boldsymbol{H}_{1}\right)=\boldsymbol{E}_{1} \cdot \boldsymbol{J}_{2}+\boldsymbol{H}_{2} \cdot \boldsymbol{M}_{1}-\boldsymbol{E}_{2} \cdot \boldsymbol{J}_{1}-\boldsymbol{H}_{1} \cdot \boldsymbol{M}_{2}$

Reciprocity Theorem (Cont'd)

- Applying divergence theorem, we obtain the Lorentz reciprocity theorem
$-\oiint_{S}\left(\boldsymbol{E}_{1} \times \boldsymbol{H}_{2}-\boldsymbol{E}_{2} \times \boldsymbol{H}_{1}\right) \cdot d \boldsymbol{s}=\iiint_{V}\left(\boldsymbol{E}_{1} \cdot \boldsymbol{J}_{2}+\boldsymbol{H}_{2} \cdot \boldsymbol{M}_{1}-\boldsymbol{E}_{2} \cdot \boldsymbol{J}_{1}-\boldsymbol{H}_{1} \cdot \boldsymbol{M}_{2}\right) d V$
- For a source-free region we have

$$
-\oiint_{S}\left(\boldsymbol{E}_{1} \times \boldsymbol{H}_{2}-\boldsymbol{E}_{2} \times \boldsymbol{H}_{1}\right) \cdot \boldsymbol{d} \boldsymbol{s}=0
$$

- If S is taken as a sphere of infinite radius, we have

$\iiint_{V}\left(\boldsymbol{E}_{1} \cdot \boldsymbol{J}_{2}-\boldsymbol{H}_{1} \cdot \boldsymbol{M}_{2}\right) d V=\iiint_{V}\left(\boldsymbol{E}_{2} \cdot \boldsymbol{J}_{1}-\boldsymbol{H}_{2} \cdot \boldsymbol{M}_{1}\right) d V$

Surface Equivalence Theorem

- This theorem is based on the uniqueness theorem
- It obtains the fields outside an imaginary surface by placing electric and magnetic sources on the boundary so that the same boundary conditions are satisfied
- Assume that sources \boldsymbol{J}_{1} and \boldsymbol{M}_{1} radiate in an unbounded medium
- We place a virtual surface S that encloses these sources

Surface Equivalence Theorem (Cont'd)

As \boldsymbol{E} and \boldsymbol{H} are chosen

$$
\varepsilon_{1}, \mu_{1}
$$

$$
\varepsilon_{1}, \mu_{1} \quad \text { arbitrarily we may choose }
$$

$$
E_{1}, H_{1} \quad E=0, H=0
$$

Surface Equivalence Theorem (Cont'd)

Surface Equivalence Theorem (Cont'd)

Application: H-plan Horn Antenna

- At the surface we know E_{y} and H_{x}
- Equivalent sources are given by $J_{y}=H_{x}$ and $M_{x}=E_{y}$

