EE750
 Advanced Engineering Electromagnetics
 Lecture 13

Differential Equations Vs. Integral Equations

- Integral equations may take several forms, e.g.,

$$
\begin{aligned}
& f(x)=\int_{a}^{b} K(x, t) \varphi(t) \mathrm{d} t \\
& f(x)=\varphi(x)-\lambda \int_{a}^{b} K(x, t) \varphi(t) \mathrm{d} t
\end{aligned}
$$

- Most differential equations can be expressed as integral equations, e.g.,

$$
\begin{aligned}
& d^{2} \varphi / d x^{2}=F(x, \varphi), a \leq x \leq b \\
& d \varphi / d x=\int_{a}^{\prod_{x}} F(t, \varphi(t)) d t+C_{1} \rightrightarrows C_{1}=\varphi^{\prime}(a) \\
& \varphi(x)=\int_{a}^{x}(x-t) F(t, \varphi(t)) d t+C_{1} x+C_{2} \square C_{2}=\varphi(a)-a \varphi^{\prime}(a)
\end{aligned}
$$

Green's Functions

- Green's functions offer a systematic way of converting a Differential Equation (DE) to an Integral Equation (IE)
- A Green's function is the solution of the DE corresponding to an impulsive (unit) excitation
- Consider the differential equation $L \Phi=g$, where L is a differential operator, Φ is the unknown field and g is the known given excitation
- For this problem, the Green's function $G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)$ is the solution of the $\mathrm{DE} L G=\delta\left(r^{\prime}\right)$ subject to the same boundary conditions
- For an arbitrary excitation we have $\Phi=\int_{\substack{\text { excitation } \\ \text { volume }}} g\left(\boldsymbol{r}^{\prime}\right) G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) d \nu^{\prime}$
EE750, 2003, Dr. Mohamed Bakr

Green's Functions: Examples

- Obtain the Green's function for the $\mathrm{DE}\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right) \Phi=g$ subject to $\Phi=f$ on the boundary B
- The Green's function is the solution of

$$
\nabla^{2} G\left(x, y, x^{\prime}, y^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right)
$$

- G can be decomposed into a particular integral and a homogeneous solution $G=F+U$ with F and U satisfying $\nabla^{2} F=\boldsymbol{\delta}\left(x-x^{\prime}\right) \boldsymbol{\delta}\left(y-y^{\prime}\right), \nabla^{2} \boldsymbol{U}=0$
- Switching to polar form we get $\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial F}{\partial \rho}\right)=0, \forall x \neq x^{\prime}, y \neq y^{\prime}$ $\Rightarrow F=A \ln \rho+C_{1}$
- A is obtained using $\lim _{R \rightarrow 0} \frac{\partial F}{\partial \rho} d l=1 \quad \Longrightarrow 2 \pi A=1$

Green's Function: Examples (Cont'd)

- The method of images can also be applied to obtain an infinite series expansion of Green's functions
- Consider the case of a line charge between two conducting planes
- $G\left(x, y, x^{\prime}, y^{\prime}\right)$ represents the potential at (x, y) due to a line charge of value $1.0 \mathrm{c} / \mathrm{m}$ located at (x^{\prime}, y^{\prime})

Original problem

Green's Function: Examples (Cont'd)

An infinite number of charges is required to maintain the same boundary conditions

Green's Function: Examples (Cont'd)

- The potential caused by a $1 \mathrm{c} / \mathrm{m}$ line charge in an unbounded medium is given by

$$
V(\rho)=\frac{1}{4 \pi \varepsilon} \ln \rho^{2}
$$

- Using the figure, we conclude that the Green's function is given by the infinite series

$$
G\left(x, y, x^{\prime}, y^{\prime}\right)=\frac{1}{4 \pi \varepsilon}\binom{\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]-\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}\right]+}{\sum_{n=1}^{\infty}(-1)^{n}\left[\begin{array}{l}
\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}-2 n h\right)^{2}\right]-\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}-2 n h\right)^{2}\right] \\
\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}+2 n h\right)^{2}\right]-\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}+2 n h\right)^{2}\right]
\end{array}\right]}
$$

- Special mathematical techniques are usually utilized to sum such a slowly convergent series

Green's Function: Examples (Cont'd)

- The Green's function can also be expanded in terms of the eigenfunctions of the homogeneous problem
- As an example consider the wave equation

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+k^{2} \psi=0, \text { Subject to } \frac{\partial \psi}{\partial n}=0 \text { or } \psi=0 \text { on } B
$$

- Let the eigenvalues and eigenfunctions be k_{j} and ψ_{j}

$$
\nabla^{2} \psi_{j}+k_{j}^{2} \psi_{j}=0
$$

- The set ψ_{j} is an orthonormal set, i.e.,

$$
\int_{s} \psi_{j}^{*} \psi_{i} d x d y= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Green's Function: Examples (Cont'd)

- We then expand the Green's function in terms of the eigenfunctions $G\left(x, y, x^{\prime}, y^{\prime}\right)=\sum_{j=1}^{\infty} a_{j} \psi_{j}(x, y)$
- But as the Green's function satisfy

$$
\begin{aligned}
&\left(\nabla^{2}+k^{2}\right) G\left(x, y, x^{\prime}, y^{\prime}\right)=\boldsymbol{\delta}\left(x-x^{\prime}\right) \boldsymbol{\delta}\left(y-y^{\prime}\right) \\
& \sum_{j} \text { Substitute for } G \\
& \sum_{j=1}^{\infty} a_{j}\left(k^{2}-k_{j}^{2}\right) \psi_{j}= \delta\left(x-x^{\prime}\right) \boldsymbol{\delta}\left(y-y^{\prime}\right) \\
& \sum_{j=1}^{\infty} a_{j}\left(k^{2}-k_{j}^{2}\right) \iint_{S} \psi_{i}^{*} \psi_{j} d s=\psi_{i}^{*}\left(x^{\prime}, y^{\prime}\right) \\
& \underbrace{*}_{i} \\
& a_{i}= \frac{\psi_{i}^{*}\left(x^{\prime}, y^{\prime}\right)}{\left(k^{2}-k_{i}^{2}\right)}
\end{aligned}
$$

Green's Function: Examples (Cont'd)

- Using Green's functions, construct the solution for the Poisson's equation $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=f(x, y)$,
Subject to $V(0, y)=V(a, y)=V(x, \mathrm{o})=V(x, b)$ Show that $\quad \psi_{m n}=\frac{2}{\sqrt{a b}} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)$

$$
\begin{gathered}
\lambda_{m n}=-\left(\frac{m^{2} \pi^{2}}{a^{2}}+\frac{n^{2} \pi^{2}}{b^{2}}\right), A_{m n}=\frac{-2}{\sqrt{a b}} \frac{\sin \left(\frac{m \pi x^{\prime}}{a}\right) \sin \left(\frac{n \pi y^{\prime}}{b}\right)}{\left(\frac{m^{2} \pi^{2}}{a^{2}}+\frac{n^{2} \pi^{2}}{b^{2}}\right)} \\
V(x, y)=\int_{0}^{a b} G\left(x, y, x^{\prime}, y^{\prime}\right) f\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
\end{gathered}
$$

Dyadic Green's Functions

- Dyadic Green's functions are used to express the situation where a source in one direction gives rise to fields in different directions
- In general, a dyadic Green's function will have 9 components

$$
\begin{aligned}
& G\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)=G_{x x} i i+G_{x y} i \boldsymbol{j}+G_{x z} i k+ \\
& G_{y x} \dot{j}+G_{y y} j \dot{j}+G_{y z} j k+G_{z z} k i+G_{z y} k j+G_{z z} k k
\end{aligned}
$$

- For a unit source in the x direction $\boldsymbol{J}=\boldsymbol{i} \boldsymbol{\delta}\left(x-x^{\prime}\right) \boldsymbol{\delta}\left(y-y^{\prime}\right) \boldsymbol{\delta}\left(z-z^{\prime}\right)$ we obtain the field $\boldsymbol{E}=\boldsymbol{G} . \boldsymbol{J}=G_{x x} \boldsymbol{i}+G_{y x} \boldsymbol{j}+G_{z x} \boldsymbol{k}$
- For a general source (arbitrary distribution and orientations)

$$
\boldsymbol{E}(x, y, z)=\iiint_{V^{\prime}} \boldsymbol{G}\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \cdot \boldsymbol{J}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) d v^{\prime}
$$

Inner Products

- The inner product of two functions is a scalar that must satisfy the following conditions:

$$
\begin{aligned}
& <f, g>=<g, f>\quad \text { commutative } \\
& <\alpha f+\beta g, h>=\alpha<f, h>+\beta<g, h>\quad \text { distributive } \\
& <f, f^{*} \gg 0 \text { if } f \neq 0 \\
& <f, f^{*}>=0 \text { iff } f=0
\end{aligned}
$$

- Example: $<f(x), g(x)>=\int_{0}^{1} f(x) g(x) d x$

Adjoint Operators

- For an operator L, we sometimes define an adjoint operator L^{a} defined by $<L f, g>=<f, L^{a} g>$
- For the $\mathrm{DE}-d^{2} f / d x^{2}=g(x), \quad f(0)=f(1)=0 \Rightarrow L=-d^{2} / d x^{2}$
- We utilize the inner product $\langle f(x), g(x)\rangle=\int_{0}^{1} f(x) g(x) d x$ $<L f, g\rangle=\int_{0}^{1}-\frac{d^{2} f}{d x^{2}} g(x) d x \longmapsto-\frac{d f}{d x} g+\left.f \frac{d g}{d x}\right|_{0} ^{1}+\int_{0}^{1} f\left(-\frac{d^{2} g}{d x^{2}}\right) d x$
if $g(0)=g(1)=0$, we have $\langle L f, g\rangle=\int_{0}^{1}-\frac{d^{2} g}{d x^{2}} f d x=\langle f, L g\rangle$ $L=L^{a}$

Method of Moments (MoM)

- MoM aims at obtaining a solution to the inhomogeneous equation $L f=g$, where L is a known linear operator, g is a known excitation and f is unknown
- Let f be expanded in a series of known basis functions f_{1}, f_{2},
$\ldots, f_{N} \Rightarrow f=\sum_{n} \alpha_{n} f_{n}$
- Substituting in the equation we get
$L\left(\sum_{n} \alpha_{n} f_{n}\right)=g \longmapsto \sum_{n} \alpha_{n} L\left(f_{n}\right)=g$ (One equation in N unknowns)
- We define a set of N weighting functions $w_{1}, w_{2}, \ldots, w_{N}$

MoM (Cont'd)

- Taking the inner product of both sides with the m th weighting function we obtain

$$
\sum_{n} \alpha_{n}\left\langle w_{m}, L\left(f_{n}\right)\right\rangle=\left\langle w_{m}, g\right\rangle, \quad m=1,2, \cdots, N
$$

(N equations in N unknowns)

- In matrix form we can write $\left[l_{m n} \| \alpha_{n}\right]=\left[g_{m}\right]$

$$
\left[l_{m n}\right]=\left[\begin{array}{cccc}
<w_{1}, L f_{1}> & <w_{1}, L f_{2}> & \cdots & <w_{1}, L f_{N}> \\
<w_{2}, L f_{1}> & <w_{2}, L f_{2}> & \cdots & <w_{2}, L f_{N}> \\
\vdots & \vdots & \vdots & \vdots \\
<w_{N}, L f_{1}> & <w_{N}, L f_{2}> & \cdots & <w_{N}, L f_{N}>
\end{array}\right]
$$

MoM (Cont'd)

$$
\left[\alpha_{n}\right]=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right], \quad\left[g_{m}\right]=\left[\begin{array}{c}
<w_{1}, g> \\
<w_{2}, g> \\
\vdots \\
<w_{N}, g>
\end{array}\right]
$$

- The unknown coefficients are thus given by $\left[\alpha_{n}\right]=\left[l_{m n}\right]^{-1}\left[g_{m}\right]$
- The unknown function f can now be expressed in the compact form
$f=\sum_{n} \alpha_{n} f_{n}=\left[\begin{array}{llll}f_{1} & f_{2} & \cdots & f_{N}\end{array}\right]\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{N}\end{array}\right]=\left[\tilde{f}_{n}\right]\left[\alpha_{n}\right]=\left[\tilde{f}_{n}\right]\left[l_{m n}\right]^{-1}\left[g_{m}\right]$

MoM Example

- Solve $\mathrm{d}^{2} f / d x^{2}=1+4 x^{2}, f(0)=f(1)=0$ using MoM
- We choose the basis functions as $f_{n}=x-x^{n+1}, n=1,2, \ldots, N$
f is thus approximated by $f=\sum_{n=1}^{N} \alpha_{n}\left(x-x^{n+1}\right)$
- Also we choose $w_{n}=f_{n}, n=1,2, \ldots N$ (Galerkin's approach)
- our inner product is $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$
- We have $L f_{n}=\mathrm{d}^{2} f_{n} / d x^{2}=n(n+1) x^{n-1}$
- Show that $l_{m n}=\left\langle w_{m}, L f_{n}\right\rangle=m n /(m+n+1)$

$$
g_{m}=<w_{m}, g>=m(3 m+8) /(2(m+2)(m+4))
$$

MoM Example (Cont'd)

- For $N=1$, we have $l_{11}=1 / 3, g_{1}=11 / 30 \longmapsto \alpha_{1}=11 / 10$
- For $N=2$, we have

$$
\left[\begin{array}{ll}
1 / 3 & 1 / 2 \\
1 / 2 & 4 / 5
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
11 / 30 \\
7 / 12
\end{array}\right] \longmapsto\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
1 / 10 \\
2 / 3
\end{array}\right]
$$

- For $N=3$, we have

$$
\left[\begin{array}{ccc}
1 / 3 & 1 / 2 & 3 / 5 \\
1 / 2 & 4 / 5 & 1 \\
3 / 5 & 1 & 9 / 7
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{c}
11 / 30 \\
7 / 12 \\
51 / 70
\end{array}\right] \longmapsto\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
0 \\
1 / 3
\end{array}\right]
$$

- Exact solution is obtained for $N=3$!

Types of Basis Functions

- Entire domain basis functions f_{n} are defined for the entire domain of the function f
- Subsectional basis functions are defined only over a subsection of the domain of the function f

Pulse functions in 1D

Types of Basis Functions (Cont'd)

Triangular functions in 1D

Types of Weighting Functions

- Recall that

$$
\sum_{n} \alpha_{n}<w_{m}, L\left(f_{n}\right)>=<w_{m}, g>, \quad m=1,2, \cdots, N
$$

- If we choose $w_{n}=f_{n}, n=1,2, \ldots, N$ (Galerkin matching)

$$
\sum_{n} \alpha_{n}<f_{m}, L\left(f_{n}\right)>=<f_{m}, g>, \quad m=1,2, \cdots, N
$$

- If we choose $w_{n}=\delta\left(\boldsymbol{r}-\boldsymbol{r}_{n}\right), n=1,2, \ldots, N$ (Point matching)

$$
\begin{aligned}
& \sum_{n} \alpha_{n}<\boldsymbol{\delta}\left(\boldsymbol{r}-\boldsymbol{r}_{m}\right), L\left(f_{n}\right)>=<\boldsymbol{\delta}\left(\boldsymbol{r}-\boldsymbol{r}_{m}\right), g>, \quad m=1,2, \cdots, N \\
& \sum_{n} \alpha_{n} L\left(f_{n}\left(\boldsymbol{r}_{m}\right)\right)=g\left(\boldsymbol{r}_{m}\right), \quad m=1,2, \cdots, N
\end{aligned}
$$

- The two sides of the system equation are matched at a number of space points

