EE750
Advanced Engineering Electromagnetics
L ecture 13



Differential EquationsVs. Integral Equations

* Integral equations may take several forms, e.g.,
f(¥) = [K(x D) dt
f(¥) = $(0) - AfK (D) dt

» Most differential equations can be expressed as integral
equations, e.g.,
d%0/d x*=F(x,¢), a<x<b
iy

deidx = [F(LAM)dt+Ci— C, = 4'(a)

U
()= [(X-)F(t,@ () dt +C.X+Co=) C,=¢(a)-ag'(a)
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Green’s Functions

» Green’sfunctions offer a systematic way of converting a
Differential Equation (DE) to an Integral Equation (IE)

« A Green’'sfunction isthe solution of the DE corresponding
to an impulsive (unit) excitation

o Consider the differential equation L@ =g, whereL isa
differential operator, @isthe unknown field and g isthe
known given excitation

e For this problem, the Green’ s function G(r,r) isthe
solution of the DE LG =J(r') subject to the same boundary
conditions

e For an arbitrary excitationwehave @ = [9(r')G(r,r")av

excitation
volume
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Green’s Functions. Examples

» Obtain the Green's function for the DE (9%/0 x* +9%/0 Y)® =g
subject to @ =f on the boundary B

* The Green’sfunction isthe solution of

0°G(%, Y, X, y) =d(Xx=X)o(y-Y)
» G can be decomposed into a particular integral and a
homogeneous solution G=F+U with F and U satisfying

0°F = 3(x=X)3(y-Y), 0?U =0
e Switching to polar form we get 19 (,oal:jzo, Ox£ X,y £ Y

pPOp\  0p
—>F=Alnp+C, 5
. . . . cOF _ R
e Alisobtained using L'f'ﬁ%dl_l ——> 2/A=1 @

X,y
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Green’s Function: Examples (Cont’d)

e The method of iImages can also be applied to obtain an
Infinite series expansion of Green’s functions

e Consider the case of aline charge between two
conducting planes

o G(XYy,X,y) represents the potential at (x, y) dueto a
line charge of value 1.0 ¢/m located at (X, V')

h-y -
y . +q Original problem
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Green’s Function: Examples (Cont’d)

( ® +q
hty{ (-0
h-y 1
D An infinite number of
h-y - chargesisrequired to
. [*+(Q maintain the same
TYTHI _______________ boundary conditions
Y 14 q
2h-y |
\ ® +q
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Green’s Function: Examples (Cont’d)

* The potential caused by a 1 ¢/m line charge in an unbounded
medium is given by
1

V(p)=-—Inp’
Arre

» Using the figure, we conclude that the Green’s function is
given by the infinite series

In[(x—x’)2 + (y—y')z] - |f{(X—X')2 +(y+ Y'ﬁ +

G(%, Y, X,Y) =4—; 5 oy In[(x=x)2+ (y+y -2nh)] - I (x=x)? + (y-y'—2nh)]
w7 Inf(x=x)2+ (y+y +2nh)7] - I (x=xX)?+ (y-y'+2nh)]

» Specia mathematical techniques are usually utilized to sum
such aslowly convergent series
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Green’s Function: Examples (Cont’d)

e The Green’ s function can aso be expanded in terms of
the eigenfunctions of the homogeneous problem

e Asan example consider the wave eguation
azlﬂ+02¢’+ 2,1, — - oy
k“¢y =0, Subjectto —— = =
% ayz W | n Oor ¢y =0 onB
* Let the elgenvalues and eigenfunctions be k and ¢
O +kiy; =0
* The set ¢ 1san orthonorma set, 1.e,
L 1=}

Iw’}widxdy:{
s 0, i # ]
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Green’s Function: Examples (Cont’d)

* \We then expand the Green’s function in terms of the
eigenfunctions G(X,y,X,y) = Y a;¢; (X, Y)
j=1

e But asthe Green'’s function satisfy
([(2+K2)G(x,y.X,y) = (x=X)3(y - ¥')
11 Substitute for G
Za, (k* =KD, =(x=x)o(y-Y)
1l Multlply by ¢/ and integrate
Zaj(k kzmww ds=¢; (X,Y)
{4
_Yi (X,y)
(k2-K?)
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Green’s Function: Examples (Cont’d)

e Using Green' s functions, construct the solution for the

Poisson’s equation 9 .0V _ ¢y 1y
0 x° 0y2

Subject to V(0, y)=V(a, y)=V(X, 0)=V(X, b)
2

Show that wmn—ﬁsn(—)sn( )

ab
V(X Y) = !, {) G(x,y,X,y)f(X,y)dxdy
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Dyadic Green’s Functions

e Dyadic Green'’s functions are used to express the situation
where a source in one direction givesriseto fieldsin
different directions

e |n general, adyadic Green's function will have 9
components

G(X Y,ZX,Y,Z) = Gull +Gyl] + Gy ik +
Gy Ji +Gyy Ji +Gyz [K+Goki + Gy Kj + G Kk
e For aunit sourceinthexdirection J =ido(x-Xx)d(y-VY)o(z-2)
we obtain thefield E=G.J = Gyl + Gy ] G K
e For ageneral source (arbitrary distribution and orientations)
E(x Vy,2) =[[[G(XY,zX,y,Z)J(X,Y,Z)dV
¥
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| nner Products

e The inner product of two functions is a scalar that must
satisfy the following conditions:

<f,g>=<g,f > commutative

<af +[g,h>=a<fh>+L<g,h> distributive
<f, f>>0if f#0

<f,f >=0 iff f =0

. Example: < £ (), g(x) >= [ f (X)g(x)dx
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Adjoint Operators

e For an operator L, we sometimes define an adjoint operator
L2 defined by < Lf,g>=<f, %g>

* Forthe DE -g%f/dx* =9(X) , f(0)=f(1)=0 = L=-g%/dx?
» We utilize the inner product < f (x),g(x) >:} f (X)g(x)dx

<Lf,g>:}— Zg(x)dx:> & +f } ( ng

fdx=<f,Lg>

If g(0)=g(1)=0, we have < Lf,g>= }_d 9

Sy dx
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Method of Moments (MoM)

« MOM aims at obtaining a solution to the inhomogeneous
equation Lf = g, where L isaknown linear operator, gisa
known excitation and f is unknown

e Letf be expanded in aseries of known basis functionsf,, f,,
oty & F=Yanf,

e Substituting in trr;e equation we get

L(%a'n f.)=9 = %a’n L(f,) =9 (Oneequationin N unknowns)

» We define aset of N weighting functionsw,, w,, ..., Wy
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MoM (Cont’d)

 Taking the inner product of both sides with the mth weighting
function we obtain
Zan<Wm1L(fn)>:<Wm1g>1 m::L21”'1N

(N eguations in N unknowns)

e |n matrix form we can write [| mn][a'r] = [gW]

_<W1’Lf1> <VV11Lf2> <VV11I—fN> |
[I _ <W2’I—fl> <W21Lf2> <W21Lf|\|>
_<WN’I—f1> <WN1Lf2> <WN1LfN> |
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MoM (Cont’d)

al _<VV11g>_

od=| 7| lad=| 07

an _<WN1g>_

e The unknown coefficients are thus given by [an] = [I mn]_l[gw]

e The unknown function f can now be expressed in the

compact form R

f=Sanf,=[f £, - 7127 Jlad =, Jli ol [,
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MoM Example

o Solve d?f/dx?=1+4x?, f(0)=f(1)=0 using MoM

» We choose the basis functions as f =x—x"1, n=1, 2, ..., N
@ f 1sthus approximated by f = Zan(x X"

e Alsowechoosew =f n=1, 2, ... N (Gaerkin's approach)

n n’

our inner product is < f,g >=I f (x)g(x)dx
We have Lf =d4f /dx2:n(n+1)§<”'1

Show that | =<w_ Lf >=mn/(n+n+1)

01 =< Wm, g >=m(3m+8)/(2(m+2)(m+4))
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MoM Example (Cont’d)

 For N=1, we havel,,=1/3, g,=11/30 c—) a,=11/10

e For N=2, we have
1/3 1/2| a,| [11/30 a.| [1/10
1/2 4/5|q,| | 7112 — | 2. 171 213

e For N=3, we have

(1/3 1/2 3/5| .| [11/30] .| [1/2]
1/2 415 1 |g.|=|7/112| —> |g.|=| O
3/5 1 9/7|qas| |51/70] as| |1/3]

e Exact solution is obtained for N=3!
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Types of Basis Functions

 Entire domain basis functionsf_ are defined for the entire
domain of the function f

» Subsectional basis functions are defined only over a
subsection of the domain of the function f

a. ., a,
1 a n-1 a
P(X'Xn) n-2 Lt 2

X X

)I(n-z ;(n—l Xa IXn+1 )l(n+2 )I(n-z ;(n-l X |Xn+1 >|(n+2'
Pulse functionsin 1D
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Types of Basis Functions (Cont’d)

1 . T(X)

V2 ~ /7 A Y
’ N ’ AN
L M s

Triangular functionsin 1D
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Types of Weighting Functions

e Recall that

Zan<Wm1L(fn)>:<Wmag>1 m::L21”'1N

e If wechoosew =f_,n=1, 2, ..., N (Galerkin matching)
Yan<f_,L(f)>=<f_,g> m=12---,N

e If wechoosew =dr-r),n=1, 2, ..., N (Point matching)
Za’n<6(r_I'm),l—(fn)>:<5(r_rm),g>, m::LZ)!N

U

Zanl—(fn (rm)):g(rm)’ m=1,2,-~,N

* Thetwo sides of the system equation are matched at a
number of space points
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