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Differential Equations Vs. Integral Equations

• Integral equations may take several forms, e.g.,
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• Most differential equations can be expressed as integral
equations, e.g.,
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Green’s Functions

• Green’s functions offer a systematic way of converting a
Differential Equation (DE) to an Integral Equation (IE)

• A Green’s function is the solution of the DE corresponding
to an impulsive (unit) excitation

• Consider the differential equation LΦ = g, where L is a
differential operator, Φ is the unknown field and g is the
known given excitation

• For this problem, the Green’s function G(r,r’) is the
solution of the DE LG =δ(r’) subject to the same boundary
conditions

• For an arbitrary excitation we have ∫ ′′′=
volume
excitation
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Green’s Functions: Examples

• Obtain the Green’s function for the DE
subject to Φ =f on the boundary B

• The Green’s function is the solution of

• G can be decomposed into a particular integral and a
homogeneous solution G=F+U with F and U satisfying

• Switching to polar form we get
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Green’s Function: Examples (Cont’d)

•••• The method of images can also be applied to obtain an
infinite series expansion of Green’s functions

•••• Consider the case of a line charge between two
conducting planes

•••• G(x,y,x’,y’) represents the potential at (x, y) due to a
line charge of value 1.0 c/m located at (x’, y’)
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Green’s Function: Examples (Cont’d)
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An infinite number of
charges is required to
maintain the same
boundary conditions
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• The potential caused by a 1 c/m line charge in an unbounded
medium is given by

• Using the figure, we conclude that the Green’s function is
given by the infinite series

• Special mathematical techniques are usually utilized to sum
such a slowly convergent series

ρ
πε

ρ 2ln
4

1
)( =V

Green’s Function: Examples (Cont’d)
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Green’s Function: Examples (Cont’d)

•••• The Green’s function can also be expanded in terms of
the eigenfunctions of the homogeneous problem

•••• As an example consider the wave equation

•••• Let the eigenvalues and eigenfunctions be kj and ψj

•••• The set ψj is an orthonormal set, i.e.,
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Green’s Function: Examples (Cont’d)

•••• We then expand the Green’s function in terms of the

eigenfunctions

•••• But as the Green’s function satisfy
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Green’s Function: Examples (Cont’d)

•••• Using Green’s functions, construct the solution for the

Poisson’s equation

Subject to V(0, y)=V(a, y)=V(x, o)=V(x, b)

Show that
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Dyadic Green’s Functions

•••• Dyadic Green’s functions are used to express the situation
where a source in one direction gives rise to fields in
different directions

•••• In general, a dyadic Green’s function will have 9
components
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•••• For a unit source in the x direction

we obtain the field E=G.J =

•••• For a general source (arbitrary distribution and orientations)
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Inner Products

•••• The inner product of two functions is a scalar that must
satisfy the following conditions:
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Adjoint Operators

•••• For an operator L, we sometimes define an adjoint operator

La defined by >>=<< gLfgLf a,,

•••• For the DE , f(0)=f(1)=0

• We utilize the inner product
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Method of Moments (MoM)

•••• MoM aims at obtaining a solution to the inhomogeneous
equation Lf = g, where L is a known linear operator, g is a
known excitation and f is unknown

•••• Let f be expanded in a series of known basis functions f1, f2,
…, fN

•••• Substituting in the equation we get

•••• We define a set of N weighting functions w1, w2, …, wN

ff n
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nn gfL )(α (One equation in N unknowns)
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MoM (Cont’d)

NmgwfLw m
n
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(N equations in N unknowns)

• Taking the inner product of both sides with the mth weighting

function we obtain

•••• In matrix form we can write [ ][ ] [ ]gl mnmn =α
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MoM (Cont’d)
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•••• The unknown coefficients are thus given by [ ] [ ] [ ]gl mmnn
1−=α

•••• The unknown function f can now be expressed in the
compact form
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MoM Example

•••• Solve d2f/dx2=1+4x2, f(0)=f(1)=0 using MoM

•••• We choose the basis functions as fn=x−xn+1, n=1, 2, …, N

f is thus approximated by

•••• Also we choose wn=fn, n=1, 2, … N (Galerkin’s approach)

•••• our inner product is

•••• We have Lfn=d2fn /dx2=n(n+1)xn-1

•••• Show that lmn=<wm, Lfn>=mn/(m+n+1)
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MoM Example (Cont’d)

•••• For N=1, we have l11=1/3, g1=11/30 α1=11/10

•••• For N=2, we have

•••• For N=3, we have

•••• Exact solution is obtained for N=3!
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Types of Basis Functions

•••• Entire domain basis functions fn are defined for the entire
domain of the function f

• Subsectional basis functions are defined only over a
subsection of the domain of the function f

xn-1xn-2
xn xn+1 xn+2

x

P(x-xn)
1

xn-1xn-2
xn xn+1 xn+2

x

αn αn+1 αn+2

αn-1αn-2

Pulse functions in 1D
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Types of Basis Functions (Cont’d)
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Triangular functions in 1D
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Types of Weighting Functions

NmgwfLw m
n
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•••• Recall that

•••• If we choose wn=fn , n=1, 2, …, N (Galerkin matching)
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•••• If we choose wn=δ(r-rn) , n=1, 2, …, N (Point matching)
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• The two sides of the system equation are matched at a
number of space points


