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Boundary Conditions

Maxwell’s Equations are partial differential equations

Boundary conditions are needed to obtain a unique
solution

Maxwell’ s differential eguations do not apply on the
boundaries because the fields are discontinuous

. Our target isto determine the electric and magnetic fields
IN a certain region of space due to excitations satisfying the
problem’s boundary conditions
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Finite Conductivity Case

& Hpy 02 ~~

- Applying Faraday’s law we get §>E d = —jjB.dS
So

« AsAy- 0, the RHSvanlshesand weget
El-Aan Ez-Aan 0 :> El

or alternatively, NX(E;— E,) =0

|t followsthat the tangential component of the electric field
IS continuous (N0 magnetic current Is assumed)
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Finite Conductivity Case (Cont’d)

- Similarly, starting with the modified Ampere' s law
§H dl :% [fDdS (no current J at the interface), we get
H,.AXax— H,.Axa, =0 —> Hi=H>

or aternatively, nx(H,—-H,) =0

It follows that the tangential component of the magnetic
field intensity Is continuous if there are no boundary
electric currents
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Finite Conductivity Case (Cont’d)

-« Assuming there are no surface charges, Gauss's law
gives gDdS=Q, > lim#D.dS=0
S

_’OS

- Itfollowsthat D,.A,a,- D, Ava,=0 —> D} =D}

or aternatively, n.(D,—D,) =0

n_ &
« Butas DI,=g,E1> > El__2E2

E1
- Normal components of the electric fi eld are
discontinuous across the interface
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Finite Conductivity Case (Cont’d)

- Similarly, by applying Gauss' s law for magnetic fields we
get lim{B.dS=0
Ay-0°g
It followsthat B,.A,a,— B, Aca, =0 ——> Bl = B2
or alternatively, n.(g,-B,) =0

. Butas Bl =f,Hl — HI=*2p3
u,

- Normal components of the magnetic fields are
discontinuous

EE750, 2003, Dr. Mohamed Bakr



Finite Conductivity Boundary Conditions

nx(E,— E,) =0 , no interface surface magnetic currents
nx(H,-H,) =0, nhointerface surface electric currents

n.(D,- D,) =0 , ho interface surface electric charges

U

E; = £2 E> discontinuous normal ectric field
&1

n.(B.— B.) =0 , no interface magnetic surface charges

U

H = % Ho  discontinuous normal magnetic field
1
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Boundary Conditionswith Sources

Boundary conditions must be changed to take into account
the existence of surface currents and surface charges

n

&, Hpy O, AX

Applying the modified Ampere’ s law we get

iHd = [[3.ds+ 2 Dds
C S ot's

. Taking thelimit asAy - 0, each integra term gives
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Boundary Conditionswith Sour ces (Cont’d)

lim §H.dl =(H ,—- H.).Axa,

Ay_>OC

lim [[D.dS =0

Ay_>OS

lim [[J.dS = AI;rpoJ AXAY a, = l;rpo(JAy).Axaz = l;rpo J<..MXa,

By -0’5

J. Isthe surface current density A/m

. Itfollowsthat (H,— H.).AXa,=J..AMXa,

or alternatively (H,-H,).(a,xa,) = Js-a.
(ay*(H:i=H2)-a;=Js.a; ——> NX(H:1—H2) =Js
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Boundary Conditionswith Sour ces (Cont’d)

- Tangential components of the magnetic field intensity

are discontinuous If surface electric current density J
(A/m) exists

If medium 2 is a perfect conductor, we have
NXH,=Js ——> Hi=Js
- Similarly, starting with Faraday’s Law
JEdl =—[[uds-2 [1B.ds
C S ot's

Wecanreach -nx(g,-g,) =p,
For a perfect conductor we have —nxg;=p,
If no fictious magnetic current is assumed we have

-nxg;=0 —> E;=0
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Boundary Conditionswith Sources (Cont’d)

n

&, My, Oy

- Applying Gauss's law for the shown cylinder we have

{:fDdS jjjqevdv —> | I|m {:fDdS— Ilmjjjqevdv
(Dl Dz)A)n—llm(qevAy)A@ O Ao

or aternatively, p-pj=q,

« Normal components of the eectric flux density are
discontinuous by the amount of surface charge density
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Boundary Conditionswith Sour ces (Cont’d)

If medium 2 is a perfect conductor, we have D1 = Q.
- Similarly, for the magnetic flux density we may show
that N.(B1~B2) =

For perfect conductors with no magnetic charges we
have B; =B/ =0
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Summary of Boundary Conditions

NX(H:—H2) =Js
_nx(El_EZ) - l"ls
N.(D1—D5) =0

N.(B1—B2) =0,
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Time-Harmonic Electromagnetic Fields

. |f sources are sinusoidal and the medium is linear then
the fields everywhere are sinusoidal aswell. Thefield
at each point is characterized by its amplitude and phase
(Phasor)

« Ex: f(x,t) = 3.0 cos(at-%)=3.0 Re(exp(j(at-L£X)))
f(x,t) = Re(3.0 exp(-] £5X) exp(j at))
f (x,t) = Re( f exp(jwt))
f =3.0 exp(— L X)
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Time-Harmonic Electromagnetic Fields (Cont’d)

o Similarly, for al field quantities we may write
E(x,Y,21t) = Re(E(x, Y, 2) exp( j ut))

H (x,y,,t) = Re(H (x, y, 2) exp(j at))
D(X,Y, z1t) = Rg( D~(x, Y, Z) exp( j at))

B(x, Y, zt) = Re(B(X, Y, 2) exp( j at))

J(x,Y,2,t) = Re(J (X, Y, 2) exp( j at))
a(x, v, z,t) = Re(@(x, ¥, 2) exp(j at))
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Time-Harmonic Electromagnetic Fields (Cont’d)

- Maxwell’ s equations for the time-harmonic case are
obtained by replacing each time vector by its
corresponding phasor vector and replacing d/ot by jw

- Maxwell’s eguationsin the integral form are given by
#DAS=[[g,dV =Q,
#B.dS=[[[q, dV = va

V

—~

S

§E.dl =[] L.dS - jw][B.dS
C — S S~
$H
C

dl =[[JdS+ jw[[D.dS
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Time-Harmonic Electromagnetic Fields (Cont’d)

- Maxwell’s equationsin the differential form become

1.D =4,
0B=q
1J = -jwq,,

(OxH)=J + jaD

. Same boundary conditions apply
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Energy and Power

- Wewould like to derive equations governing EM energy and
power

. Starting with Maxwell’ s equations

0B
(BXB)=-1m-— =7l H (.H)
oD
(OXH)=3i+3c+—-=3i+Jc+ (.E)

Subtracting we get
H.(OxE)-E-(OxH)=-H.(y+H)—E-(Ji+Jct+J0)

or aternatively,
D-(EXH):—H '(ui+ud)_E'(Ji+Jc+Jd)
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Energy and Power (Cont’d)
- Integrating over the volume of interest
a-(ExH)AV ==[ITH - (i + )adV = [I[E - (Ji + o+ J o)AV
. Utilizing the divergence theorem, we get

g(E>< H)-dS+I§JH (1 + M)V +IVHE-(Ji +J.+Jg)dV =0
- Explanation of different terms
P =ExH isthe Poynting vector (W/m?)
P, = {;} P.dS isthe power flowing out of the surface S

Ps =—[[[(H.-u+E.J)dv Isthesupplied power (W)
\

EE750, 2003, Dr. Mohamed Bakr

19



Energy and Power (Cont’d)

Py =[] E- 3.0V =[[|oE -EdV = [[[o|E[dV

=dissipated power (W) .- H
Po=IIH - psdV = [l[H - ==V = [[[ 1 - — = dV
\ V a V

P = ijjji,u\H Pav =-Zyy,, = magnetic power
ot v 26’[' ot
= MagnetiC ener

W g gy D IE

Pe=[[[E- 350V = [[E-Z2dV = [[[eE .~V

0 ...1 2 0 .
c.=—|||[=€|El dV =—W = et
P ath‘ | o We=magnetic power
W =€lectric energy

‘ Ps=P;+ Py +0(We+Wp,)/ 0t ‘ conservation of EM energy
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