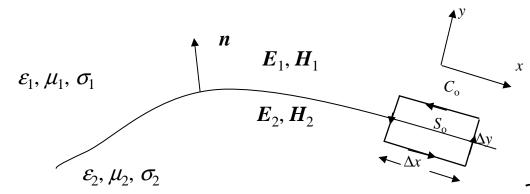
EE750 Advanced Engineering Electromagnetics Lecture 2

Boundary Conditions

- Maxwell's Equations are partial differential equations
- Boundary conditions are needed to obtain a unique solution
- Maxwell's differential equations do not apply on the boundaries because the fields are discontinuous
- Our target is to determine the electric and magnetic fields in a certain region of space due to excitations satisfying the problem's boundary conditions

Finite Conductivity Case



- Applying Faraday's law we get $\oint_{C_0} \mathbf{E}.\mathbf{dl} = -\frac{\partial}{\partial t} \iint_{S_0} \mathbf{B}.\mathbf{dS}$
- As $\Delta y \rightarrow 0$, the RHS vanishes and we get $E_1 \cdot \Delta x a_x E_2 \cdot \Delta x a_x = 0 \implies E_1^t = E_2^t$

or alternatively, $n \times (E_1 - E_2) = 0$

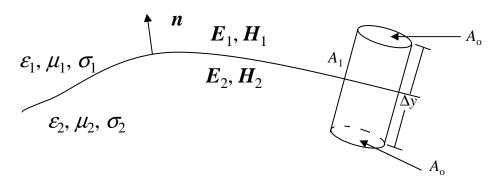
• It follows that the tangential component of the electric field is continuous (no magnetic current is assumed)

Finite Conductivity Case (Cont'd)

• Similarly, starting with the modified Ampere's law $\oint \boldsymbol{H} \cdot d\boldsymbol{l} = \frac{\partial}{\partial t} \iint \boldsymbol{D} \cdot d\boldsymbol{S} \text{ (no current } \boldsymbol{J} \text{ at the interface), we get } \boldsymbol{H}_1 \cdot \Delta x \boldsymbol{a}_x - \boldsymbol{H}_2 \cdot \Delta x \boldsymbol{a}_x = 0 \quad \Longrightarrow \quad \boldsymbol{H}_1^t = \boldsymbol{H}_2^t$ or alternatively, $\boldsymbol{n} \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) = \boldsymbol{0}$

• It follows that the tangential component of the magnetic field intensity is continuous if there are no boundary electric currents

Finite Conductivity Case (Cont'd)



- Assuming there are no surface charges, Gauss's law gives $\iint_S \mathbf{D}.d\mathbf{S} = Q_{ev}$ $\Longrightarrow_{\Delta y \to 0} \iint_S \mathbf{D}.d\mathbf{S} = 0$
- It follows that $\mathbf{D}_1 \cdot A_o \mathbf{a}_y \mathbf{D}_2 \cdot A_o \mathbf{a}_y = 0$ $\longrightarrow D_1^n = D_2^n$ or alternatively, $\mathbf{n} \cdot (\mathbf{D}_1 \mathbf{D}_2) = 0$
- But as $D_{1,2}^n = \varepsilon_{1,2} E_{1,2}^n \implies E_1^n = \frac{\varepsilon_2}{\varepsilon_1} E_2^n$
- Normal components of the electric field are discontinuous across the interface

Finite Conductivity Case (Cont'd)

- Similarly, by applying Gauss's law for magnetic fields we get $\lim_{\Delta y \to 0} \oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$
- It follows that $\mathbf{B}_1 \cdot A_0 \mathbf{a}_y \mathbf{B}_2 \cdot A_0 \mathbf{a}_y = 0 \implies B_1^n = B_2^n$ or alternatively, $\mathbf{n} \cdot (\mathbf{B}_1 \mathbf{B}_2) = 0$
- But as $B_{1,2}^n = \mu_{1,2} H_{1,2}^n \longrightarrow H_1^n = \frac{\mu_2}{\mu_1} H_2^n$
- Normal components of the magnetic fields are discontinuous

Finite Conductivity Boundary Conditions

 $n \times (E_1 - E_2) = 0$, no interface surface magnetic currents $n \times (H_1 - H_2) = 0$, no interface surface electric currents $n.(D_1 - D_2) = 0$, no interface surface electric charges

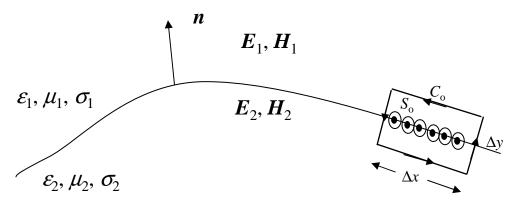
$$E_1^n = \frac{\mathcal{E}_2}{\mathcal{E}_1} E_2^n$$
 discontinuous normal electric field

 $n.(\mathbf{B}_1 - \mathbf{B}_2) = 0$, no interface magnetic surface charges

$$H_1^n = \frac{\mu_2}{\mu_1} H_2^n$$
 discontinuous normal magnetic field

Boundary Conditions with Sources

• Boundary conditions must be changed to take into account the existence of surface currents and surface charges



- Applying the modified Ampere's law we get $\oint_C \mathbf{H} \cdot d\mathbf{l} = \iint_S \mathbf{J} \cdot d\mathbf{S} + \frac{\partial}{\partial t} \iint_S \mathbf{D} \cdot d\mathbf{S}$
- Taking the limit as $\Delta y \rightarrow 0$, each integral term gives

$$\lim_{\Delta y \to 0} \oint_C \boldsymbol{H} . d\boldsymbol{l} = (\boldsymbol{H}_2 - \boldsymbol{H}_1) . \Delta x \boldsymbol{a}_x$$

$$\lim_{\Delta y \to 0} \iint_{S} \boldsymbol{D.dS} = 0$$

$$\lim_{\Delta y \to 0} \iint_{S} \boldsymbol{J}.\boldsymbol{dS} = \lim_{\Delta y \to 0} \boldsymbol{J}.\Delta x \Delta y \,\boldsymbol{a}_{z} = \lim_{\Delta y \to 0} (\boldsymbol{J}\Delta y).\Delta x \,\boldsymbol{a}_{z} = \lim_{\Delta y \to 0} \boldsymbol{J}_{s}.\Delta x \,\boldsymbol{a}_{z}$$

 $J_{\rm s}$ is the surface current density A/m

• It follows that $(\boldsymbol{H}_2 - \boldsymbol{H}_1) \cdot \Delta x \boldsymbol{a}_x = \boldsymbol{J}_s \cdot \Delta x \boldsymbol{a}_z$

or alternatively
$$(\boldsymbol{H}_2 - \boldsymbol{H}_1) \cdot (\boldsymbol{a}_y \times \boldsymbol{a}_z) = \boldsymbol{J}_s \cdot \boldsymbol{a}_z$$

$$(\boldsymbol{a}_{y}\times(\boldsymbol{H}_{1}-\boldsymbol{H}_{2})).\boldsymbol{a}_{z}=\boldsymbol{J}_{s}.\boldsymbol{a}_{z} \implies \boldsymbol{n}\times(\boldsymbol{H}_{1}-\boldsymbol{H}_{2})=\boldsymbol{J}_{s}$$

- Tangential components of the magnetic field intensity are discontinuous if surface electric current density J_s (A/m) exists
- If medium 2 is a perfect conductor, we have

$$\boldsymbol{n} \times \boldsymbol{H}_1 = \boldsymbol{J}_s \quad \longrightarrow \quad \boldsymbol{H}_1^t = \boldsymbol{J}_s$$

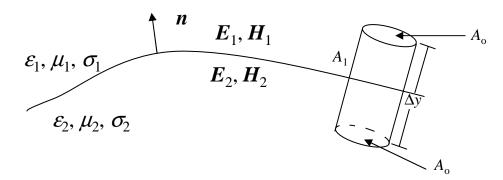
• Similarly, starting with Faraday's Law

$$\oint_C E . dl = -\iint_S \mu . dS - \frac{\partial}{\partial t} \iint_S B . dS$$

We can reach $-\mathbf{n} \times (\mathbf{E}_1 - \mathbf{E}_2) = \boldsymbol{\mu}_s$

- For a perfect conductor we have $-n \times E_1 = \mu_s$
- If no fictious magnetic current is assumed we have

$$-\boldsymbol{n} \times \boldsymbol{E}_1 = 0 \quad \square \qquad \qquad \boldsymbol{E}_1^t = 0$$



• Applying Gauss's law for the shown cylinder we have

$$\iint_{S} \mathbf{D} d\mathbf{S} = \iiint_{V} q_{ev} dV \longrightarrow \lim_{\Delta y \to 0} \iint_{A_{0}} \mathbf{D} d\mathbf{S} = \lim_{\Delta y \to 0} \iiint_{V} q_{ev} dV$$

$$(\mathbf{D}_{1} - \mathbf{D}_{2}) \cdot A_{o} \mathbf{n} = \lim_{\Delta y \to 0} (q_{ev} \Delta y) A_{o} = q_{es} A_{o}$$

or alternatively, $D_1^n - D_2^n = q_{es}$

 Normal components of the electric flux density are discontinuous by the amount of surface charge density

- If medium 2 is a perfect conductor, we have $D_1^n = q_{es}$
- Similarly, for the magnetic flux density we may show that $n \cdot (B_1 B_2) = q_{ms}$
- For perfect conductors with no magnetic charges we have $B_2^n = B_1^n = 0$

Summary of Boundary Conditions

$$\boldsymbol{n} \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) = \boldsymbol{J}_s$$

$$-\boldsymbol{n}\times(\boldsymbol{E}_1-\boldsymbol{E}_2)=\boldsymbol{\mu}_s$$

$$\boldsymbol{n}.(\boldsymbol{D}_1 - \boldsymbol{D}_2) = q_{es}$$

$$\boldsymbol{n}.(\boldsymbol{B}_1 - \boldsymbol{B}_2) = q_{ms}$$

Time-Harmonic Electromagnetic Fields

- If sources are sinusoidal and the medium is linear then the fields everywhere are sinusoidal as well. The field at each point is characterized by its amplitude and phase (Phasor)
- Ex: $f(x,t) = 3.0 \cos(\omega t \beta x) = 3.0 \operatorname{Re}(\exp(j(\omega t \beta x)))$ $f(x,t) = \operatorname{Re}(3.0 \exp(-j\beta x) \exp(j\omega t))$ $f(x,t) = \operatorname{Re}(\tilde{f} \exp(j\omega t))$ $\tilde{f} = 3.0 \exp(-j\beta x)$

Time-Harmonic Electromagnetic Fields (Cont'd)

• Similarly, for all field quantities we may write

$$E(x, y, z, t) = \text{Re}(\widetilde{E}(x, y, z) \exp(j\omega t))$$

$$H(x, y, z, t) = \text{Re}(\widetilde{H}(x, y, z) \exp(j\omega t))$$

$$D(x, y, z, t) = \text{Re}(\widetilde{D}(x, y, z) \exp(j\omega t))$$

$$B(x, y, z, t) = \text{Re}(\widetilde{B}(x, y, z) \exp(j\omega t))$$

$$J(x, y, z, t) = \text{Re}(\widetilde{J}(x, y, z) \exp(j\omega t))$$

$$q(x, y, z, t) = \text{Re}(\widetilde{J}(x, y, z) \exp(j\omega t))$$

Time-Harmonic Electromagnetic Fields (Cont'd)

- Maxwell's equations for the time-harmonic case are obtained by replacing each time vector by its corresponding phasor vector and replacing $\partial/\partial t$ by $j\omega$
- Maxwell's equations in the integral form are given by

$$\iint_{S} \widetilde{\boldsymbol{D}}.d\boldsymbol{S} = \iiint_{V} \widetilde{\boldsymbol{q}}_{ev} \, dV = \widetilde{\boldsymbol{Q}}_{ev}$$

$$\iint_{S} \widetilde{\boldsymbol{B}}.d\boldsymbol{S} = \iiint_{V} \widetilde{\boldsymbol{q}}_{mv} \, dV = \widetilde{\boldsymbol{Q}}_{mv}$$

$$\oint_{C} \widetilde{\boldsymbol{E}}.d\boldsymbol{l} = -\iint_{S} \widetilde{\boldsymbol{\mu}}.d\boldsymbol{S} - j\omega \iint_{S} \widetilde{\boldsymbol{B}}.d\boldsymbol{S}$$

$$\oint_{C} \widetilde{\boldsymbol{H}}.d\boldsymbol{l} = \iint_{S} \widetilde{\boldsymbol{J}}.d\boldsymbol{S} + j\omega \iint_{S} \widetilde{\boldsymbol{D}}.d\boldsymbol{S}$$

$$\oiint_{S} \widetilde{\boldsymbol{J}}.d\boldsymbol{S} = -j\omega \widetilde{\boldsymbol{Q}}_{e}$$

Time-Harmonic Electromagnetic Fields (Cont'd)

Maxwell's equations in the differential form become

$$\nabla .\tilde{\boldsymbol{D}} = \tilde{\boldsymbol{q}}_{ev}$$

$$\nabla .\tilde{\boldsymbol{B}} = \tilde{\boldsymbol{q}}_{mv}$$

$$\nabla .\tilde{\boldsymbol{J}} = -j\omega \tilde{\boldsymbol{q}}_{ev}$$

$$(\nabla \times \tilde{\boldsymbol{E}}) = -\tilde{\boldsymbol{\mu}} - j\omega \tilde{\boldsymbol{B}}$$

$$(\nabla \times \tilde{\boldsymbol{H}}) = \tilde{\boldsymbol{J}} + j\omega \tilde{\boldsymbol{D}}$$

Same boundary conditions apply

Energy and Power

- We would like to derive equations governing EM energy and power
- Starting with Maxwell's equations

$$(\nabla \times E) = -\mu_i - \frac{\partial B}{\partial t} = -\mu_i - \mu_d \qquad (.H)$$

$$(\nabla \times \boldsymbol{E}) = -\boldsymbol{\mu}_{i} - \frac{\partial \boldsymbol{B}}{\partial t} = -\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{d} \qquad (.\boldsymbol{H})$$
$$(\nabla \times \boldsymbol{H}) = \boldsymbol{J}_{i} + \boldsymbol{J}_{c} + \frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{J}_{i} + \boldsymbol{J}_{c} + \boldsymbol{J}_{d} \qquad (.\boldsymbol{E})$$

Subtracting we get

$$H \cdot (\nabla \times E) - E \cdot (\nabla \times H) = -H \cdot (\mu_i + \mu_d) - E \cdot (J_i + J_c + J_d)$$

or alternatively,

$$\nabla \cdot (\boldsymbol{E} \times \boldsymbol{H}) = -\boldsymbol{H} \cdot (\boldsymbol{\mu}_i + \boldsymbol{\mu}_d) - \boldsymbol{E} \cdot (\boldsymbol{J}_i + \boldsymbol{J}_c + \boldsymbol{J}_d)$$

Energy and Power (Cont'd)

• Integrating over the volume of interest

$$\iiint\limits_{V} \nabla \cdot (\boldsymbol{E} \times \boldsymbol{H}) dV = -\iiint\limits_{V} \boldsymbol{H} \cdot (\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{d}) dV - \iiint\limits_{V} \boldsymbol{E} \cdot (\boldsymbol{J}_{i} + \boldsymbol{J}_{c} + \boldsymbol{J}_{d}) dV$$

• Utilizing the divergence theorem, we get

$$\oint_{S} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{S} + \iiint_{V} \mathbf{H} \cdot (\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{d}) dV + \iiint_{V} \mathbf{E} \cdot (\boldsymbol{J}_{i} + \boldsymbol{J}_{c} + \boldsymbol{J}_{d}) dV = 0$$

• Explanation of different terms

 $P = E \times H$ is the Poynting vector (W/m²)

 $P_o = \iint_S P dS$ is the power flowing out of the surface S

 $P_S = -\iiint_V (\boldsymbol{H} \cdot \boldsymbol{\mu}_i + \boldsymbol{E} \cdot \boldsymbol{J}_i) dV$ is the supplied power (W)

Energy and Power (Cont'd)

$$P_{d} = \iiint_{V} \mathbf{E} \cdot \mathbf{J}_{c} dV = \iiint_{V} \sigma \mathbf{E} \cdot \mathbf{E} dV = \iiint_{V} \sigma \left| \mathbf{E} \right|^{2} dV$$

$$= \text{dissipated power (W)}$$

$$P_{m} = \iiint_{V} \mathbf{H} \cdot \boldsymbol{\mu}_{d} dV = \iiint_{V} \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} dV = \iiint_{V} \mu \mathbf{H} \cdot \frac{\partial \mathbf{H}}{\partial t} dV$$

$$P_{m} = \frac{\partial}{\partial t} \iiint_{V} \frac{1}{2} \mu \left| \mathbf{H} \right|^{2} dV = \frac{\partial}{\partial t} W_{m} = \text{magnetic power}$$

$$W_{m} = \text{magnetic energy}$$

$$P_{e} = \iiint_{V} \mathbf{E} \cdot \mathbf{J}_{d} dV = \iiint_{V} \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} dV$$

$$P_{e} = \frac{\partial}{\partial t} \iiint_{V} \frac{1}{2} \varepsilon \left| \mathbf{E} \right|^{2} dV = \frac{\partial}{\partial t} W_{e} = \text{magnetic power}$$

$$W_{e} = \text{electric energy}$$

$$P_s = P_o + P_d + \partial (W_e + W_m) / \partial t$$

conservation of EM energy