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Scattering and Connection (the General Lossy Case)

• Six links exist for the general lossy case

• We, however, do not care about the value of the reflected
impulses on the loss stub (energy is just being absorbed)

• Also, no incident wave appear on the loss stub because it
is matched

• It follows that the scattering matrix can be reduced in
dimension by 1 (S∈ R5×5)

• Following a similar approach to that used in the lossless
case we derive the scattering relationship
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Scattering and Connection (Cont’d)

Where y=4+yo+go , ,
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Modeling of Boundaries

• In establishing the equivalence between Maxwell’s
equations and a network of TLM nodes we noted that
node voltage models the electric field and that link
currents model the magnetic field

• It follows that the boundary resistive load represents the
wave impedance

• Lossless nondispersive boundaries include open and short
circuit (magnetic and electric walls, respectively)
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Modeling of Boundaries (Cont’d)

• For a magnetic wall we have , link reflection

coefficient is 1,

• For an electric wall we have , link reflection

coefficient is -1,
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• The general expression of the link reflection coefficient
due to a non dispersive load RL is
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Modeling of Boundaries (Cont’d)

• For a lossy boundary with surface resistance Rs the link

reflection coefficient

• For TEM waves propagating in free space, the wave
impedance is ηo regardless of the wave frequency. It
follows that a wideband Absorbing Boundary Condition
(ABC) has an impulse reflection coefficient

• For TEM waves propagating in a dielectric with εr , wave
impedance is ηo/ regardless of the wave frequency. It

follows that
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Modeling of Boundaries (Cont’d)

• For TEno modes in a rectangular waveguide, the wave
impedance above cut-off is real but dispersive. It follows
that an ABC using a real impulse reflection coefficient is
feasible only at one frequency

λg is the guide wavelength and λ is the open medium

• A wideband ABC is obtained in this case using the John’s
matrix
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Discrete Time-Domain Green’s Function
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Excite with an impulse at node i and register all impulses
coming out at all links for all time steps
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The Johns Matrix

• This matrix is also denoted as the Johns’ matrix

• The Johns matrix is a three-dimensional matrix

• The ith row of this matrix is obtained by exciting an
impulse at the ith node and registering all impulses
coming out at all links for all time steps

• This is repeated for all links, so N TLM analyses are
required

• Sequences of the form g(m,n,k) are being generated. Here
g(m,n,k) is the reflected impulse at the mth node at the kth
time step due to a unit incident impulse at the nth node at
the 0th time step
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• Using convolution summation we have

• Johns’ Matrix is utilized in partioning of a large structure
into small substructures and in time-domain modeling of
wideband ABC in non-TEM waveguides

The Johns’ Matrix (Cont’d)
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Dispersion in a 2D TLM Mesh

• We first study propagation at 45°

Christos, Transmission Line Modeling (TLM)
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Dispersion in a 2D TLM Mesh (Cont’d)

• Exciting ports 1 and 2 by 1V results in and

. These reflected impulses travel to become
incident on neighboring nodes at the next time step. This
will give and . It took 2 time
steps to travel a distance of ∆l

• The network velocity is

regardless of frequency

• It follows that no dispersion appears for this case
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Dispersion in a 2D TLM Mesh (Cont’d)

• For propagation in the direction of one of the axis,
symmetry allows us to represent the network by a cascade
of periodic structures
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Dispersion in a 2D TLM Mesh (Cont’d)

• It follows that we have

• Equating this product to the ABCD of a single section
of transmission line
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Dispersion in a 2D TLM Mesh (Cont’d)

• It follows that we have

• But

and

• Combining the above equations we obtain the dispersion

relationship

• Notice that vN depends on the ratio ∆l/λo

• Also, for ∆l<<λo ,
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Dispersion in a 2D TLM Mesh (Cont’d)

Christos, Transmission Line Modeling (TLM)
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3D TLM

• The symmetric condensed node (SCN) is the most
widely used node

• The SCN has 6 branches with 2 transmission lines in each
branch
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3D TLM (Cont’d)

• For modeling free space S∈ ℜ 12×12

• Components of S are determined through conservation of
energy

• Open and short circuit stubs are used to model the proper
capacitance and inductance in the x,y and z directions

• In this case S∈ ℜ 18×18


