
EMBEDDED MEMORY BIST FOR SYSTEMS-ON-A-CHIP

EMBEDDED MEMORY BIST FOR SYSTEMS-ON-A-CHIP

BY

BAI HONG FANG, B.ENG. (ELECTRICAL)

OCTOBER 2003

a thesis

submitted to the department of electrical and computer engineering

and the committee on graduate studies

of mcmaster university

in partial fulfillment of the requirements

for the degree of

Master of Applied Science

c© Copyright 2003 by Bai Hong Fang, B.Eng. (Electrical)

All Rights Reserved

MASTER OF APPLIED SCIENCE (2003) McMaster University

(Electrical and Computer Engineering) Hamilton, Ontario

TITLE: Embedded Memory BIST for Systems-on-a-Chip

AUTHOR: Bai Hong Fang, B.Eng. (Electrical)

SUPERVISOR: Dr. Nicola Nicolici

NUMBER OF PAGES: ix, 89

ii

Abstract

Embedded memories consume an increasing portion of the die area in deep submicron

systems-on-a-chip (SOCs). Manufacturing test of embedded memories is an essential

step in the SOC production that screens out the defective chips and accelerates the

transition from the yield learning phase to the volume production phase of a new

manufacturing technology. Built-in self-test (BIST) is establishing itself as an en-

abling technology that can effectively tackle the SOC test problem. However, unless

consciously implemented, its main limitations lie in elevated power dissipation and

area overhead, and potential performance penalty and increased testing time, all of

which directly influence the cost and quality of manufacturing test. This thesis intro-

duces two new embedded memory BIST architectures, whose objective is to reduce

the cost of test and increase the test quality to improve product reliability and yield.

A distributed memory BIST approach with a serial interconnect scheme is first

developed. This solution can concurrently support multiple memory test algorithms

for heterogeneous memories with low power dissipation during test and with relatively

low gate and routing area overhead, in addition to facilitating self-diagnosis. The dis-

tributed BIST approach is then extended to a hardware/software co-testing memory

BIST architecture for complex SOCs. By reusing the existing on-chip resources (e.g.,

processor cores and busses), further savings in area overhead can be achieved and

performance penalty for bus-connected memories can be eliminated. This is accom-

plished using a design space exploration framework based on a new test scheduling

algorithm that balances the usage of the existing on-chip resources and dedicated

design for test (DFT) hardware such that the functional power constraints are not

exceeded during test, while trading-off the testing time against the DFT area.

iii

Acknowledgments

I will begin by thanking my supervisor, Nicola, for his valuable assistance

and energetic support during this project. I also wish to thank my col-

leagues in the Computer-Aided Design and Test (CADT) Research Group,

Qiang Xu, Henry Ko and David Lemstra, who were of great help when

ideas and questions needed to be discussed. In particular, I would like to

express my appreciation to Qiang Xu for his help in debugging the test

scheduling algorithm. I wish to acknowledge Canadian Microelectronics

Corporation (CMC) for their manufacturing grants, as well as the tech-

nical support and training they have provided. I am also grateful to the

graduate students, faculty, administrative and technical members in De-

partment of Electrical and Computer Engineering at McMaster University

for their continuous help during my study and research.

Members of my family and many more than I can include here, have

loved me far beyond what I can ever return. Special thanks to my uncle

Aiguo Chen and aunt Mimi Fang for their steady support over the years.

Words cannot express my gratitude to my wife Cizhuang Zhang and my

son Wenhan Fang, for their patient understanding, love, and support,

which make my work possible.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 Manufacturing Test of Integrated Circuits 1

1.2 Digital Test Methodologies: ATE vs. BIST 3

1.3 System-on-a-Chip Test Challenges . 4

1.4 Embedded Memory Testing . 9

1.5 Thesis Organization . 10

2 Theoretical Background on Memory Testing 12

2.1 Functional Model and Memory Faults 13

2.2 Fault Combinations . 18

2.3 Functional Testing and March Test Algorithms 20

3 Previous Work on Memory BIST and Motivation 26

3.1 Memory BIST Challenges . 27

3.2 Memory BIST Architectures . 30

3.3 Power-Constrained Test Scheduling 36

3.4 Special Design Implementation . 38

3.5 Motivation for New Memory BIST Solutions 41

v

4 Hardware-centric Memory BIST Architecture 42

4.1 Memory BIST Architecture . 42

4.2 Memory BIST Controller . 44

4.3 Memory BIST Wrapper . 48

4.4 Experimental Results . 54

4.5 Summary . 58

5 HW/SW Co-testing Memory BIST Architecture 60

5.1 Memory BIST Architecture . 61

5.2 Software Implementation . 67

5.3 Test Scheduling . 69

5.4 Experimental Results . 73

5.5 Summary . 77

6 Conclusion 78

A Silicon Implementation 80

Bibliography 83

vi

List of Tables

2.1 Subset of Functional Memory Faults [39] 14

2.2 Reduced Functional Memory Faults [39] 14

2.3 Relationship Between Functional and Reduced Functional Faults[39] 15

2.4 Irredundant March Test Algorithms [8] 21

2.5 Irredundant March Test Summary [39] 22

2.6 Background Patterns for an 8-bit Memory Width 24

3.1 Memory Test Parameters for Example 3.1 38

3.2 3-bit Up and Down Reflected Gray Code Sequence 40

3.3 Summary of the Existing Solutions for Distributed Memory BIST . . 40

4.1 Background Pattern Generator Area 55

4.2 Address Generator Area . 55

4.3 MBIST (With and Without P1500) Wrapper Area Overhead 56

4.4 Comparisons of Total BAO for Different Approaches 57

4.5 Testing Time Comparison . 57

5.1 Comparison of Hardware-centric and HW/SW Co-testing MBISTs . 63

5.2 MBIST Area Overhead for LEON SOC 74

5.3 Different Approaches for Testing BCMs. 74

5.4 Memory Configuration and Power Dissipation [41] 75

5.5 Testing Time (cc) and Wrapped Memories for Different Test Schedules 76

5.6 Testing Time vs. Wrapper Numbers. 77

vii

List of Figures

1.1 Basic Principle of Digital Testing . 3

2.1 Functional Memory Model [39] . 13

2.2 Address Decoder Faults [39] . 18

2.3 Combinations of Address Decoder Faults [39] 18

2.4 Two Coupling Faults [39] . 19

3.1 Generic Memory BIST Architecture 27

3.2 A Distributed Memory BIST Approach [7] 34

3.3 Memory BIST for Bus-connected Memories [38] 36

3.4 Different Test Schedules for Example 3.1 38

4.1 New Hardware-centric Memory BIST Architecture 43

4.2 Hardware-centric MBIST Controller 44

4.3 Instruction Memory . 45

4.4 Hardware-centric MBIST Wrapper Block Diagram 48

4.5 Implementation of the Reflected Gray Code Counter 50

4.6 Wrapper Instruction Register (WIR) 53

4.7 BIST Area Overhead for Each Component 58

5.1 New HW/SW Co-testing Memory BIST Architecture 61

5.2 Memory BIST Controller . 64

5.3 Bus-connected Memory BIST Wrapper 66

5.4 Example LEON SOC Platform Configuration 73

viii

A.1 Microphoto of Hardware-centric MBIST Architecture 81

A.2 Layout View of Hardware/Software Co-testing MBIST Architecture . 82

ix

Chapter 1

Introduction

Due to the rapid progress in the very large scale integrated (VLSI) technology, an

increasing number of transistors can be fabricated onto a single silicon die. For ex-

ample, a state-of-the-art 130 nm complementary metal-oxide semiconductor (CMOS)

process technology can have up to eight metal layers, poly gate lengths as small as 80

nm and silicon densities of 200K-300K gates/mm2 [37]. However, although million-

gates integrated circuits (ICs) can be manufactured, the increased chip complexity

requires robust and sophisticated test methods. Hence, manufacturing test is becom-

ing an enabling technology that can improve the declining manufacturing yield, as

well as control the production cost, which is on the rise due to the escalating volume

of test data and testing times. Therefore reducing the cost of manufacturing test,

while improving the test quality required to achieve higher product reliability and

manufacturing yield, has already been established as a key task in VLSI design [8].

1.1 Manufacturing Test of Integrated Circuits

Fabrication anomalies in the IC manufacturing process may cause some circuits to be-

have erroneously [1]. Manufacturing test helps to detect physical defects (e.g., shorts

or opens) prior to delivering the packaged circuits to end-users. Once a defective chip

has been detected, comprehensive defect screening through fault diagnosis is required

to adjust the manufacturing process and accelerate the yield learning curve [19].

1

CHAPTER 1. INTRODUCTION 2

The physical defects lead to faulty behaviors that can be detected by parametric

tests for chip pins and tests for functional blocks [8]. Parametric tests include DC tests

(such as voltage, leakage test and output drive current test) and AC tests (setup and

hold time tests and propagation test). These tests are usually technology-dependent

and can be done without any understanding of the chip functionality. The test for

functional blocks involves modeling manufacturing defects at a certain level of design

abstraction, such as behavioral level, register-transfer level (RTL), gate level or tran-

sistor level. Fault models based on gate level netlists are technology-independent and

over time have been proven to be very efficient for testing digital circuits. Basic fault

models for gate level testing are stuck-at, bridging and delay fault models. The single

stuck-at fault model is the most popular fault model in digital system testing and

is based on the assumption that a single node (line) in the structural netlist of logic

gates can be stuck to a logic value 0 (SA0) or 1 (SA1). The test for functional blocks

determines whether the manufactured chip behaves as designed and because the gate

count keeps on growing, the testing time for functional blocks is also increasing. Since

the time a chip spends on an expensive tester directly influences the production cost,

reducing the testing time of functional blocks is an essential task, which needs to be

accomplished in order to lower the cost associated with manufacturing test.

The test of functional blocks can further be divided into structural test and func-

tional test. If the test depends on the netlist structure of the design then it is called

structural test. Based on the targeted fault models (e.g., stuck-at), automatic test

pattern generation (ATPG) tools generate test sets which sensitize the fault and

propagate its effects to observation points (e.g., primary outputs). Functional test

programs, on the other hand, generate a set of test patterns to verify the function-

ality of each component in the circuit. Because functional test is an exhaustive test

method, testing time is prohibitively large for combinational logic blocks, which makes

it infeasible for complex digital systems [8]. One exception is the test of semiconduc-

tor memories due to their regularity. Since the cells in a memory block have identical

structure and they are not related one to each other, and because memory operations

are simple (read and write), exhaustive functional test becomes tractable. Chapter 2

gives detailed information on functional memory fault models and test algorithms.

CHAPTER 1. INTRODUCTION 3

Circuit
Under Test

(CUT)

Input Test
Vectors

Comparator

Output
Responses

Correct
Response

Data

Pass/Fail

Figure 1.1: Basic Principle of Digital Testing

1.2 Digital Test Methodologies: ATE vs. BIST

The basic principle of manufacturing testing is illustrated in Figure 1.1. Circuit under

test (CUT) can be the entire chip or only a part of the chip (e.g., a memory core or a

logic block). Input test vectors are binary patterns applied to the inputs of the CUT

and the associated output responses are the values observed on the outputs of the

CUT. Using a comparator output responses are checked against the expected correct

response data, which is obtained through simulation prior to design tape-out. If all the

output responses match the correct response data, the CUT has passed the test and

it is labeled as fault-free. Based on the techniques how the test vectors are applied to

the CUT and how the output responses are compared, there are two main directions

to test electronic circuits: external testing using automatic test equipment (ATE) and

internal testing using built-in self-test (BIST). When external testing is employed, the

input test vectors and correct response data are stored in the ATE memory. Input

test vectors are generated using ATPG tools, while correct response data is obtained

through circuit simulation. For external testing, the comparison is carried out on the

tester. Although the ATE-based test methodology has been dominant in the past, as

transistor to pin ratio and circuit operating frequencies continue to increase, there is

a growing gap between the ATE capabilities and circuit test requirements (especially

in terms of speed and volume of test data).

CHAPTER 1. INTRODUCTION 4

ATE limitations make BIST technology an attractive alternative to external test

for complex chips. BIST [5, 8] is a design-for-test (DFT) method where part of

the circuit is used to test the circuit itself (i.e., test vectors are generated and test

responses are analyzed on-chip). BIST needs only an inexpensive tester to initialize

BIST circuitry and inspect the final results (pass/fail and status bits). However, BIST

introduces extra logic, which may induce excessive power in the test mode (see next

section for details), in addition to potential performance penalty and area overhead.

BIST circuitry can further be divided into logic BIST for random logic blocks (e.g.,

control circuitry or data path components) and memory BIST for on-chip memory

cores. The cost and quality of logic BIST has been subject to extensive research over

the last two decades and, since the focus of this thesis is on embedded memory BIST,

the reader is referred to [5, 8] for more information. It is important to note that

the main problem with logic BIST lies in the computational overhead required to

synthesize compact and scalable test pattern generators and response analyzers such

that high fault coverage is achieved in low testing time and with limited interaction

to external equipment. In contrast, due to the regular memory block structure and

simple operations of memory cores, memory BIST (MBIST) can be implemented

using compact and scalable test pattern generators and response analyzers and it can

rapidly achieve high fault coverage for certain functional fault models (see Chapter 2

for details).

1.3 System-on-a-Chip Test Challenges

As process technologies continue to shrink, designers are able to integrate all or most

of the functional components found in a traditional system-on-a-board (SOB) onto a

single silicon die, called system-on-a-chip (SOC) . This is achieved by incorporating

pre-designed components, known as intellectual property (IP) cores (e.g., processors,

memories), into a single chip. While SOCs benefit designers in many aspects, their

heterogeneous nature presents unique technical challenges to achieve high quality

test, i.e., acceptable fault coverages for the targeted fault models. In the following,

several SOC test challenges are enumerated along with the motivation for a shift from

CHAPTER 1. INTRODUCTION 5

ATE-based SOC testing to BIST.

• Controllability and observability

An SOC contains several embedded IP cores. Although the IP cores are pre-

designed and pre-verified by the core providers, SOC composition is the system

integrators’ duty, who is also in charge of verification and manufacturing testing

of the entire SOC, including the IP-protected internal cores. Since most of the

input/output (I/O) ports of these embedded cores are not directly connected to

the SOC’s pins, the testability , i.e., both the controllability and the observability

[1], is reduced and, unless some special DFT techniques are employed, the fault

coverage will be lowered. To increase the testability, test access mechanisms

(TAMs) and core wrappers are two new and important DFT techniques in

SOC testing [52]. TAM delivers test vectors (propagates test responses) to

(from) embedded cores from (to) primary inputs (outputs), while core wrappers

(e.g., IEEE P1500 [23, 24, 30]) connect the embedded cores to the TAM. The

wrapper/TAM co-design can be solved for different optimization objectives (e.g.,

testing time or TAM width) and constraints (e.g., layout or power dissipation)

[20]. However, when ATE-based testing is employed (i.e., patterns and responses

are stored on the tester), since the number of tester channels is limited in

practice, test concurrency is bounded by the number of these channels, which

can adversely influence the cost of test. This problem can be addressed by

moving the generation and analysis functions on-chip and use an inexpensive

tester to initialize, control and observe the final results of the testing process.

• Volume of test data, tester channel capacity and testing time

The volume of test data is determined by the chip complexity and it grows

rapidly as more IP cores are integrated into a single SOC. The easiest way to

deal with increased volume of test data is to upgrade the tester memory and

use more tester channels to increase test concurrency, however this is infeasible

since it will prohibitively increase the ATE cost. A more cost effective approach

is to use test data compaction and/or compression. Test data compaction re-

duces the number of test patterns in the test set (by discarding test patterns

CHAPTER 1. INTRODUCTION 6

that target faults detected by other patterns in the test set) and test data com-

pression decreases the number of bits (that need to be stored for each pattern)

and uses dedicated decompression hardware (either off or on-chip) for real-time

decompression and application [18]. Test data compaction reduces the volume

of test data, however it is trading-off the tester channel capacity against the

testing time. If the decompression hardware is placed on-chip, then test data

compression eliminates this trade-off. Deterministic BIST is a particular case

of test data compression where the compressed bits are used for BIST initial-

ization (i.e., seeds) and BIST observation (i.e., signatures). The benefits of

memory BIST technology are justified mainly by its deterministic nature.

• Heterogeneous IP cores

Many SOC designs incorporate cores that use different technologies, such as

random logic, memory blocks, and analog circuits. For systems assembled on

printed circuit boards (PCBs) each of these components was tested using dif-

ferent types of dedicated ATEs (e.g., digital, memory or analog testers). For

SOC testing one can use generic high-performance mixed-signal ATEs, how-

ever their high production cost brings limited benefits to complex designs, since

cores using heterogeneous technologies still need to be tested sequentially, thus

lengthening the testing time and ultimately raising the manufacturing test cost.

In addition, embedded core controllability and observability issues cannot be

addressed without dedicated on-chip DFT hardware, whose necessity justifies a

shift toward BIST. The use of different BIST circuitry for the appropriate tech-

nologies (logic, memory or analog BIST), increases both testability and test

concurrency of SOCs comprising heterogeneous IP cores.

• At-speed test

As VLSI technology moves below 100 nm, traditional stuck-at fault testing is

not sufficient. This is because unanticipated process variations, weak bridging

defects, and crosstalk violations (only to mention a few) may cause only timing

malfunctions, which cannot be detected by the stuck-at fault test vectors de-

livered by ATEs whose frequency is lower than the maximum CUT frequency.

CHAPTER 1. INTRODUCTION 7

These logical faults caused by timing-related defects are known as delay faults

and they can only be detected when the chip is tested at the functional (rated)

speed. This type of test is called at-speed test [8]. For microprocessor-based

circuits, at-speed test can be accomplished by running a set of functional test

programs (stored in an off-chip or on-chip memory). Since design automation

for functional test program development is still an emerging research area, this

approach is very time consuming (even for a decent delay fault coverage). An

alternative for logic blocks is to use structural scan patterns and specialized

scan chain clocking schemes coupled with two-pattern test application strate-

gies through scan (e.g., broadside or skewed-load [8]). In any of the above cases

at-speed test can be performed using high-speed ATEs (note, however, even the

highest performance/cost ATEs will be slower than the fastest new chips), or

more cost effectively, by BIST interacting with a low-speed testers required only

to activate the self-test circuitry and to acquire the BIST signatures.

• Power dissipation

Power dissipation is becoming a key challenge for the deep sub-micron CMOS

digital integrated circuits. Placing more and more functions on a silicon die has

resulted in higher power/heat densities, which imposes stringent constraints on

packaging and thermal management in order to preserve performance and reli-

ability [28]. There are two major sources of power consumption in CMOS VLSI

circuits: dynamic power dissipation, due to capacitive switching, and static

power dissipation, due to leakage and subthreshold currents. The 2001 Inter-

national Technology Roadmap for Semiconductors (ITRS) [19] anticipates that

power will be limited more by system level cooling and test constraints than

packaging. This is because, if packaging and thermal management parameters

(e.g., heat sinks) are determined only based on the functional operating con-

ditions, the higher test switching activity [51] and test concurrency will affect

both manufacturing yield and reliability [28].

On the one hand, dynamic power dissipation dominates the chip power con-

sumption for digital CMOS technology in 180 nm range or higher. Dynamic

CHAPTER 1. INTRODUCTION 8

power dissipation can be analyzed from two different perspectives. Average

power dissipation which stands for the average power utilized over a long period

of operation, and peak power dissipation which is the power required in a very

short time period such as the power consumed immediately after the rising or

falling edge of the system clock. When considering SOC test, to achieve high

fault coverage with less test data, the test patterns are usually uncorrelated

[8]. This means the switching activity during test can differ from that dur-

ing functional operation. In most cases, the testing power consumption is the

higher one. A practical measurement is reported in [34] which indicates the

switching activity is 35-40% more during scan-based transition test than that

in normal functional mode. For traditional stuck-at fault test, one straight-

forward solution to meet the power constraints is to reduce the system clock

frequency during test which implies longer testing time. However, as described

in the previous challenge, to test time related faults, at-speed testing is nec-

essary. Consequently, the power dissipation during at-speed test can exceed

the maximum power limit which may lead to chip malfunctions or to burn the

overheated chip. There are two research directions to address dynamic power

problem during at-speed test: the first direction aims to limit the number of

concurrent test blocks using test scheduling under power constraints [12, 13].

The second research direction is to reduce the switching activity during test

[11].

On the other hand, static power dissipation is becoming an important compo-

nent for low power design and test in 130nm or lower CMOS technologies with

low gate subthreshold. Power gating is an efficient method to reduce static

power dissipation and it based on disconnecting the idle module(s) from the

power and ground network to reduce the leakage currents. This technique is

particularly useful for SOCs with a high number of embedded memories [31].

Note, due to the experimental setup (based on digital 180 nm process tech-

nology), the power dissipation problem addressed in this thesis is focused only

on dynamic power dissipation during test. However, by using the power-gating

method, it is anticipated that the proposed methods can be adapted to solve

CHAPTER 1. INTRODUCTION 9

the static power dissipation problem by turning off the idle memories during

test to increase test concurrency.

All the above mentioned SOC test challenges need to be overcome in order to

reduce the ever-growing cost of manufacturing test while enabling high manufactur-

ing yield and reliability through satisfactory test quality. Although the cost of test

is dominated by many factors, such as the cost of production ATEs, testing time,

performance of test automation tools (e.g., ATPG), area and performance overhead

caused by additional DFT or BIST circuitry, it is essential to balance this cost against

the benefits of enabling high product reliability and a fast yield learning curve. As the

SOC complexity increases and more physical defects manifest themselves only in the

timing domain, at-speed BIST is emerging as an essential and necessary technology,

which can enable short time-to-volume and low cost of manufacturing test. This is

also correlated to the fact that, as total chip area continues to increase, the overhead

associated with consciously-designed BIST architectures is decreasing. The focus

of this thesis is to investigate novel cost-effective BIST architectures for embedded

memory testing, which is introduced next.

1.4 Embedded Memory Testing

Memory cells are designed using transistors and/or capacitors, and therefore they

cannot be modeled by logic gates. Structural test based on gate level netlist can-

not be applied to memory testing. However, as mentioned in the previous section,

memory cores have a rather regular structure caused by identical memory cells and

very simple functional operations (only read and write) which are very suitable for

functional test. Unlike the case of random logic testing, which needs a large set of

deterministic test patterns to reach the desired fault coverage, functional test pro-

grams for embedded memory cores can be generated by compact and scalable on-chip

test pattern generators. Furthermore, since written data is unaltered in a fault-free

memory, the expected responses can easily be re-generated on-chip and low overhead

comparison circuitry can check the correctness of output responses. Therefore, the

CHAPTER 1. INTRODUCTION 10

complexity of memory BIST circuit is lower than that of logic BIST. Due to the

deterministic nature and high test quality of memory test algorithms, memory BIST

has emerged as the state-of-the-art practice in industry.

Being parts of an SOC, embedded memories face the same test challenges as SOCs.

However, the cost of testing embedded memories has unique characteristics and it is

influenced by three major components: cost of ATEs, manufacturing testing time, and

DFT and BIST area/performance overhead. When considering the challenges faced by

SOC testing, reduced testability, high volume of test data, heterogeneous IP cores and

at-speed test, can all be solved by implementing programmable embedded memory

BIST architectures. However, as tens or even hundreds of heterogeneous memory

cores are embedded into a single SOC, power-constrained test scheduling is essential

to lower the testing time. In addition, a large number of BISTed memory cores

(i.e., memory blocks with BIST circuitry around them) will also induce high routing

and gate area overhead, as well as they may adversely influence the memory’s speed.

Thus, to reduce the overall cost of manufacturing test, it is essential to investigate new

memory BIST architectures for complex SOCs, which address the above issues. This

is the very purpose of the research work described in this thesis, whose organization

and main contributions are summarized in the following section.

1.5 Thesis Organization

New solutions for testing a large number of heterogeneous memories in SOCs are pre-

sented in this thesis. The remainder of this thesis is organized as follows. Chapter 2

introduces the memory fault models and summarizes the March test algorithms that

use these functional models. Chapter 3 first illustrates the unique challenges faced by

memory BIST for large and complex SOCs. This is followed by a comprehensive re-

view of the relevant previous work on embedded memory BIST and test scheduling al-

gorithms. The motivation for new hardware-centric and hardware/software co-testing

memory BIST architectures is also provided.

Chapter 4 introduces a new hardware-centric memory BIST architecture whose

objective is to lower the cost of testing heterogeneous memory cores in SOCs that

CHAPTER 1. INTRODUCTION 11

do not comprise programmable processing elements (e.g., microprocessors). The pro-

posed architecture can test all the memories in an SOC, and, to reduce the testing

time, it supports partitioned testing with run to completion test scheduling. A de-

tailed hardware implementation of this architecture is provided, followed by exper-

imental results. A more comprehensive solution called hardware/software co-testing

memory BIST architecture is proposed in Chapter 5. This architecture reuses on-

chip resources (e.g., processing units and buses) to test both bus-connected memories

and non bus-connected memories in an SOC, which ultimately leads to lower area

and performance overhead than previous hardware-centric architecture. The novel

hardware and software components of the proposed solution are detailed and a new

test scheduling engine tailored for this architecture is described. In the experimental

results section, a comparison between hardware-centric, software-centric, and hard-

ware/software co-testing approaches is presented. The trade-off between the testing

time and the area overhead explored using the proposed test scheduling engine is also

discussed in Chapter 5.

Finally, the conclusion and suggestions for further refinement of the proposed

solutions are given in Chapter 6. Appendix A shows the microphoto and the layout

view of the two fabricated chips used to empirically validate the correctness of the

architectures described in this thesis.

Chapter 2

Theoretical Background on

Memory Testing

This chapter introduces the basic theory behind memory testing. There are two

kinds of memory test methods: electrical (technology-dependent) and functional

(technology-independent). Electrical memory testing consists of parametric testing,

which includes testing DC and AC parameters, IDDQ and dynamic testing for recovery,

retention and imbalance faults [39]. DC and AC parametric tests are used to verify

that the device meets its specifications with regard to its electrical characteristics,

such as voltage, current, and setup and hold time requirements of chip’s pins. Since

embedded memories in SOCs usually do not have their I/O ports directly connected

to chip’s pins, parametric testing for embedded memories is not a necessity. IDDQ and

dynamic testing [25] need a detailed description of the specific process technology.

Additional information on electrical testing can be found in [8, 25, 39].

This thesis focuses on technology-independent functional memory testing, whose

purpose is to verify the logical behavior of a memory core. Because functional memory

testing allows for the development of cost-effective short test algorithms (without

requiring too much internal knowledge of the memory under test), it is widely accepted

by industry as a low-cost/high-quality solution. This chapter provides a theoretical

background and explains the memory functional test models and March algorithms.

Most of the definitions and figures in this chapter are excerpted from [8, 39].

12

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 13

Address
Latch

Column
Decoder

Refresh
Logic

Write Driver

Data
Register

Sense
Amplifiers

Memory Cell
Array

Row
Decoder

Address

A

B

C

D

F

E

H

G

Refresh

Data Flow

Control Flow

Data
 Out

Data
 In

Read/Write
and Chip
Enable

Figure 2.1: Functional Memory Model [39]

2.1 Functional Model and Memory Faults

A functional model of a memory is based on its specifications. Figure 2.1 [39] shows

the functional model of a dynamic random access memory (DRAM). In this model,

the internals of the memory are partly visible, hence it is also referred to as the gray-

box model. This model can also be reused for modeling faults in synchronous RAM

(SRAM), read only memory (ROM) or electrically programmable ROM (EPROM).

This can be achieved by adjusting some of the blocks shown in the figure. For example,

to model SRAM, one needs to discard the refresh logic block. One of the main

advantages of functional models is that they have enough details of data paths and

adjacent wires in the memory to adequately model the coupling faults.

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 14

Functional fault Functional fault
a Cell stuck i Address line stuck
b Driver stuck j Open in address line
c Read/write line stuck k Shorts between address lines
d Chip-select line stuck l Open decoder
e Data line stuck m Wrong access
f Open in data line n Multiple accesses
g Short between data lines o Cell can be only set to either 0 or 1
h Crosstalk between data lines p Pattern sensitive interaction between cells

Table 2.1: Subset of Functional Memory Faults [39]

Name Functional fault
SAF Stuck-at fault
TF Transition fault
CF Coupling fault

NPSF Neighborhood pattern sensitive fault
AF Address decoder fault

Table 2.2: Reduced Functional Memory Faults [39]

Based on the functional memory model shown in Figure 2.1, a subset of functional

memory faults are listed in Table 2.1 [39]. In this table, a cell can be either a

memory cell or a data register and a line is any wiring connection in the memory.

In production manufacturing testing once a fault is detected the memory chip is

discarded and no diagnosis needs to be undertaken immediately. Failure analysis

through fault diagnosis is performed at a later time and more comprehensive test

sets (using fault-distinguishing patterns) are applied to identify the source of physical

defects. Therefore, for production testing, the faults listed in Table 2.1 [39] can be

mapped onto the reduced functional faults shown in Table 2.2 [39]. Table 2.3 [39]

summarizes the relationship between the functional faults (Table 2.1) and the reduced

functional faults (Table 2.2). For production testing of embedded memories, a great

emphasis is placed on March-based test algorithms (see Section 2.3), since they have

high defect coverage with a very reasonable hardware cost.

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 15

Reduced functional fault Functional fault
SAF a Cell stuck
SAF b Driver stuck
SAF c Read/write line stuck
SAF d Chip-select line stuck
SAF e Data line stuck
SAF f Open in data line
CF g Short between data lines
CF h Crosstalk between data lines
AF i Address line stuck
AF j Open in address line
AF k Shorts between address lines
AF l Open decoder
AF m Wrong access
AF n Multiple accesses
TF o Cells can be only set to either 0 or 1

NPSF p Pattern sensitive interaction between cells

Table 2.3: Relationship Between Functional and Reduced Functional Faults[39]

Stuck-at Faults

The stuck-at fault (SAF) considers that the logic value of a cell or line is always 0

(stuck-at 0 or SA0) or always 1 (stuck-at 1 or SA1). To detect and locate all stuck-at

faults, a test must satisfy the following requirement: from each cell, a 0 and a 1 must

be read [39].

Transition Faults

The transition fault (TF) is a special case of the SAF. A cell or line that fails to

undergo a 0 → 1 transition after a write operation is said to contain an up transition

fault. Similarly, a down transition fault indicates the failure of making a 1 → 0

transition. According to van de Goor [39], a test to detect and locate all the transition

faults should satisfy the following requirement: each cell must undergo an ↑ transition

(cell goes from 0 to 1) and a ↓ transition (cell goes from 1 to 0) and be read after

each transition before undergoing any further transitions.

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 16

Coupling Faults

A coupling fault (CF) between two cells causes a transition in one cell to force the

content of another cell to change. The 2-coupling fault model [39], which involves only

two cells, is defined as follows: a write operation that generates an ↑ or ↓ transition

in one cell changes the content of the second cell. The 2-coupling fault is a special

case of the k-coupling fault [39]. A k-coupling fault uses the same two cells as the

2-coupling fault, however it allows the fault to occur only when another k − 2 cells

are in a certain state.

• The inversion coupling fault (CFin) is a special case of the 2-coupling fault. It

means that an ↑ or ↓ transition in one cell inverts the content of the second cell.

A test to detect all CFins must satisfy the following condition : for all the cells

which are coupled, each cell should be read after a series of possible CFins may

have occurred (by writing into the coupling cells), with the condition that the

number of transitions in the coupled cells is odd (i.e., the CFins do not mask

each other) [39].

• The idempotent coupling fault (CFid) is a another particular case of the 2-

coupling fault. It means that an ↑ or ↓ transition in one cell forces a second cell

to a certain value, 0 or 1. A test to detect all CFids must satisfy the following

condition: for all the cells which are coupled, each cell should be read after a

series of possible CFids may have occurred (by writing into the coupling cells),

in such a way that the sensitized CFids do not mask each other [39].

• The dynamic coupling fault (CFdyn) is a more general case of the CFid. Ac-

cording to its definition a read or write operation on one cell forces the contents

of the second cell either to 0 or 1 [8].

• The bridging fault (BF) is caused by a short circuit between two or more cells or

lines. It is determined by a logic level rather than a transition write operation.

There are two kinds of bridging faults: AND bridging fault (ABF), in which

the logic value of the bridge is the AND of the shorted cells or lines, and OR

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 17

bridging fault (OBF), in which the logic value of the bridge is the OR of the

shorted cells/lines.

• In the state coupling fault (SCF) a coupled cell or line is forced to a certain

value (0 or 1) only if the coupling cell is in a given state. It is also determined

by a logic level.

Neighborhood Pattern Sensitive Faults

A pattern sensitive fault (PSF) causes the content of a cell (or the ability to change the

content) to be influenced by the contents of other memory cells, which may be either

a pattern of 0s and 1s or transitions in memory contents. The PSF is the most general

case of the k-coupling fault, where k equals the number of cells in the memory. There

are two types of PSF: unrestricted PSF (UPSF) and restricted (or neighborhood) PSF

(NPSF) . For tractability reasons, all the known algorithms are tackling the NPSFs,

which can be further divided into three types: active NPSF (ANPSF), passive NPSF

(PNPSF), and static NPSF (SNPSF). NPSF testing algorithms are very complex

when compared to March test algorithms [39] (described in Section 2.3). However, for

certain process technologies, circuit techniques or memory types, such as high-density

DRAMs, testing NPSFs may be a requirement. For further details on NPSFs, the

reader is referred to [8, 39].

Address Decoder Faults

Address decoder faults (AFs) represent faults in the combinational logic of the ad-

dress decoder. Two assumptions are generally accepted: the faults do not introduce

sequential behavior in the address decoder and the faults will manifest identically dur-

ing read and write operations. To simplify the problem, we first consider bit-oriented

memories, in which only one bit data is stored in each memory location. The March

algorithms for testing word-oriented memories will be introduced in Section 2.4. The

functional faults within the address decoder can be classified into four AFs [39], as

shown in Figure 2.2:

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 18

Ax Cx
Ay

Cx

Cy

Ax

Ay

Cx

Fault 1 Fault 2 Fault 3 Fault 4

Figure 2.2: Address Decoder Faults [39]

Ax
Ax

Ay

Cx

Fault A (1+2)

Cx
Ay

Cx

Cy

Ax

Fault B (1+3)

Ax

Ay

Cx

Cy

Fault C (2+4) Fault D (3+4)

Cy

Figure 2.3: Combinations of Address Decoder Faults [39]

• Fault 1: For a certain address, no cell will be accessed.

• Fault 2: A certain cell can never be accessed by any address.

• Fault 3: For a certain address, multiple cells are accessed simultaneously.

• Fault 4: A certain cell can be accessed by multiple addresses.

For bit-oriented memories, because each cell is linked to a dedicated address, none

of the faults listed above can stand alone. For example, when fault 1 occurs, then

either fault 2 or fault 3 will occur as well. Therefore, in total, four fault combinations

in the address decoder are shown in Figure 2.3 [39].

2.2 Fault Combinations

In the previous section we have summarized the most relevant functional fault models

and, at the end, we have outlined that in address decoders faults are interrelated.

However, when testing a memory core, it is very likely that many various types of

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 19

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Figure 2.4: Two Coupling Faults [39]

faults may occur simultaneously. These faults can be linked or unlinked. In a linked

fault one fault may influence the behavior of other faults. An unlinked fault does not

influence the behavior of other faults. Linked faults can be further classified as linked

with the same fault type or linked with different fault types.

Linked Faults of the Same Fault Type

Since a SAF involves only one cell and only one SAF can occur in a single cell, a

SAF cannot be linked with another SAF. Similarly, a TF also cannot be linked with

another TF. In a CF, two cells are involved. Figure 2.4 [8] lists 6 different cases

when two coupling faults (4 cells involved) occur concurrently. Case 1,2,3, and 5 are

unlinked faults because each of the coupled cells are only coupled in only one way.

Case 4 is a linked fault because a cell is coupled to more than one cell and case 6 is

also a linked fault because a cell is coupled to a single cell in more than one way. As

stated in [39], in general, linked CFins cannot be detected by March tests. However,

tests for idempotent CFs (CFids) will detect inversion CFs (CFins).

Linked Faults of Different Fault Types

When a test for a certain fault type is performed, it will cover faults at a lower

hierarchical level (see Table 2.2) [39]. When SAFs link with TFs and/or CFs, they

can be detected without any extra tests for TFs and/or CFs. For unlinked TFs and

CFs, testing CFs can also detect TFs. However, if TFs are linked with CFs then

require a new test. This is because a TF may mask a CF, while the CF masks the

TF. For a full description of linked faults, the reader is referred to [8, 39].

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 20

2.3 Functional Testing and March Test Algorithms

Based on the used memory fault models, memory test algorithms can be divided into

four categories [39] as described below:

1. Traditional tests including Zero-One, Checkboard, GALPAT and Walking 1/0,

Sliding Diagonal, and Butterfly [39]. They are not based on any particular

functional fault models and over time have been replaced by improved test

algorithms, which result in higher fault coverage and equal or shorter test time.

2. Tests for stuck-at, transition, and coupling faults that are based on the reduced

functional fault model and are called March test algorithms [39].

3. Tests for neighborhood pattern sensitive faults.

4. Other memory tests: any tests which are not based on the functional fault

model are grouped in this category.

As mentioned in Section 2.1, March test algorithms can efficiently test embedded

memories and, therefore, the rest of this section provides more details about them.

March Test Notation

A March test consists of a finite sequence of March elements [39]. A March element

is a finite sequence of operations or primitives applied to every memory cell before

proceeding to next cell [39]. For example, ⇓ (r1, w0) is a March element and r0 is

a March primitive. The address order in a March element can be increasing (⇑),

decreasing (⇓), or either increasing or decreasing (m). An operation can be either

writing a 0 or 1 into a cell (w0 or w1), or reading a 0 or 1 from a cell (r0 or r1). In

summary, the notation of March test is described as follows:

m Addressing order can be either increasing or decreasing;

⇑ Increasing memory addressing order;

⇓ Decreasing memory addressing order;

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 21

Name Algorithm

MATS {m (w0);m (r0, w1);m (r1)}
MATS+ {m (w0);⇑ (r0, w1);⇓ (r1, w0)}

MATS++ {m (w0);⇑ (r0, w1);⇓ (r1, w0, r0)}
MARCH X {m (w0);⇑ (r0, w1);⇓ (r1, w0);m (r0)}
MATCH C- {m (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m (r0)}
MATCH A {m (w0);⇑ (r0, w1, w0, w1);

⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)}
MATCH Y {m (w0);⇑ (r0, w1, r1);⇓ (r1, w0, r0);m (r0)}
MATCH B {m (w0);⇑ (r0, w1, r1, w0, r0, w1);

⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)}
Table 2.4: Irredundant March Test Algorithms [8]

r0 Read 0 from a memory location;

r1 Read 1 from a memory location;

w0 Write 0 to a memory location;

w1 Write 1 to a memory location;

March Test Algorithms

Table 2.4 [8] lists several relevant March algorithms reported in the literature. Table

2.5 [8] gives the fault coverage and the operation count of these March algorithms,

which are also called irredundant algorithms (by removing any operation from the test,

the targeted fault coverage will be reduced). To generate custom March algorithms

for improved defect coverage in new process technologies, an effective methodology

was proposed in [2].

March algorithms are very easy to implement in either software or hardware. A

piece of pseudo-code for the MATS+ algorithm is given to demonstrate the basic test

procedures. In the code shown below, n is the total number of bits of the memory

(bit-oriented memory) and Addr[i] points to the ith memory address for read or write.

Line 1 runs the first March element of MATS+ algorithm m (w0). Since the address

sequence can be either up or down, here we use an up address sequence. Line 2 to

5 run the second March element ⇑ (r0, w1) with the up address sequence. Line 6 to

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 22

Fault Coverage
Algorithm SAF AF TF CF CF CF SCF Linked Oper.

in id dyn Faults Count

MATS All Some 4.n
MATS+ All All 5.n

MATS++ All All All 6.n
MARCH X All All All All 6.n
MARCH C- All All All All All All All 10.n
MARCH A All All All All All linked CFids, some 15.n

CFins linked with CFids
MARCH Y All All All All All TFs linked 8.n

with CFins
MARCH B All All All All All linked CFids, 17.n

all TFs linked with
CFids or CFins, some

CFins linked with CFids

Table 2.5: Irredundant March Test Summary [39]

9 implement the third March element ⇓ (r1, w0) with the down address sequence. If

any data mismatch happened during the test (line 3 and 7) the program will stop and

return fail. Otherwise, it will return success after all March elements are finished.

MATS+ Test

1. for (i = 0; i < n-1; i++) Addr[i] = 0;

2. for (i = 0; i < n-1; i++) {
3. if (Addr[i] != 0) return (fail);

4. Addr[i] = 1;

5. }
6. for (i = n-1; i >= 0; i– –) {
7. if (Addr[i] != 1) return (fail);

8. Addr[i] = 0;

9. }
10. return (success);

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 23

Characteristics of March Algorithms

March-based memory test algorithms have several important characteristics:

• Up (down) address sequence must be the exact reverse down (up) sequence, how-

ever its internal order is irrelevant. For example, if a 3 bits up address sequence

is {0, 5, 2, 3, 7, 1, 4, 6}, then the down sequence must be {6, 4, 1, 7, 3, 2, 5, 0}.

• Most March algorithms are only a simple combination of several March elements

(e.g., ⇑ (r0, w1) is a March element). By analyzing the March algorithms shown

in Table 2.5, it can be observed that the background pattern during execution

can be inferred by the previous operation. For example, a read operation in-

fers the same background data used in the last operation. Similarly, a write

operation infers the reversed background data used in the last operation. For

example, the first operation of the March C- test shown in Table 2.4 is w0. The

next operation is read (must be r0) and the following operation is write (must be

w1). Based on this observation, one can reduce the number of March elements

and the complexity of their implementation. For Match C-, only three March

elements are needed: (w), (r, w), (r). The total number of March elements for

the most practical March algorithms is less than ten.

• Using the test generation method proposed in [2], one can generate novel March

algorithms (based on a limited number of March elements implemented in hard-

ware), to detect new technology-specific faults.

• For word-oriented memories, one needs to run the March test several times using

different background patterns [39, 47] to improve the fault coverage or to use

modified March algorithms, such as March-CW [46], to reduce the testing time.

Table 2.6 gives an example of background patterns for a 8-bit word memory.

March Algorithms with Diagnosis and Repair Support

When a memory is fabricated using new technology, it is desirable to have a fast

yield learning curve[19]. Therefore, it is critical to perform very detailed failure

CHAPTER 2. THEORETICAL BACKGROUND ON MEMORY TESTING 24

Normal Inverse
1 00000000 11111111
2 01010101 10101010
3 00110011 11001100
4 00001111 11110000

Table 2.6: Background Patterns for an 8-bit Memory Width

analysis through fault diagnosis to identify the particular defects (for example, it

is essential to distinguish faults between SAF and CF). The ultimate outcome of

failure analysis is a redesigned set of masks for the next fabrication run, which will

improve the manufacturing yield. A new set of March algorithms will be used for

the best process-specific fault coverage. For large memory chips or SOCs with large

embedded SRAMs or DRAMs, to increase the yield, it is crucial to also use redundant

memory locations to repair the faulty rows (columns) [53]. This leads to new type of

algorithms, called fault location algorithms. This type of algorithms can, for example,

locate the aggressor cell of a coupling fault (CF).

A complete solution targeting fault diagnosis and fault location has three compo-

nents: a memory BIST architecture with diagnosis support to save and send out the

diagnostic information, a diagnostic test algorithm and a tool to analyze the collected

diagnostic data and generate a detailed fault report for failure analysis and a fault

bitmap for repair purposes. The traditional March test algorithms (shown in Table

2.5) are aimed at detecting faults and they do not support implicitly fault diagnosis

and fault location. To address this problem, several diagnostic March tests were in-

troduced in [48] to distinguish the traditional reduced faults listed in Table 2.2. In

[6], both fault diagnosis and fault location algorithms were analyzed. To efficiently

address fault location problem, a March-based fault location algorithm was proposed

also in [40]. Since all of these recently proposed algorithms are March-based, they

have the same characteristics as the traditional March test algorithms introduced in

this section and can be supported by the existing March-based memory BIST ar-

chitectures. In the following chapter, the relevant previous work on memory BIST

architectures is described and the motivation for the proposed solutions is given.

Chapter 3

Previous Work on Memory BIST

and Motivation

The previous chapter has introduced the basic fault models and test algorithms for

semiconductor memories. If the memories are embedded into an SOC (i.e., chip’s

I/Os are not directly connected to the memories’ ports) then how are the test vectors

applied and how are the test responses observed? As introduced in Chapter 1, there

are two main approaches for testing embedded memories: external test by direct

access using ATE and internal test using BIST. On the one hand, direct access to

the embedded memory cores from the limited number of I/O pins needs a high-

performance ATE, as well as very long testing time since tester channels are time-

shared by different memories under test. Thus, external test becomes infeasible, in

particular for large SOC devices where transistor to pin ratio is high. On the other

hand, BIST provides at-speed and high-bandwidth access to the embedded memory

cores, and it only needs a low cost ATE to initialize the test sessions and to inspect

the final results. However, although BIST is state-of-the-art technology for embedded

memory testing, unless carefully designed, it may induce excessive power, in addition

to performance and area overhead. Since embedded memories account for more than

60% of the silicon area in modern SOCs [33] (up to 95% by 2016 according to [19]) this

chapter describes the relevant approaches to embedded memory BIST, summarizes

their strengths and limitations and motivates the research presented in this thesis.

25

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 26

Embedded
Memory

Address
Generator

Background
Pattern

Generator

Correct Data

C
om

parator

Address
Data

Control

Data Out

Pass/Fail

WrapperInterconnectController

Address In

Data In

Control

Data Out

FSM

Decoder

Commands
from uP or

ATE

Control
Logic

Figure 3.1: Generic Memory BIST Architecture

3.1 Memory BIST Challenges

A typical embedded memory BIST (MBIST) approach comprises an MBIST wrap-

per, an MBIST controller and the interconnect between them, as shown in Figure

3.1. The MBIST wrapper further includes an address generator to provide complete

memory address sequences (i.e., for n address lines all the 2n locations are visited in

a complete sequence); a background pattern generator to produce data patterns when

testing word-oriented memories (as described in the preceding chapter); a comparator

to check the memory output against the expected correct data pattern; and a finite

state machine (FSM) to generate proper test control signals based on the commands

received from the MBIST controller. The MBIST controller pre-processes the com-

mands received from upper-level controller (either on-chip microprocessor or off-chip

ATE) and then sends them to the MBIST wrapper. The interconnect between the

wrapper and the controller could be either serial (i.e., a single command line is shared

by all the wrappers) or parallel (i.e., dedicated multiple command lines are linking

different wrappers to the controller). Note, the previously described partition of the

MBIST architecture and the terms ’MBIST wrapper’ and ’MBIST controller’ are not

universal, and only applicable in this thesis.

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 27

BIST addresses most of the challenges faced by testing embedded memories in an

SOC (see Chapter 1 for a full description of SOC testing challenges). However, the

increasing size and number of embedded memory cores and the rapid development in

VLSI process technologies lead to unique requirements for embedded memory BIST.

1. Support multiple test algorithms: The conventional MBIST approaches

usually implement a single March test algorithm. However, deep submicron

process technologies and design rules introduce physical defects that are not

screened when using the memory test algorithms developed for previous pro-

cess generations. Therefore MBIST architectures should be programmable to

support multiple memory test algorithms to increase the fault coverage and to

find the most suitable algorithms for the manufacturing process at hand.

2. Diagnosis and repair support: Diagnosis support in an MBIST architecture

is mandatory for manufacturing yield enhancement for new process technology

and a rapid transition from the yield ramp phase to the volume production phase

[19]. Furthermore, since embedded memories are subject to more aggressive

design rules, they are more prone to manufacturing defects (caused by process

variations) than other cores in an SOC. For large embedded memory cores, the

manufacturing yield can be unacceptable low (e.g., for a 24Mbits memory core,

the yield is around 20% [53]). Hence, to achieve a certain manufacturing yield,

in addition to diagnosis support, it is also beneficial to introduce self-repair

features comprising redundant memory cells.

3. Test heterogeneous memories: State-of-the-art SOCs include many types

of memory cores, such as, among others, SRAM, DRAM, flash and ROM. Tra-

ditional MBIST approaches were designed to test only one type of memory.

However, to reduce area and routing overhead via hardware resource sharing,

as well as to decrease the testing time, it is advantageous to develop MBIST

architectures that support testing heterogeneous memories simultaneously.

4. Power dissipation constraints: As introduced in Chapter 1, more power

dissipation is expected during test mode than power consumed during normal

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 28

functional mode for scan-based SOC testing. However, because memory test is

functional test, for each memory the power dissipation will be identical in both

test mode and normal functional mode. Therefore, if all memory blocks in an

SOC can be activated simultaneously during functional mode, power dissipation

will not exceed the maximum power constraint during test. Hence, no test

scheduling is required in this case. However, to reduce the overall testing time,

test scheduling is still necessary for memory testing as described in the following.

On the one hand, for bus-connected memories (BCMs) which are connected

to a single-master bus architecture [4], only one BCM can be accessed at any

time during functional mode. If all BCMs are wrapped, then all of them can

be activated simultaneously during test. Consequently, the power dissipation

will be higher during test than during functional operation, and therefore, test

scheduling is necessary.

On the other hand, memory testing is part of SOC testing. It was proven

in [34] that cores which use scan-based test methodology will consume more

power during test than during functional mode. If the testing time of these

scan-based cores is longer than that of memory cores, then by relaxing the

power constraints for scan-based core testing and carefully scheduling memory

testing with tightened power constraints, the overall testing time for the SOC

can be reduced.

Since test scheduling under power constraints is highly interrelated to the re-

source sharing mechanisms used in the MBIST architecture, it is essential to

develop new power-constrained test scheduling algorithms that will get the max-

imum usage of the available hardware resources for embedded memory testing.

5. Reuse the available on-chip processing/communication resources: SOCs

usually contain one or more processing elements (e.g., microprocessors), which

use on-chip system busses to communicate with other cores. Hence the embed-

ded memory cores in an SOC can be divided into two groups: bus-connected

memories (BCMs) and non bus-connected memories (NBCMs) . Although all

the embedded memory cores can be tested by adding dedicated memory BIST

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 29

wrappers, the high area overhead of BIST circuitry, as well as the performance

penalty caused by intrusive DFT hardware may prove to be the main draw-

back of this approach. Therefore, reusing the available on-chip resources for

testing the embedded memories can lower the area and performance overhead

associated with a high number of dedicated MBIST wrappers for BCMs. Fur-

thermore, by implementing non-time-critical tasks in software using a processor,

the complexity of the controller can also be reduced.

6. Design reuse: Reusing IP cores in an SOC can greatly simplify the design

phase and cut down the time to market. The Reuse Methodology Manual [21]

lists various features to make a core reusable. A reusable MBIST core with

a scalable and portable architecture, associated with a clear methodology for

design flow integration, can significantly reduce the cost of test preparation.

The objective of memory BIST approaches is to meet some or all of the above

requirements while reducing the cost of test by targeting low area and performance

penalty and low testing time. The existing approaches have explored three main

directions to gain improvements: memory BIST architectures, test scheduling algo-

rithms, and special design implementations. Due to their interrelation, without a

good architectural support it is hardly possible to achieve any significant improve-

ments through test scheduling or special design techniques. The following sections

will review the relevant MBIST approaches presented in the literature.

3.2 Memory BIST Architectures

A memory BIST architecture is defined by the integration of its three components

shown in Figure 3.1 (controller, wrapper and interconnect). A standalone approach

uses a dedicated wrapper and controller for each memory core (or memory cluster with

several identical memory cores), while a distributed approach shares one controller to

manage some or all of the MBIST wrappers in an SOC.

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 30

Standalone MBIST Architecture

In a standalone MBIST architecture , the BIST controller and the wrapper are physi-

cally close located, hence parallel interconnect between them can be used. The MBIST

approach of each memory is independent of the other memories’ BIST approaches,

which makes the implementation of this approach straightforward. However, based

on the specific test requirements of different memories and technologies, it needs to

be improved in one or more aspects, as described in the following.

MBIST approaches which support multiple March test algorithms are called pro-

grammable MBIST architectures . Based on the structure of March algorithms pro-

vided in Chapter 2, to support multiple March test algorithms, one can either imple-

ment all the March primitives or several March elements. Since there are only four

March primitives (r0, w0, r1, w1), by implementing all of them with different combi-

nations of background patterns and address sequences, any March algorithm can be

supported. One programmable MBIST approach using March primitives was investi-

gated in [50] and it includes an instruction memory to store the test instructions and

a decoding logic to process the test instructions. March element-based approaches

implement only several most commonly used March elements. Based on the imple-

mented March elements, only a limited number of March algorithms can be supported.

However, its main advantage lies in less area overhead (simpler decoding logic and less

test instructions) when compared to March primitive-based approaches. In addition,

by carefully selecting the March elements, new March test algorithms can be gener-

ated [2] to target memory faults in new process technologies. A programmable FSM-

based MBIST architecture with 7 March elements was researched in [50]. Another

March element-based approach, which supports 40 March algorithms, was presented

in [47]. However, both approaches use dedicated on-chip memory to store the test

instructions, thus leading to large test area overhead. Furthermore, dedicated control

signals are needed for each MBIST core, which may cause routing and test integra-

tion problems when the SOC comprises hundreds of memory cores. To overcome the

control problem, a P1500-based [30] programmable MBIST architecture using March

elements was introduced in [22]. Using P1500 core wrappers, the test controller (ATE

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 31

or on-chip processing element) has the full controllability of all the wrapped memo-

ries and can send different test instructions to each MBIST wrapper during the test,

thus eliminating also the need of an on-chip instruction memory. Note, however, if

the SOC consists of a high number of embedded memory cores, and all of them are

wrapped with fully-compliant P1500 wrappers, the main limitation is caused by the

excessive wrapper area overhead and unnecessary performance degradation.

Diagnosis support is another important feature of MBIST architectures. A built-

in self-diagnosis (BISD) scheme was introduced in [46]. It sends out faulty memory

cell information (such as faulty address, data, and test session number) for failure

analysis. To reduce the control complexity of this approach when testing numerous

memory cores, a P1500 MBIST approach with diagnosis enhancement was proposed in

[3]. To reduce the testing time in the diagnosis mode (caused by the serial scan-chain

structure required to shift out the diagnosis information), a test response compression

method was introduced in [10]. Using this method, less I/O pins can be used to send

out the faulty response data compared with the uncompressed parallel solution. Due

to the increased size of embedded memories, support for memory self-repair is be-

coming necessary to increase the overall SOC yield. Using the detailed location and

information of faulty memory cells (provided by diagnosis support approaches dis-

cussed above), one can perform memory redundancy allocation and use fuse-boxes or

other methods to repair the faulty memories. However, to collect enough information

on fault locations for various memory faults, more complex March test algorithms

are required, which implies longer testing time. An MBIST solution was introduced

in [15] to test and repair large embedded DRAMs using on-chip redundancy alloca-

tion. To reduce the testing time, a memory BIST architecture was proposed in [53]

with revised March test algorithms. While most of the previously-described MBIST

approaches are focused on testing single port SRAMs, as long as the test algorithms

have the features of March algorithms, they are suitable for testing other types of

memories with minor modifications. For example, a flash memory BIST architec-

ture was proposed in [49] using a March-like test algorithm. A multiple port SRAM

BIST with diagnosis support scheme was introduced in [45] using a modified March

algorithm.

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 32

In summary, with the exception of the P1500 memory BIST approaches, most of

the standalone MBIST architectures focus only on solving the test problems related

to a single memory core or a standalone memory chip. They do not account for

the specific requirements for integrating the design for test hardware for hundreds of

embedded memory cores. They also do not provide any support for test scheduling

under power dissipation constraints, which needs a flexible control mechanism for the

memory BIST hardware. Although P1500 memory BIST approaches can solve the

control problem, a fully-compliant P1500 wrapper and standalone MBIST hardware

for all the embedded cores will introduce excessive area overhead and unnecessary

performance degradation. To overcome these issues, a new system perspective for

memory BIST architectures for complex SOCs is needed. The result turns out to be

the distributed MBIST architecture and hardware/software co-testing solutions, as

described next.

Distributed MBIST Architecture

To reduce the BIST area and routing overhead as well as the test control complexity

associated with complex and heterogeneous SOCs, distributed approaches are nec-

essary. In a distributed memory BIST architecture, each memory core still has a

dedicated technology-dependent wrapper. However, depending on the complexity of

the SOC, there are only one (or a few) BIST controllers used to direct the test of

all the embedded memory cores. Since hardware resource sharing is introduced, to

reduce the routing congestion and to facilitate rapid power-constrained testing, the

interconnect between the wrappers and the controller(s) must be carefully considered.

Distributed BIST architectures have been advocated for over a decade. Zorian [51]

presented a distributed BIST control scheme to test the building blocks of a complex

VLSI circuit. Due to the increasing ratio of the memory area in a state-of-the-art

SOC, dedicated memory BIST architectures can be used to reduce the cost of memory

test. Distributed MBIST architectures can further be divided into: hardware-centric,

software-centric, and hardware/software (HW/SW) co-testing.

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 33

 Wrapper

Memory BIST
Processor

MEM
1

 Wrapper
MEM

2

 Wrapper
MEM

3

 Wrapper
MEM

n

 Wrapper
MEM
8Kx16

MEM
8Kx16

MEM
8Kx16

Instruction Memory Parallel Command
and Control Line

Figure 3.2: A Distributed Memory BIST Approach [7]

1. Hardware-centric MBIST architecture : A hardware-centric approach uses ded-

icated hardware to test all the memory cores in an SOC. It can achieve the near

optimum testing time as well as supports flexible test scheduling. However, this

approach also introduces large area overhead. A typical distributed hardware-

centric MBIST architecture was proposed in [7]. As shown in Figure 3.2, each

memory (or memory cluster for several identical memories) has a dedicated

technology-dependent wrapper. By extracting some technology independent

tasks and the test instruction memory to a central controller, which controls all

the wrappers, the overall BIST area overhead is reduced. This architecture also

integrates several advanced features which have appeared previously in various

standalone MBIST approaches. For example, the wrapper can run separate

March primitive operations (e.g., r0 or w1, see Table 2.4 for a detailed list)

received from the controller. This implies that the hardware-centric MBIST ar-

chitecture is programmable and supports multiple March algorithms. Besides,

the wrapper design also supports diagnosis by scanning out the faulty addresses

and background patterns. However, its main drawback lies in the interconnect

between controller and wrappers, which uses one parallel command line to con-

figure all the memory BIST wrappers to run the same test commands (for

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 34

example, March primitives in this approach). This implies that for large SOCs,

different types of memories (or memories requiring different test algorithms)

cannot be tested simultaneously using the same BIST controller, thus increas-

ing testing time as well as test control complexity. Moreover, using parallel

interconnects between the controller and the wrappers, the routing congestion

may become a potential problem when hundreds of embedded memory cores

are present. Furthermore, the testing time for each test session is dominated

by the largest memory, which may lead to prohibitively long testing time under

power dissipation constraints, as discussed in Section 3.3.

2. Software-centric MBIST architecture : A software-centric approach reuses the

existing on-chip resources to test all the bus-connected memories. Since SOCs

usually contain one or more processing elements, which use on-chip commu-

nication architectures to transfer data to/from some of the embedded cores.

Reusing these resources for testing the bus-connected memories can lower the

area overhead and eliminate the performance penalty caused by the MBIST

wrappers. In [32], a methodology for testing SOCs using an on-chip micro-

processor was presented. However, this approach uses only software to gen-

erate, analyze and apply the test algorithms for the bus-connected memories,

which requires a much longer testing time than the existing hardware-centric

approaches. This is because the hardware architecture can generate March al-

gorithms more efficiently than software. Furthermore, it is obvious that without

additional hardware support, the software-centric approaches can only test the

bus-connected memories.

3. Hardware/Software co-testing MBIST architecture : This architecture takes ad-

vantage of both hardware-centric and software-centric approaches. By migrat-

ing all the non-time-critical tasks from the MBIST controller to the processor,

such as fetching and decoding test instructions, one can reduce the area over-

head with a minor testing time penalty. A processor-programmable memory

BIST solution was proposed in [38], where a BIST circuit was inserted between

the embedded central processing unit (CPU) and the system bus (see Figure

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 35

Embedded
CPU

O
n-chip B

U
S

Embedded
Memory

BIST Core

Addr
Addr

Data_o
Data_o

Clock

Control Control

Data_I Data_I

Addr

Data_o

Control

Data_I

Figure 3.3: Memory BIST for Bus-connected Memories [38]

3.3). Although it reduces the testing time problem associated with the software-

centric approach, this solution may affect the overall SOC performance, since

the BIST circuitry introduces extra multiplexers between the CPU and the bus,

thus increasing the CPU access time to the bus. Moreover, this approach can

only test bus-connected memories (BCMs), which is not a complete solution for

SOC memory testing.

3.3 Power-Constrained Test Scheduling

In addition to the BIST architectures described in the previous section, test scheduling

under power dissipation constraints is becoming an important issue when a large

number of memories are embedded in an SOC (see Section 3.1 and Chapter 1 for more

details). The test scheduling problem involves both architectural support and test

scheduling algorithms for bus-connected memories (BCMs) and non bus-connected

memories (NBCMs) .

When testing BCMs, because of the resource sharing problem (i.e., different BCMs

cannot be accessed simultaneously via the same bus, when using the single-master

bus architecture [4]), the power constraints can easily be satisfied since at most one

memory is active at a time. For software-centric approaches, such as the one proposed

in [32], the testing time will be prohibitively large, which will adversely affect the cost

of test. The testing time can be reduced by employing a hardware/software co-testing

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 36

approach [38] (see Figure 3.3). However, although the time associated with testing

each memory is reduced, the serial testing problem is not removed. One potential

solution is to wrap some of the non-time-critical bus-connected memories (i.e., a

penalty in the memory access time will not influence the overall performance of the

SOC) and test them as non bus-connected memories to boost the test concurrency.

This is additionally motivated by the fact that not all the embedded memories in an

SOC are connected to the system bus. Therefore, hardware-centric memory BIST

approaches are necessary for testing these non bus-connected memories. To address

power-constrained testing for non bus-connected memories, one effective solution is to

limit the number of concurrent memory blocks. The BIST architecture proposed in [7]

can be adapted to this solution, however, the testing time of each test session will be

dominated by the testing time of the largest memory. This is because this architecture

supports only non-partitioned testing [13]. Hence, new flexible BIST architectures

need to be investigated, which will guarantee both low area and control complexity,

as well as high test concurrency under given power constraints. To achieve this, a

control mechanism must be provided to convert non-partitioned testing to partitioned

testing with run to completion [13] , as well as to lower both the area overhead and the

routing congestion associated with the test control for non bus-connected memories.

To illustrate the difference between non-partitioned testing and partitioned testing

with run to completion, consider the following example.

Example 3.1 Let’s consider 3 memory blocks A, B and C. Table 3.1 lists the testing

time and power dissipation during test for each memory. If non-partitioned testing is

used (Figure 3.4(a)), although the test for C is completed before the test for A and the

power budget is sufficient to accommodate the test for B, the latter cannot be started

until both A and C have completed their tests. When using partitioned testing with run

to completion, after the test for C is completed, the test for B can start immediately,

as long as the power constraint allows it (see Figure 3.4(b)). Therefore, providing a

hardware mechanism that can support partitioned testing with run to completion is

essential to achieve a highly concurrent, yet power-constrained, test schedule.

Most of the existing test scheduling algorithms for SOCs target general IP cores

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 37

Mem A Mem B Mem C

Power dissipation (as % of the power constraint) 60% 30% 35%
Testing time(clock cycles) 100,000 40,000 45,000

Table 3.1: Memory Test Parameters for Example 3.1

Power (%)

Testing Time
x1000 Clock Cycles

60

30

14010045

Mem. A

Mem. C

Mem. B

95
100

0

(a) Non-partitioned Testing

Power (%)

Testing Time
x1000 Clock Cycles

60

30

10045

Mem. A

Mem. C
Mem. B

95
100

0

(b) Partitioned Testing With Run to Com-
pletion

Figure 3.4: Different Test Schedules for Example 3.1

(i.e., both logic and memory). A representative algorithm based on rectangle packing

was proposed in [20]. To exploit the specific characteristics of MBIST architectures,

test scheduling algorithms specialized only for memories have started to emerge. Al-

though the algorithm from [44] supports partitioned testing with run to completion

[13], it needs to be further improved to deal with both bus-connected and non bus-

connected memories when exploiting the particular features of a hardware/software

co-testing architecture.

3.4 Special Design Implementation

The detailed design implementation of all the modules shown in Figure 3.1 can only be

described with a specific architecture and it is beyond the scope of this thesis. What

are common, however, to most of the known BIST architectures are the comparator,

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 38

address generator, and background pattern generator in the MBIST wrapper.

1. Comparator: The comparator checks the memory output data against the cor-

rect background patterns in order to find any mismatch and its implementation

is straightforward.

2. Address Generator (AG): The address generator for March-based memory test-

ing has several requirements (see Section 2.3 for details). The most important

features of the address generator are that it must cover the entire address space,

the internal order of the sequence is irrelevant, however, the down sequence must

be in the reverse order of the up sequence. According to these requirements,

an automatically synthesized up/down binary counter is sufficient to be the

address generator. However, the area of a binary up/down counter is too high

for large address spaces [11, 39]. Linear feedback shift registers (LFSR) [5] may

overcome this problem, however, since a traditional LFSR does not cover the

all 0s pattern, which is necessary for memory testing, it has to undergo some

modifications. Furthermore, the LFSR must also be controlled to generate the

reversed (down) sequence. A modified LFSR was described in [8, 39] to address

these two issues. Another address generator was proposed in [11] to reduce

the switching activity on the address lines for power reduction. The activity is

minimized when two successive addresses differ in exactly one position. This

code sequence is known as Gray-code [16, 43]. However, the area of a Gray-code

counter (regardless of the implementation type, i.e., FSM-based or conversion

from a binary counter [26]) is much larger than that of an LFSRs[8]. A ripple-

carry up/down gray code counter with less area overhead was proposed in [11].

However, this approach has two important limitations. Firstly, the JK flip-flops

used in the counter are not always available in vendor’s standard cell library

[42] which means more gates are needed during synthesis to convert D flip-flops

to JK flip-flops. Secondly, for the reflected gray code [16], (see Table 3.2), the

down sequence can be generated by flipping the most significant bit (MSB) of

the up sequence. Therefore, the up/down control signal for each gray cell in

[11] is redundant. Both drawbacks lead to more area and lower speed which is

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 39

Up sequence 000 001 011 010 110 111 101 100
Down sequence 100 101 111 110 010 011 001 000

Table 3.2: 3-bit Up and Down Reflected Gray Code Sequence

Method Pros Cons
Interconnect Parallel[7] Low testing time Routing congestion

All wrappers run the
same test command

Programmable March primitive [7] Any March algorithms Many instructions
March element [50] Fewer instructions Several March algorithms

Diagnosis Parallel compression [10] Low testing time Large area and many I/O pins
Serial scan [3] Low area and I/O pins Long testing time

HW/SW BCM BIST [38] Fast test BCMs Can only test BCMs
co-testing Low area Affect CPU performance
Power [7] Support test scheduling Non-partitioned testing

Scheduling Heuristic ordering [44] Fast Wrapped memories only
algorithm

BPG [47] None Complex control / large area
Address Binary Easy to implement Large area
generator LFSR [8] Low area Complex control and design

Gray counter [11] Low switching activity Large area

Table 3.3: Summary of the Existing Solutions for Distributed Memory BIST

crucial for ripple-carry counters.

3. Background Pattern Generator (BPG) : Most embedded memories are word-

oriented (i.e., they store more than one bit of data in each address location).

In [39], the author listed several background patterns for different fault cover-

ages. Wang and Lee [47] recently presented a hardware implementation for a

word-oriented BPG, however, their solution is very complex and has large area

overhead. Since there are only log2 N + 1 states for a BPG, where N is the

word-width, we can use a simple FSM to generate all the background patterns

very efficiently with much lower area overhead than [47].

CHAPTER 3. PREVIOUS WORK ON MEMORY BIST AND MOTIVATION 40

3.5 Motivation for New Memory BIST Solutions

The preceding sections have reviewed the relevant previous MBIST approaches and

have pointed out several key challenges for power-constrained testing of embedded

memories. The features listed in Table 3.3 serve also as the motivation to develop

new SOC memory test solutions. In summary, to meet the high quality/low cost

objective for SOC memory testing, a new MBIST solution should investigate the

following features:

1. Architecture: It should be distributed to reduce the area overhead; a serial

interconnect scheme between the controller and wrappers can reduce the routing

congestion; and MBIST challenges listed in Section 3.1 should be satisfied.

2. Test scheduling algorithm: The main challenge is to test both BCMs and NBCMs

when using a hardware/software co-testing architecture. By balancing the test

access for BCMs between functional resources (on-chip bus) and dedicated DFT

hardware (BIST wrapper), one can easily explore various test configurations

with different testing times and area overhead under the given power constraints.

3. Special design implementation: By analyzing the implementation requirements,

new low area background pattern generators and low power ripple-carry gray-

code address generators should be investigated.

Although most of the above objectives have been tackled separately by the previ-

ous approaches, there are no comprehensive system-level solutions for effective power

constrained testing of hundreds of embedded memories (i.e., achieve high test con-

currency with low overhead in DFT hardware), that exploit the specific features of

SOC architectures. In the following two chapters, two new memory BIST solutions

are introduced. Design reuse is also taken into account to ensure that the proposed

solutions can easily be integrated as IP blocks into the existing SOC design flows.

Chapter 4

Hardware-centric Memory BIST

Architecture

In this chapter, a hardware-centric memory BIST architecture for non-bus-connected

embedded memories is introduced. Due to its flexibility (i.e., it is programmable),

in addition to reducing routing complexity and easily lowering the power dissipation

during test, the presented solution can concurrently support multiple memory test

algorithms for heterogeneous memories, it can perform self-diagnosis, as well as embed

custom test algorithms required for new memory faults.

4.1 Memory BIST Architecture

The proposed hardware-centric MBIST architecture is shown in Figure 4.1. It consists

of a technology-independent memory BIST controller , technology-dependent mem-

ory BIST wrappers for heterogeneous memories, and a serial interconnection scheme

between the controller and the wrappers. The concept of the serial interconnection

is borrowed from IEEE P1500 [23, 24, 30] to reduce the routing congestion. The dis-

tinct features of this serail interconnection scheme are outlined next in this chapter.

Although the block diagram of this architecture is similar to most of the existing dis-

tributed BIST architectures (e.g., [7, 51], by introducing a serial control mechanism

and special hardware design techniques, the distinguished feature of the proposed

41

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 42

Low Power
Wrapper

Memory BIST
Controller with
Test Memory

MEM 1
 1P SRAM

 Low Power Wrapper Cluster

On-chip uP or
Off-chip Tester

W
S

I

WSO 4Kx32
1P SRAM

Control Lines (P1500-Like)

Facilitates:
� Low routing overhead
� Partitioned testing with run to completion
� Concurrent tests for heterogeneous memories

Low Power
Wrapper

MEM 2

 2P RegFile

Low Power
Wrapper

MEM 3

 Flash ROM

Low Power
Wrapper

MEM n
DRAM

4Kx32
1P SRAM

4Kx32
1P SRAM

4Kx32
1P SRAM

Serial Command
Line

Figure 4.1: New Hardware-centric Memory BIST Architecture

solution is its capability to boost the test concurrency of hundreds of heterogeneous

memories under given power constraints, while keeping the hardware overhead low.

For example, test instructions sent to the MBIST wrappers via the serial command

line, as detailed in the following sections, can be updated at any time while some

memories are still under test, which facilitates partitioned testing with run to com-

pletion. Since test scheduling for the proposed hardware-centric architecture is a

subset of the hardware/software co-testing solution, the scheduling problem will be

detailed in Chapter 5. The remaining sections of this chapter provide an in-depth

analysis of the hardware implementation of all the building blocks of the proposed

hardware-centric BIST solution, followed by experimental results and a summary.

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 43

Command Interpreter
Program
Counters

Test
Instruction
Memory

W
ra

pp
er

 In
te

rf
ac

e

S
ys

te
m

 In
te

rf
ac

e
MBIST

Controller

BIST_mode

BIST_error

BIST_finish

Inst. Mem.
Interface

Diag_data

Begin_diag

Scan_result

Update_WIR

WSO

WSI

Figure 4.2: Hardware-centric MBIST Controller

4.2 Memory BIST Controller

As shown in Figure 4.2, the MBIST controller is technology independent. It con-

sists of an instruction memory that stores the test instructions generated by the test

scheduling algorithm (see Chapter 5 for more details) and a command interpreter,

which executes the test instructions and sends the corresponding commands to each

MBIST wrapper. The command interpreter includes a set of program counters used

to save the location of the March element that is executed for each MBIST wrapper.

The instruction memory is a dedicated memory used only for self-test. If it is a

ROM no interface for external programming is necessary. If it is RAM then its inter-

face signals are multiplexed with the functional I/O pins. The instruction memory is

divided into three sub-areas: algorithm mask, test schedule, and algorithms. Figure

4.3(a) shows the block diagram of the instruction memory. To reduce the memory

size, the test instructions use March elements as the basic commands. This is contrast

to using March primitives (or March operations) employed in [7]. In the following

each of the sub-areas is explained in detail.

• Algorithm mask sub-area assigns each algorithm to one or more memory wrap-

pers. The first word is the mask. There is one bit for each wrapper and ’1’

means the corresponding wrapper is assigned to this test algorithm. The sec-

ond word is the address of the algorithm assigned to these memories. If the

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 44

 xxx001 (mem A)
001010 (alg.1 addr.)
xxx110 (mem B & C)
011000 (alg. 2 addr.)
000000 (end)
xxx101 (enable A&C)
xxx100 (wait C)
xxx010 (enable B)
xxx011 (wait A & B)
000000 (end)
Algorithm 1
(Address 001010)
 001011 ([r,w] up)
 ……..
Algorithm 2
(Address 011000)

Algorithm mask 1
Algorithm 1 address

End algorithm mask

Test mask 1
Wait mask 1

End test schedule

Algorithm 1

Algorithm 2

Algorithm
Mask

Test
Schedule

Algorithms
5 4 3 2 1 0

(a) (b)

Figure 4.3: Instruction Memory

word width for masks is longer than the memory word width, then it can be

stored in several consecutive memory locations. For example, if we have 10

wrappers and the memory word width is 6, then we can use 2 memory locations

to keep the mask information.

• Test schedule sub-area stores the test schedule for all wrappers connected to this

controller. The test scheduling information is generated using the scheduling

algorithm (see Chapter 5) and programmed in the instruction memory before

the start of the testing process. As shown in Figure 4.3, the first line is the

wrapper mask which points out all enabled wrappers running concurrently. This

is followed by a wait mask which implies that the current test session must wait

until all the wrappers enabled in the wait mask have completed their test, which

will trigger the following test session. As indicated for the algorithm mask sub-

area, if the mask width is longer than the memory word width, then two or

more memory locations will be used to store it.

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 45

• Algorithms sub-area stores all the test algorithms needed for memories directed

by the BIST controller. It comprises a list of test instructions, where each test

instruction has 6 bits. Bit 0 indicates the test mode, bit 1 defines the up/down

address direction and bits 2-5 provide the test command. Each command corre-

sponds to one March element or an alternative (such as reset or next background

pattern). Since it was found empirically that 16 test commands (represented

on bits 2-5) can cover most of the March algorithms, the word width of this

sub-area (and consequently the instruction memory) must be at least 6 bits.

Figure 4.3(b) shows the instruction memory organization for the test scheduling

example shown in Figure 3.4(b) (based on Table 3.1 from Section 3.3). Memory A

is tested using algorithm 1 and memories B and C are tested by algorithm 2. In

the test schedule sub-area, memories A and C are first enabled and using the wait

statement it is indicated that only when memory C has completed its test, memory

B can be enabled. The testing process will continue until both memories A and B

have completed their tests. The two March algorithms are stored in algorithm area.

The command interpreter acts as an integer unit in a processor. Its interface

consists of a system interface and a wrapper interface. The system interface connects

the MBIST controller to the upper level controller (either on-chip microprocessor

or off-chip ATE). Through this interface, the upper level controller can activate the

testing process and observe the BIST results and diagnosis data from the controller.

The wrapper interface links the MBIST controller and MBIST wrappers. Since it

includes only a subset of the P1500 signals [23, 24, 30], it has a P1500-like serial

interconnection. Each MBIST wrapper has a dedicated program counter which points

to the currently processed March element (this facilitates multiple March tests to be

run simultaneously using a single controller). The main steps for running MBIST are:

1. Program the instruction memory through its interface before the testing process.

2. When the BIST mode signal is asserted (from now onward, unless specified,

an asserted signal means it has a logic high level), the controller starts run-

ning memory test. The BIST mode signal must be asserted until the controller

completes the test and asserts the BIST finish signal.

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 46

3. For each test session stored in the instruction memory, the command interpreter

will fetch the commands from the algorithm sub-area for all the activated wrap-

pers. Based on their program counter value, the new March elements will be

scanned out through the WSI port to the wrappers. The Update WIR signal is

asserted for one clock cycle after all the commands have been shifted into the

corresponding wrappers (see Section 4.3 for further details).

4. After the new commands have been sent, the command interpreter asserts the

Scan result signal (see also Section 4.3 for more details) and monitors the re-

sponse data shifted out from the wrappers through the WSO port. If an error

occurs, the BIST error signal is asserted to report the error status, and the

Begin diag signal is also asserted to indicate that the diagnosis data is ready

to be shifted out through Diag data port. If the MBIST is in diagnosis mode,

the diagnosis data can be collected, otherwise the self-test is ended immediately

after the BIST error signal is asserted.

5. If no error was found or the MBIST is in diagnosis mode, the command in-

terpreter will keep on monitoring the WSI port until at least one wrapper has

finished running the current March element. Then it will fetch new commands

from the instruction memory, de-assert Scan result signal, and repeat the pre-

vious two steps until all the test sessions are finished. If an error occurs, the

wrapper will continue the current test instruction after the error information is

scanned out.

6. After completing the last test command without any error, the BIST finish

signal is asserted to denote that all memories under test have passed the test

and the upper-level controller can then de-assert the BIST mode signal.

It is essential to note that since the MBIST controller has full controllability/observability

of each MBIST wrapper, heterogeneous memories can be tested simultaneously and

once a test for a memory has been finished, a new memory test can start immediately.

An optional IEEE P1500 [23, 24, 30] interface can also be included in the controller,

so the test engineer can control the entire testing process using a standard protocol.

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 47

Memory
Under Test

Memory Interface
Logic with WIR

Update_WIR WClock

March Element
Decoder

Address
 Generator

Backgournd
Pattern

Generator

Comparator

Data
In

Address
In

Address

Data In Data Out

Test
Results

Scan_result WSOWSI

Controller Interface

MBIST
 Wrapper

Functional Interface
Control

In
Data
Out

Control Scan
mode

Bypass
Logic

Figure 4.4: Hardware-centric MBIST Wrapper Block Diagram

4.3 Memory BIST Wrapper

Each embedded memory must be wrapped with a dedicated technology dependent

memory BIST wrapper shown in Figure 4.4. To reduce the wire delay and routing

congestion, the wrapper must be placed close to the memory core. As stated in

Chapter 1, an efficient core wrapper should be able to provide a full controllability

and observability for the controller to test the internal core logic as well as to isolate

the core and test the interconnect between cores. The IEEE P1500 core wrapper

[23, 24, 30] is aimed to provide these capabilities. However, since P1500 wrappers

are designed for general core-based SOC testing, a full-compliant P1500 wrapper will

induce excessive area and performance degradation. Because of the regularity of

memory structure and simple memory I/O interface, a simplified P1500-like memory

BIST wrapper is presented to achieve the support of testability and to maintain low

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 48

area and less performance degradation as well.

On the one hand, to provide the full controllability and observability for the

controller to test the memory core, a P1500-like serial scan command line is used.

All test commands and test responses are scanned in and out using the WSI and

WSO ports. The wrapper instruction register (WIR) [23, 24, 30] stores the command

received from the MBIST controller and using WClock and Update WIR the new

command is updated. The Scan result signal controls the scan chain to scan in WIR

commands or scan out test results. The comparator checks the memory output data

for any mismatch. If an error occurs, memory BIST will stop and the controller can

then scan out the erroneous address and data pattern stored in the test results module

for diagnosis purpose. A minor limitation of this scheme is that both wrapper and

controller do not store the diagnosis information, rather they just pass it to the upper

level controller (see Figure 4.1).

On the other hand, instead of wrapping all I/O ports with wrapper cells [23, 24,

30] in the P1500 wrapper, we only bypass the memory and connect them to other

wrappers (or chip I/O pins) and let the test controller to test the interconnect and

memory BIST itself. An example is given in Figure 4.4 where all memory inputs

are connected to the outputs of the memory through a multiplexer and some bypass

logic. In scan mode, this path is enabled to bypass the memory core.

To reduce the manufacturing test complexity, each wrapper has implemented a

default March algorithm, which can be activated by a single test command (i.e.,

no multiple March elements need to be transmitted from the controller). To further

reduce wrapper and controller area, identical memory blocks are wrapped as a memory

cluster. All the memory blocks in one cluster share the same wrapper (except the

comparator sub-block). The wrapper design can support up to 31 memory blocks in

one cluster. The test program first enables all the memory blocks in the cluster and,

only if an error occurs, after the controller has finished all the test scheduling tasks,

it will test each memory block individually to spot the exact faulty memory.

The MBIST wrapper has five main components: March element decoder, back-

ground pattern generator, comparator, address generator, and memory interface logic.

Excepting the comparator, which has a simple straightforward implementation, the

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 49

�

�

�����

�����

�

���������

	�������

 �
 �

� �
 � ����� �

� � �� � �

	����
 �

������
 �

�� ���

(a) One bit gray counter

Q

Q
SET

CLR

D

gray_in
 gray_out
carry_in
enable
clock
 carry_out
init
down_count

clock
init

Carry Out

G 0 G1 G n

1

0

gray_in
 gray_out
carry_in
enable
clock
 carry_out
init
down_count

gray_in
 gray_out
carry_in
enable
clock
 carry_out
init
down_count

enable

enable
down_count

0

...

(b) N bits gray counter

Figure 4.5: Implementation of the Reflected Gray Code Counter

other four components are detailed in the following.

March Element Decoder

The March element decoder is based on an FSM that decodes the test commands

received from controller and generates the control signals for memory read/write and

address and background pattern generation. The implementation is determined by

the memory specifications (e.g., type and size) and the requirements for test. To keep

its size under control, the decoder implements only a few March elements, which is

sufficient to run most of the known March algorithms.

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 50

Address Generator

The address generator is a simple ripple-carry gray-code up/down counter that is

tailored for March-based memory test only. As introduced in Chapter 3, to build an

up/down gray-code counter as a memory address generator, we only need to have a

normal up sequence gray counter. Using the reflected gray code, the down sequence

can be obtained by reversing the MSB bit of the up sequence. The detailed imple-

mentation of this address generator is shown in Figure 4.5. Figure 4.5(a) shows the

one bit gray cell modified for March-based memory testing. Figure 4.5(b) illustrates

a n-bit ripple-carry gray-code counter, which includes one dummy D flip-flop used

to control the least significant bit. The carry in signal is connected to the carry out

signal of the previous gray cell. When the last bit of carry out is asserted, it means

that the counter has finished counting; the gray in signal is connected to the gray out

signal of the previous cell which is also the output address bit; the counter will up-

date its state when the enable signal is asserted; the down count signal is connected

to ’0’ for all the gray cells except the MSB bit to force the up sequence when it is

de-asserted or the down sequence when it is asserted; the init signal initializes the

counter to the starting value, which is all ’0’s when down count is de-asserted and

’1000...0’ sequence when down count is asserted. The approach helps to achieve low

switching activity on the address lines (and hence low power in the address logic

decoder and memory cells) using less area overhead than other approaches. However,

to implement the gray-code counter as an address generator, one restriction is that

the memory address space must be a power by 2, which is a practical assumption.

Background Pattern Generator

Most of the embedded memories are word-oriented, i.e., they contain more than one

bit per word and need to be tested multiple times with different background patterns.

Since there are only log2 N + 1 states for a background pattern generator (BPG) ,

where N is the word width, we can use a simple decoder with predefined values to

generate all the background patterns. An example pseudo-code to generate 8-bit word

background patterns (shown in Table 2.6 in Chapter 2) is listed below:

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 51

8-bit Word Background Pattern Generator

INPUT: INIT, NEXT PATTERN

OUTPUT: PATTERN, REV PATTERN

1. if (INIT) {
2. PATTERN = 8’b00000000; REV PATTERN = 8’b11111111;

3. STATE = 0;

4. } else if (NEXT PATTERN) {
5. STATE = STATE + 1;

6. }else {
7. case (STATE) {
8. 0: PATTERN = 8’b00000000; REV PATTERN = 8’b11111111;

9. 1: PATTERN = 8’b01010101; REV PATTERN = 8’b10101010;

10. 2: PATTERN = 8’b00110011; REV PATTERN = 8’b11001100;

11. 3: PATTERN = 8’b00001111; REV PATTERN = 8’b11110000;

12. }
13. }
14. done

In this example, an 8-bit word background pattern has log2 8+1 = 4 states, which

means we only need a 2-bit register (variable STATE in the pseudo-code shown

above) to store the 4 states. A valid NEXT PATTERN signal increments the

STATE register (line 4-6). Based on the value of the STATE register, a simple 4-1

multiplexer (case statement from line 7 to 13) selects the output pattern PATTERN

and the reversed pattern REV PATTERN from the pre-coded pattern values.

Memory Interface Logic

To reduce the routing overhead for the proposed distributed architecture, a serial

interface between the controller and the wrappers is used. IEEE P1500 [23, 24, 30] is

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 52

�

�� � �

� � �

�

�

�� � �

� � �

�

�

�� � �

� � �

�

�

�� � �

� � �

�

�

�� � �

� � �

�

�

�� � �

� � �

�

�

�� � �

� � �

�

�

�� � �

� � �

�

���

�� � � � �

	
 � �
 � � ���

���

� � � � � � � �

Figure 4.6: Wrapper Instruction Register (WIR)

a standard core test wrapper which has a serial interface, however both the area and

performance overhead for a fully P1500-compliant wrapper is large. Since the inter-

connect between controller and wrappers is not shared with any other logic cores, a

very simple serial IEEE P1500-like circuit that only implements the WIR and the se-

rial interface (in addition to an architecture-specific Scan result signal), is introduced

to reduce the area and performance overhead associated with the wrapper boundary

register (WBRs) used to wrap all the ports in standard IEEE P1500 approach.

Figure 4.6 shows the internal structure of a 4-bit WIR. It has two register arrays,

one is connected to the serial command line to scan-in the command, and the other is

used to store the command when Update WIR signal is asserted. Based on this struc-

ture, the controller can scan-in different commands for different memories under test.

In other words, the controller has full controllability/observability for each memory

block. This approach needs a slightly longer time to send the test commands (when

compared to the parallel command line architecture). This additional scan-in time is

determined by total number of WIR bits of all the wrappers. When compared to the

total memory testing time, this minor overhead is neglectable (detailed experimental

results can be found in Section 4.4).

Having introduced all the components in an MBIST wrapper, a summary of the

main steps, used to run a test command in the wrapper, are given.

1. The wrapper will gain the control of the memory core after it receives a valid

test command from the controller through the serial command line. When

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 53

processing the current test command stored in WIR, the wrapper is locked

by the March element decoder and therefore no new test commands can be

updated during this period. The only way to interrupt the test is to send a

reset command to this wrapper or reset the entire system.

2. Based on the received test commands, the March element decoder will generate

the appropriate signals to control the address generator, background pattern

generator, and comparator used to run the March test algorithm. The test

results module stores the results to scan them out to the controller. It will be

either a success flag if no error occurs, or an error packet (erroneous address,

data, and an error flag) if an error occurs.

3. When an error occurs, the wrapper stops and waits for the controller to scan

out the error packet. If the test is in the diagnosis mode, the test will resume

after the error packet is scanned out. Otherwise, the memory testing process is

ended with a fail.

4. After finishing the current test command, the test results are shifted out. The

WIR is then unlocked and ready for a new test command.

4.4 Experimental Results

A set of experiments have been performed using high-density embedded synchronous

SRAMs [41] compiled for 0.18µ CMOS technology [37]. The wrapper is configured

to implement 9 March elements: (w), (r), (rw), (rwr), (rww), (rwww), (rwrwr),

(rwrwrw), (wwrww), which are the building blocks for most of the known March test

algorithms [39, 47]. The last March element (wwrww) is used to run the word-oriented

March C- test (March-CW proposed in [46]).

The efficiency of the proposed BPG is illustrated in Table 4.1. The proposed BPG

has only one third of the area required by the BPG described in [47]. Table 4.2 com-

pares the proposed gray code up/down address generator with a directly synthesized

binary up/down counter (for the same performance constraints). In addition to sav-

ing 30% of the area required by an address generator, the power dissipation during

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 54

Width Proposed (µm2) [47] (µm2) Difference
8 382 1,273 233.25%
16 793 2,395 202.02%
32 1,102 4,622 319.42%

Table 4.1: Background Pattern Generator Area

Width Proposed (µm2) Binary (µm2) Difference
8 1,350 1,853 37.26%
12 2,106 2,772 31.62%
16 2,781 3635 30.71%
20 3,448 4,614 31.62%
24 4,098 5,899 33.82%

Table 4.2: Address Generator Area

test is also decreased. For an N -bit binary counter the total number of transitions

is 2N+1 − N − 2 [11], while for an N -bit gray counter the total number of transi-

tions is only 2N . Therefore, the switching activity for the address bus is reduced by

approximately 50% and hence both peak and average power will be decreased, thus

facilitating higher test concurrency under power constraints.

A comparison of the area overhead between the proposed memory BIST wrap-

per and the IEEE P1500 full-compliant wrapper [23, 24, 30] together with memory

BIST circuit is shown in Table 4.3. The BIST area overhead (BAO) is very low and

when the embedded memory size increases the wrapper area overhead will further

decrease (for both single memories and memory clusters). However, with the P1500

wrapper, the BAO will be over 50% larger than the proposed single memory BIST

wrapper. For clustered memories, the BAO of the P1500 wrapper is several times

larger than that of the proposed approach. This is because all memories in a clus-

ter share one MBIST wrapper, however, each of them must have their own P1500

wrapper to support internal and external testability [23, 24, 30]. Table 4.4 shows

the comparisons of the overall BIST area overhead with three different approaches:

(1) the proposed memory BIST wrapper, (2) the IEEE P1500 full-compliant wrapper

[23, 24, 30] together with memory BIST circuit, and (3) the proposed memory BIST

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 55

Mem. Area(µm2) Wrap.(µm2) BAO Wrap.(µm2) BAO
MBIST MBIST

+P1500
512x16 93,346 11,119 11.91% 16,998 18.21%
1kx32 263,685 14,079 5.34% 24,044 9.12%
4kx32 884,509 14,681 1.66% 24,882 2.81%

4-Block Cluster
4x512x16 373,384 11,794 3.16% 37,410 10.02%
4x1kx32 1,054,740 15,038 1.43% 57,398 5.44%
4x4kx32 3,538,036 15,604 0.44% 58,907 1.66%

Table 4.3: MBIST (With and Without P1500) Wrapper Area Overhead

wrapper which use binary address generator and BPG from [47]. Note, the BAO for

the MBIST controller includes also a 64x8 test program memory. The BAOs vary for

different configurations. Again, the BAO of P1500 compliant wrapper is much larger

than that of the proposed MBIST wrapper. Although the BAO using the proposed

approach with binary address generator and BPG from [47] is only slightly larger than

the proposed solution. It should be noted that we only have maximum 5 memory

cores in this example. The use of the proposed gray-code address generator and BPG

will contribute to both overall BAO and power savings when hundreds of memory

core are embedded in an SOC. From these two figures, it is also clear to see that

the BAO for configurations with memory clusters is always less than that with same

memories but without memory clusters.

Figure 4.7 shows the area overhead of the address generator, background pattern

generator, MBIST wrapper, and MBIST controller for different configurations. Note

that the width of the BPG (Figure 4.7(b)) is varied by a power of 2. It is easy to

see that the BAOs of all these blocks increase linearly when varying the parameter

on the horizontal axis (i.e., address space, word width and wrapper number). This

implies that the percentage of the additional design for test-related area will decrease

as the number of memory cores increases in an SOC. In terms of gate size, it is clear

to see that the MBIST controller consumes the largest portion of the total BIST

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 56

Configuration 1kx32+4kx32 1kx32x4+4kx32 4x1kx32+4kx32
Memory(µm2) 1,148,194 1,939,249 1,939,249
BIST(µm2) 64,960 114,260 65,919

BAO 5.66% 5.89% 3.40%
BIST+P1500(µm2) 85,125 164,320 118,491

BAO 7.41% 8.47% 6.11%
BIST+BPG in[47] 69,117 120,628 70,076
+Binary AG(µm2)

BAO 6.02% 6.21% 3.61%

Table 4.4: Comparisons of Total BAO for Different Approaches

4kx32 + 2 1kx32 Using March-CW [46]
Optimal (ns) Proposed (ns) [7] (ns)

Test Time 1,474,560 1,480,540 >1,843,200
Penalty 0% 0.4% >25%

Configuration
Mem Size 4kx32 1kx32 1kx32
Power(%) 66% 30% 30%

Table 4.5: Testing Time Comparison

area. Therefore, in addition to decreasing the potential performance penalty caused

by placing MBIST wrappers around bus connected memories, a key challenge is to

reduce the area of the controller, which is the motivation for the development of the

hardware/software co-testing MBIST architecture described in the next chapter.

Detailed results on test scheduling are given in the following chapter. At this time,

to illustrate the difference between non-partitioned testing supported by [7] and par-

titioned testing with run to completion [13] supported by the proposed architecture,

three NBCMs are used: one 4kx32 and two separate 1kx32 memories. All the mem-

ories use the March-CW test algorithm proposed in [46]. Table 4.5 shows the testing

time comparison, where the optimal solution assumes separate test control for all the

wrappers, which will obviously lead to maximum test concurrency at the expense of

high area and performance penalty. On the one hand, without considering the time

used to send commands and receive test results, the testing time for the approach

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 57

100

150

200

250

300

350

1K 4K 16
K

64
K

25
6K 1M 4M 16

M

Address Space

E
q

u
iv

a
le

n
t

G
a
te

s

(a) Address Generator BAO

0

50

100

150

200

250

8bit 16bit 32bit 64bit 128bit

Word Width

E
q

u
iv

a
le

n
t

G
a
te

s

(b) BPG BAO

1100

1200

1300

1400

1500

1k 4k 16k 64k 256k 1M 4M 16M

Address Space (32bit word width)

E
q

u
iv

a
le

n
t

G
a
te

s

(c) Wrapper BAO

3000

4000

5000

6000

7000

8000

4 8 12 16 20 24

Wrapper Number

E
q

u
iv

a
le

n
t

G
a
te

s

(d) Controller BAO

Figure 4.7: BIST Area Overhead for Each Component

from [7] is at least 25% higher than the optimal testing time. On the other hand, due

to the explicit support for partitioned testing and the low extra time required to scan

in commands and scan out test results, the proposed solution introduces insignificant

penalty in testing time when compared to the optimal solution.

4.5 Summary

The cost of test when using memory BIST is determined primarily by the testing time,

BIST area overhead, and routing congestion. It was shown through experimental re-

sults that the proposed distributed architecture can reduce the BIST area overhead;

CHAPTER 4. HARDWARE-CENTRIC MEMORY BIST ARCHITECTURE 58

scan-based serial interconnection reduces the routing congestion; the support for par-

titioned testing with run to completion can reduce the testing time by more efficient

scheduling; special low power design of MBIST wrappers can further reduce the area

overhead, as well as, due to reduced activity, increase test concurrency under power

constraints, which will ultimately lower the testing time. Due to its programmability,

it can support multiple March algorithms, and heterogeneous memories can be tested

at the same time using different or custom March algorithms [2]. In addition, the di-

agnosis feature aids the failure analysis process by providing the location of the faulty

cells, which can help adjust the manufacturing process and/or search for improved

test algorithms for the technology at hand.

Chapter 5

HW/SW Co-testing Memory BIST

Architecture

Chapter 4 has presented a hardware-centric solution that can concurrently support

multiple memory test algorithms for heterogeneous memories with relatively low area

and routing overhead. It can also perform self-diagnosis, as well as support partitioned

testing with run to completion [13]. Since this solution does not assume that the

SOC includes processing elements connected to embedded memories through on-chip

busses, it is independent of the SOC structure and it is equally applicable to any

large digital chip with heterogeneous embedded memories. However, in practice, an

SOC contains one or more processing elements (e.g., microprocessors), which use on-

chip system busses to communicate with some embedded memory cores. Reusing

these existing on-chip resources to direct the self-testing process can further lower the

BIST area overhead, as well as eliminate the potential performance penalty caused

by wrapping the bus-connected memories. In this chapter, a new hardware/software

co-testing memory BIST architecture is presented. By exploiting the existing on-chip

resources to test the embedded memories, a design space exploration methodology,

based on a test scheduling engine, is described. The proposed solution is capable

to reduce the area of the BIST controller, eliminate the wrapper area overhead and

potential performance degradation for bus-connected memories, while preserving all

the advantages of the hardware-centric approach presented in the previous chapter.

59

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 60

CPU

On-chip BUS

 Slave Port

 MBIST
Controller

On-chip
Memory

Bridge

Low Power
Wrapper

MEM 1

 1P SRAM

 Low Power Wrapper Cluster

Cluster
RAM #1

Control Lines (P1500-Like)

Low Power
Wrapper

MEM 3

 Flash ROM

Low Power
Wrapper

MEM n
DRAM

Cluster
RAM #2

Cluster
RAM #3

Cluster
RAM #4

Serial
Command

Line

*RegFile*D-Cache*I-Cache

On-chip
Memory

WSO

WSI

Ext.
Tester

SOC

 Master Port

 Low Power
Wrapper

* : I-Cache, D-Cache, and RegFile are all wrapped separately

Figure 5.1: New HW/SW Co-testing Memory BIST Architecture

5.1 Memory BIST Architecture

This section details the hardware structure of the new MBIST architecture for hard-

ware/software co-testing , which can be defined as the process of consciously partition-

ing the test access, test application and test control functions for embedded memories

between dedicated DFT hardware and the available on-chip functional resources.

The proposed memory BIST architecture (see Figure 5.1) consists of two compo-

nents: the programmable MBIST controller and the MBIST wrappers . There are two

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 61

types of wrappers: wrappers connected to the system bus to test bus-connected mem-

ories (BCMs) and individual wrappers for each non-bus-connected memory (NBCM)

or a cluster of identical NBCMs. The NBCM wrapper is identical to the one de-

scribed in section 4.3. However, the BCM wrapper can be shared by all the memories

on the same bus and it is a new component specific to the architecture described in

this chapter. The MBIST controller is also redesigned to support hardware/software

co-testing and to test both BCMs and NBCMs. To test BCMs, unlike the approach

reported in [38], the proposed solution uses the standard bus interface to exchange

data between the CPU and the MBIST controller, and hence it can affect only the

bus performance. Furthermore, if the critical path of an SOC is not on the system

bus (which is a realistic case in practice), the presented solution will not influence

the SOC performance. In addition, by using a standard bus interface, the proposed

MBIST module can be reused as an soft IP core. The test mechanism for NBCMs is

the same as for the hardware-centric MBIST architecture. It also supports multiple

March algorithms, can perform self-diagnosis, as well as facilitates partitioned test-

ing with run to completion[13] for power-constrained test scheduling. In addition,

by running most of the non-time-consuming tasks, such as fetch and decode of test

commands, in software using an embedded microprocessor, the BIST area overhead

of the MBIST controller can be reduced.

A comparison of the most important features supported by the hardware/software

co-testing and hardware-centric MBIST architectures is shown in Table 5.1. The

main advantage of the hardware-centric approach lies in its independency of the SOC

structure (after the initialization and activation it can run the memory testing process

without any assistance). Since all the memories are wrapped, the testing time may be

lower under power constraints. However, the introduction of the instruction memory

and wrappers for every memory core leads to large area overhead and performance

penalty. By reusing the embedded microprocessor for test instruction decoding and

a shared MBIST wrapper for all the memories connected to the same bus, the hard-

ware/software co-testing MBIST architecture can eliminate the dedicated instruction

memory and the wrappers for BCMs. This approach may require slightly longer test-

ing time if all the memories attached to system busses are unwrapped, however it

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 62

Hardware-centric HW/SW co-testing
Architecture Independent Interact with embedded processor

Low testing time Low/medium testing time
High area and performance overhead Low area and performance overhead

Controller Diagnosis support
Run multiple March algorithms concurrently

Support partitioned testing with run to completion
Complex with instruction memory Simple without instruction memory
Control all NBCM wrappers Control BCM and NBCM wrappers

NBCM wrapper Diagnosis support
Support multiple March algorithms

Test memory or memory cluster concurrently
Serial interconnection between controller and wrapper

BCM wrapper N/A Diagnosis support
Support multiple March algorithms
Can test all BCMs serially
Parallel interconnection

Design Area efficient background pattern generator
implementation Low area ripple-carry gray code up/down address generator

Reusable IP with standard bus interface
Scheduling Partitioned with run to completion Partitioned with run to completion
algorithm Wrap BCMs to reduce testing time

Table 5.1: Comparison of Hardware-centric and HW/SW Co-testing MBISTs

provides great savings in BIST area and may improve the system performance. A de-

tailed description of the implementation of the hardware/software co-testing MBIST

architecture is given next.

Novel Programmable MBIST Controller

The block diagram of the programmable MBIST controller is shown in Figure 5.2. It

consists of three interface logic modules for on-chip bus, BCMs and NBCMs respec-

tively. The bus interface module provides a standard bus slave interface to connect

the controller to the system bus and exchange data with the microprocessor for both

BCMs and NBCMs. To test BCMs, the BCM interface module passes all the test

commands received from the processor through bus interface to the BCM wrapper ,

and sends back the test results (pass/fail and diagnosis information) to the processor.

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 63

BCM
Interface

Sy
st

em
 In

te
rf

ac
e

NBCM Interface

NBCM Wrapper
Interface (Serial)

B
C

M
 W

ra
pp

er
In

te
rf

ac
e

(P
ar

al
le

l)

Bus Interface

BUS Slave
Interface

Figure 5.2: Memory BIST Controller

The connection between BCM wrapper and MBIST controller is parallel to reduce

the control complexity since they are both connected to the bus and can be physically

placed very close to each other. A detailed explanation of the BCM interface signals

and test procedures for BCMs can be found in Section 5.1. The NBCM interface

module is designed to test all the NBCMs in the SOC. This module has two parts: a

system interface to connect the controller with the off-chip ATE and a NBCM wrap-

per interface to hook-up all the NBCM wrappers using a serial scan chain. These

parts are identical to the ones presented for the hardware-centric approach presented

in Chapter 4. To test NBCMs using an on-chip processor, the NBCM interface mod-

ule first receives parallel test commands from the processor, performs parallel/serial

conversion and sends serial commands to all the NBCM wrappers and then performs

serial/parallel conversion for the results received from NBCM wrappers before pass-

ing them to the processor. However, before the embedded processor can run memory

tests, we need to have a fault-free memory to store the test program and test results.

This memory can be either on-chip or off-chip. If the fault free memory is off-chip

then the processor can directly fetch test commands from the off-chip memories with-

out any ATE support. If the fault free memory is on-chip (e.g., processor’s cache)

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 64

then it must be pre-tested using an ATE via the system interface.

In terms of diagnosis, the processor can directly get the diagnosis information of

BCMs using the parallel bus interface and then send it off-chip for failure analysis.

The diagnosis information of NBCMs is directly shifted out using the system interface.

By running most of the non-time consuming tasks, such as fetching and decoding the

test commands and analyzing the response data, in the processing unit using software,

the BIST area overhead of the MBIST controller is decreased when compared to [7]

and the hardware-centric MBIST approach introduced in Chapter 4. In addition, by

reusing cache memories or other pre-tested memories to store the test instructions,

the dedicated instruction memory (see Figure 4.3) is also removed, thus leading to

further savings in area.

Memory BIST Wrappers

Both BCM wrappers, illustrated in Figure 5.3, and NBCM wrappers (see Figure 4.4

in Chapter 4 for details) have a common hardware implementation that is capable

to run March-based memory testing algorithms [39]. These include: address gener-

ator, background pattern generator, comparator, and a March element decoder to

interpret commands received from the MBIST controller and generate appropriate

control sequence to perform memory testing. Detailed information on these four

common components can be found in Section 4.3. The difference between BCM and

NBCM wrappers lies in the interconnect interface between the controller, wrappers,

and memories under test.

The BCM wrapper uses a bus master interface to test a part (or all) of the mem-

ories connected to the bus (depends on the test scheduling constraints described in

Section 5.3). The interconnect interface between wrapper and the bus can be parallel

without any concerns for routing congestion. To speed up the data exchange through

parallel interconnects, the BCM wrapper can also be placed (in the physical floorplan)

close to the MBIST controller. By using the common test access resource (functional

bus), one BCM wrapper can test all BCMs serially. Without considering power dis-

sipation constraints, this may affect the overall testing time. However, by carefully

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 65

March
Element
Decoder

Address
 Generator

Backgournd
Pattern

Generator

Comparator C
o

n
tr

o
lle

r
In

te
rf

ac
e

Bus Master Interface

BUS Interface

beg_addr

new_command

msb_index

command

finish

error

err_addr

err_data

Figure 5.3: Bus-connected Memory BIST Wrapper

scheduling the test sessions under power constraints (detailed in Section 5.3), one can

reduce simultaneously both the testing time and the area overhead by unwrapping as

many BCMs as possible. The signals of the interface between the BCM wrapper and

the controller are shown in Figure 5.3. All of them are directly mapped to some bus-

accessible addresses that can be read or written by the processor through the slave

port in the MBIST controller. The address generator in the BCM wrapper should

cover the address space of the largest memory connected to the bus. For each BCM,

the begin address and the size of the memory is first sent to the BCM wrapper to

guide the address generator to generate the proper addresses. Since BCMs usually

cover the entire address space (i.e., the address space is a power of 2), the ripple-carry

gray-code up/down counter proposed in hardware-centric architecture can be used.

The index of the MSB is used to indicate the memory size. For example, MSB index

9 means that the memory has 512 words. These requirements also lead to slight

differences between the test procedures for the BCM wrapper and NBCM wrapper

introduced in Chapter 4. When using a parallel interface between BCM wrapper and

the controller, the test procedure for BCMs is introduced below.

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 66

1. The processor sends memory begin address, memory size, and test command to

the BCM wrapper through beg addr, msb index, and command signals.

2. The controller then asserts new command signal to activate the BCM wrapper

in order to execute the test command (instruction).

3. If the test command is finished without an error, the finish signal is asserted. If

an error occurs, the error signal is asserted and the err addr and err data are

set to the erroneous address and data pattern for diagnosis.

4. After the current test command is finished, the processor will send a new com-

mand through the slave port of the controller to the BCM wrapper until all the

scheduled instructions are completed.

Despite the differences in interconnect between BCM and NBCM wrappers, both

of them have the distinctive benefits described in Section 4.3 (e.g., can run multiple

March algorithms or and support self-diagnosis).

5.2 Software Implementation

The memory BIST architecture described in the previous section can facilitate hard-

ware/software co-testing for a given test schedule generated using the algorithm pre-

sented in the next section. This section details the software implementation necessary

to handle the test control flow. The test software is written in C (rather than in as-

sembly language) to make it easily portable to any SOC environment. First, the test

commands are generated using a power-constrained test scheduling algorithm (see

Section 5.3) and loaded to a instruction memory (I-cache or other memories where

the test instructions are stored), which was pre-tested using ATE. The test software

then fetches commands from the instruction memory and sends data (reads responses)

to (from) the MBIST controller. Since the time-consuming tasks (e.g., on-chip gen-

eration of March tests) are conducted by the dedicated BIST hardware, using a high

level specification language for test control will not affect the overall testing time. In

the following the pseudo-code is given.

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 67

Hardware/Software Memory Testing

1. Test processor and bus;

2. Test cache memories and register files using ATE;

3. Load test program to I-Cache, test data to D-Cache;

6. Do {
7. Read commands from instruction memory;

8. Send commands to MBIST controller;

9. Wait for response;

10. if (error) {
11. if (diagnosis enable) {
12. if (BCM error) read diagnosis information

13. else wait for NBCM diagnosis information to scan out;

14. } else break;

15. }
16. }Until all the scheduled test sessions are completed;

The software implementation supports two modes of operation: manufacturing

test mode and diagnosis mode. In the manufacturing test mode, only one self-test

command is needed for each wrapper, which will automatically run the embedded

default March algorithm and set the fail/pass bits after completing the testing pro-

cess. When in the diagnosis mode, the CPU can send any March element supported

by the wrapper to run different March algorithms and read back the results (address,

background pattern) for further diagnosis purposes. In addition to aiding fault diag-

nosis, this is a very suitable mechanism to find the best March algorithm for a new

technology or to increase the test quality when the current default March algorithm

cannot achieve the targeted defect coverage.

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 68

5.3 Test Scheduling

In this section, the test scheduling engine, which is also used to explore different hard-

ware/software co-testing configurations is introduced. Since the SOC bus architecture

will affect the way how the BCMs are accessed during test, it will also affect the test

schedule and ultimately the testing time. If only one bus master can access the bus,

all the BCMs must to be tested sequentially. If the SOC has several large BCMs, this

SOC bus architecture will adversely affect the testing time. To address this draw-

back, one can use alternative bus architectures, such as multi-layered AMBA bus [4],

to which several bus masters can be attached and non-shared slave components can

be accessed concurrently. By adding one or more BCM wrappers with bus master

interface, this architecture supports more flexible test scheduling, thus reducing the

testing time. However, if no multi-layered SOC bus architectures are present for the

native mode of execution, another solution would be to wrap some BCMs, which have

a critical impact on testing time, with dedicated wrappers and test them as NBCMs.

Due to our practical validation setup, for the test scheduling algorithm presented

in this section and in our experimental results, we have considered the second op-

tion (i.e., to boost test concurrency we transform some BCMs to NBCMs), however,

note, the same trade-off exploration engine can be used if multi-layered SOC bus

architectures are employed.

Problem Formulation

Recently a test scheduling formulation and algorithm have been reported in [44]

only for NBCMs. The test scheduling problem for the proposed architecture is a

generalization of the one presented in [44], since in our case we have both BCMs and

NBCMs. For NBCMs the constraints are the same as in [44]. However, to account

for the specific test features of BCMs, each memory connected to a bus will have

different resource conflict relationship and values for testing time: one when it is

wrapped with dedicated wrapper (i.e., when it is transformed to a NBCM to increase

test concurrency) and one when it time-shares the wrapper connected using a master

port to the SOC bus architecture. The scheduling algorithm automatically chooses

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 69

which BCM will be transformed to NBCM, thus exploring various test configurations

with different testing time and area overhead. The parameters used in the algorithm

are listed below:

Pmax power constraint during test;

nm total number of BCMs and NBCMs;

nb total number of busses;

for i ∈1, 2, ..., nm

pi maximum power dissipation for memory i;

lwi testing time for memory i when wrapped;

luwi testing time for memory i when unwrapped;

si scheduled test start time for memory i;

li scheduled testing time for memory i;

Formulation:

Objective: Minimize Tmax = MAX(si + li)

Subject to:
∑

pi ≤ Pmax where i are the memories currently under test;

Test Scheduling Algorithm

Since test scheduling has been proven to be an NP-complete problem [13], in this sec-

tion we propose a greedy heuristic to deal with complex SOCs comprising hundreds

of memories. The aim of the algorithm is to reduce the testing time under power

dissipation constraints while lowering also the area overhead, via unwrapping all the

BCMs without affect the testing time. The intuition beyond using the test schedul-

ing algorithm as a design space exploration engine that decides how many BCM are

wrapped can be explained as follows. If all the BCM memories are unwrapped and

share a single BCM wrapper then the test concurrency is limited by both resource

sharing (i.e., the same functional bus) and power constraints. If dedicated NBCM

wrappers are used for BCMs then test concurrency will also be limited by power con-

straints. Therefore, the proposed exploration engine searches for the highest number

of embedded memories connected to the system bus that can share the same BCM

wrapper without limiting the test concurrency imposed by power constraints.

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 70

The Algorithm Mem Schedule takes the test parameters of each memory (pi, lwi, luwi)

and the power constraint (Pmax) as inputs, and it outputs the test schedule Tschedule

and the test method for each memory core Mtest (i.e., wrapped or unwrapped). Note,

this algorithm also increases the number of unwrapped BCMs, without affecting the

testing time. The test of each memory is represented as a rectangle whose width is the

testing time and whose height is power dissipation. For BCMs two rectangles with

different testing time are necessary (one for each test method), while for NBCMs one

rectangle representation is sufficient. If two BCMs on the same single-master bus are

unwrapped, then they cannot be tested at the same time due to bus contention, and

we call these two memories incompatible. The proposed algorithm is based on the

rectangle packing algorithm TAM schedule optimizer proposed in [20].

The algorithm starts by initializing each memory wrapper test method M i
test: all

memories are treated as wrapped except those explicitly specified as unwrapped.

Then the testing time T i
time of each memory is computed based on its test method

(line 2). The currently available power constraint Pavl is initialized to Pmax and

the number of unscheduled memories is initialized to the total number of embedded

memories (line 3). As long as there is an unscheduled memory, the algorithm first

finds a compatible memory mi with maximum testing time maxtat, which does not

exceed the power dissipation constraint (line 6). If such a memory mi exists, it will be

scheduled and the available power dissipation constraint will be updated (line 8, 9).

If no compatible memories meet the power constraint, we will record the idle power

dissipation Pidle, update the available power dissipation Pavl = 0 (line 11) and branch

to the end of the schedule of the memory with the minimum end time minend. After-

ward we update the new schedule information, including the new schedule begin time,

the number of unscheduled memories Nunscheduled and available power dissipation Pavl

(line 12-15). If there is still some idle test time, we will look for the already scheduled

memories and check whether we can unwrap them without affecting the testing time

(line 16, 17). The algorithm exits when all the memories have finished their schedule.

Although the proposed test scheduling algorithm supports partitioned testing with

run to completion [13], it can easily be adapted to non-partitioned testing used by

other MBIST architectures [7] (in line 12 the schedule of mj is finished with maxend).

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 71

Memory Schedule Algorithm Mem Schedule

INPUT: M , Pmax

OUTPUT: Tschedule, Mtest

1. Initialize M i
test;

2. Compute T i
time;

3. Initialize Pavl = Pmax; Nunscheduled = Nmemories

4. while (Nunscheduled! = 0) {
5. if (Pavl > 0) {
6. find compatible mi with maxtat and Pi < Pavl;

7. if (found) {
8. schedule mi;

9. Pavl− = Pmi
;

10. } else {
11. Pidle = Pavl; Pavl=0;

. }

. } else {
12. Finish schedule of mj with minend;

13. Update schedule begin time;

14. Nunscheduled–;

15. Pavl+ = Pmj
; Pavl+ = Pidle

16. if (idle time exists) {
17. unWrap scheduled mems if not incompatible;

. }

. }

. }
18. done

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 72

SPARC V8 CPU

AMBA-2.0 AHB

 Slave Port
 MBIST

Controller

16kx32
SRAM

AHB-APB
Bridge

Low Power
Wrapper

 1kx32
 SRAM

 Low Power Wrapper Cluster

512x16
SRAM

Control Lines (P1500-Like)

Low Power
Wrapper

4kx32
SRAM

Low Power
Wrapper

256x32

2P SRAM

512x16
SRAM

512x16
SRAM

512x16
SRAM

*136x32
RegFile

*4kbyte
D-Cache

*4kbyte
I-Cache

4kx32
SRAM

WSO

WSI

Ext.
Tester

LEON
SOC

 Master Port
 Low Power

Wrapper

* Configuration: I-Cache and D-Cache: 128x28 tag SRAM & 1kx32 data SRAM
 Register File: two 136x32 two ports SRAM
* Two cache tag SRAMs, two cache data SRAMs, and two register file SRAMs
 are wrapped by 2 cluster respectively

Figure 5.4: Example LEON SOC Platform Configuration

5.4 Experimental Results

To prove the correctness and the effectiveness of the proposed MBIST architecture,

that facilitates hardware/software co-testing, we have implemented and fabricated

an SOC platform based on LEON [17]. LEON is an open source core for embedded

applications and it has an IEEE-1754 (SPARC V8) [35] compatible integer unit with

8 register windows, 4KB I-Cache, 4KB D-Cache, and a full implementation of the

AMBA-2.0 bus [4]. A detailed illustration of this SOC platform is shown in Figure

5.4.

To estimate and compare different test parameters (e.g., BIST area overhead,

testing time, performance penalty, power dissipation) of the proposed solution, a set of

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 73

BCM NBCM Total
Memory (µm2) 4,100,930 2,698,855 6,799,785
Wrapper(µm2) 14,449 109,248 123,697

Controller (µm2) 9,684 / BAO = 0.14%
BIST Area Overhead (%) 0.35 4.04 1.96

Table 5.2: MBIST Area Overhead for LEON SOC

Software Programmable Hardware
Centric BIST Core Centric

Testing Time 7.0 1.4 1.0
BIST Area 0 Low High

Performance 0 Affect bus speed Affect mem. speed
Flexibility Any March Most March Fixed

Table 5.3: Different Approaches for Testing BCMs.

experiments have been performed using high-density embedded SRAMs compiled for

0.18µ CMOS technology. In our LEON-based SOC platform, the NBCMs are a cluster

of four 512x16 SRAMs, one 1Kx32 SRAM and one 4Kx32 SRAM, while the BCMs

are one 4Kx32 SRAM and one 16Kx32 SRAM. The wrappers have been configured

to implement 9 March elements: (w), (r), (rw), (rwr), (rww), (rwww), (rwrwr),

(rwrwrw), (wwrww), which are the building blocks for most of the known March test

algorithms [39, 47]. The last March element (wwrww) is used to run the word-oriented

March C- test (March-CW proposed in [46]). All wrappers also implement March-

CW algorithm as the default memory test algorithm. Table 5.2 shows the BIST area

overhead for the LEON SOC. By adding a very low area MBIST controller (0.14% in

this case), the CPU can control self testing for most of the embedded memories (note,

cache memories and the register file are pre-tested using ATE as outlined in section

5.2). The MBIST area overhead (control + wrappers) of this LEON SOC is less than

2%. Timing analysis indicates that the critical path is in the CPU core, which means

that our approach does not introduce performance degradation. However, the NBCM

wrappers do affect the memory access speed.

Table 5.3 shows the comparison of three different approaches (software-centric,

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 74

Memory Size Word Width Power (mw/Hz)
128 8 0.035
128 16 0.054
128 32 0.091
512 16 0.047
512 32 0.097
1024 16 0.050
1024 32 0.132
2048 16 0.121
2048 32 0.219
4096 16 0.151
4096 32 0.265
8192 16 0.198
8192 32 0.351
16384 16 0.284
16384 32 0.500

Table 5.4: Memory Configuration and Power Dissipation [41]

hardware-centric, and programmable BIST core attached to the bus to be used with

hardware/software co-testing) for bus connected memories using the LEON platform

[17] and applying the March-CW algorithm [46]. As shown in the table, the proposed

solution combines the benefits of the other two approaches. It requires low area

overhead, it may affect only the bus performance, and it maintains the flexibility of

the software-centric approach, while it reduces the testing time significantly, bringing

it close to the best possible testing time given by the hardware-centric approach.

Using the proposed MBIST architecture and the greedy heuristic for test schedul-

ing described in Section 5.3, Table 5.5 gives a comparison between partitioned testing

with run to completion and non-partitioned test scheduling algorithms under power

dissipation constraints. The memory cores included in this experiment are of different

sizes with the number of address lines ranging from 7 to 16 and the word size ranging

from 8 to 32. The power dissipation for these cores ranges from 3.5 mW to 50 mW

for 100 MHz clock frequency. The parameters (size, word width, and power dissipa-

tion) of memory cores used in this test scheduling experiment are listed in Table 5.4.

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 75

Memory Cores 10 30 50 70 100 150 200 250 300
Maximum Power Dissipation = 250mW

Partitioned 156672 986112 1299456 1612800 2082816 3382272 4165632 5465088 7944192

Non-Partitioned 156672 1004544 1317888 1631232 2101248 3400704 4184064 5497344 7976448

Difference(%) 0.00 1.83 1.40 1.13 0.88 0.54 0.44 0.59 0.40

Unwr.(part.) 1 0 0 0 2 3 5 6 7

Unwr.(non-part.) 1 2 4 6 9 14 19 23 25

Maximum Power Dissipation = 500mW
Partitioned 73728 589824 663552 737280 893952 1419264 1704960 2276352 3428352

Non-Partitioned 82944 764928 903168 1032192 1248768 1672704 2022912 2916864 3700224

Difference(%) 11.11 22.89 26.53 28.57 28.41 15.15 15.72 21.96 7.35

Unwr.(part.) 1 1 1 0 2 0 0 4 1

Unwr.(non-part.) 1 3 5 7 10 15 20 25 19

Maximum Power Dissipation = 1000mW
Partitioned 73728 589824 589824 589824 589824 829440 1105920 1382400 1972224

Non-Partitioned 73728 700416 829440 958464 1124352 1437696 1732608 2045952 2654208

Difference(%) 0.00 15.79 28.89 38.46 47.54 42.31 36.17 32.43 25.69

Unwr.(part.) 1 0 1 0 0 0 0 2 0

Unwr.(non-part.) 1 5 7 9 12 16 21 25 26

Table 5.5: Testing Time (cc) and Wrapped Memories for Different Test Schedules

All the memories are compiled using the Virage Logic memory compiler [41] and the

maximum power dissipation was obtained from the data sheet. On the one hand,

it can be seen that the maximum testing time of non-partitioned testing is always

greater than (or at least equal to) the partitioned testing with run to completion. The

difference between the two testing times varies based on the maximum power con-

straint and memory configurations. For example, the more we relax the constraints,

i.e., higher test concurrency can be achieved, the difference in testing time increases,

unless the maximum concurrency has been achieved by both algorithms. One the

other hand, because there is more idle time in non-partitioned testing, more BCMs

can be unwrapped and tested serially using the on-chip bus. This means that for

non-partitioned test scheduling we may increase the testing time at the benefit of

lower BIST area overhead. It should be noted that the proposed greedy heuristic is

very fast (e.g., for 300 memories it takes less than 1 second).

CHAPTER 5. HW/SW CO-TESTING MEMORY BIST ARCHITECTURE 76

min. max. diff.
Memories=100 Power=250mW

Testing Time(part.) 2082816 2709504 30.09%
BCM as NBCM(part.) 18/20 0/20 18

Testing Time(non-part.) 2101248 2912256 38.60%
BCM as NBCM(non-part.) 11/20 0/20 11

Memories=300 Power=250mW
Testing Time(part.) 7944192 10672128 34.34%

BCM as NBCM(part.) 53/60 0/60 53
Testing Time(non-part.) 7976448 10994688 37.84%

BCM as NBCM(non-part.) 35/60 0/60 35

Table 5.6: Testing Time vs. Wrapper Numbers.

Finally, the trade-off between BIST area overhead and testing time is shown in

Table 5.6. Item ”BCM as NBCM” means the BCM has a dedicated wrapper and

it will be tested as NBCM. To decrease BIST area overhead, i.e., all BCMs are

unwrapped, the testing time will be increased. Similarly, to reduce the testing time,

most of the BCMs have to be wrapped thus increasing the BIST area overhead. Using

the test scheduling engine, as a trade-off exploration tool, is beneficial especially

when the testing time for the entire SOC is dominated by the scan testing time of

embedded logic cores. In this case, we can explore different hardware/software co-

testing configurations until we match the logic cores’ testing time with the lowest

DFT area required by dedicated MBIST wrappers.

5.5 Summary

This chapter has introduced a comprehensive embedded memory test solution based

on a new hardware/software co-testing memory BIST architecture. By running the

non-time-critical tasks in an embedded processor, the area of the BIST controller is

reduced. In addition, a new test scheduling algorithm is used as a design space explo-

ration engine and it can simultaneously schedule the memories under test and decide

how many bus connected memories need to be wrapped. Exhaustive experimental

results have demonstrated the effectiveness of the proposed solution.

Chapter 6

Conclusion

As more and more memory cores are embedded in state-of-the-art SOCs, embedded

memory testing has emerged as a key issue in the VLSI design, implementation and

fabrication flow. Low power, low area overhead, low routing congestion, low testing

time and reduced performance overhead are a few key issues that need to be tackled.

To achieve this, two new distributed memory BIST approaches have been introduced

in this thesis. The first approach is called hardware-centric memory BIST architecture

. It can concurrently support multiple test algorithms for heterogeneous memories

with relatively low area and routing overhead. It can perform self-diagnosis , as

well as support partitioned test with run to completion [13] scheduling , which will

ultimately lead to a reduction in testing time. This hardware-centric approach is

totally independent of the SOC structure and therefore it is suitable for any large

digital circuits with embedded memories, regardless whether processing elements and

bus structures exist or not on the chip.

Since state-of-the-art SOCs contain one or more processing elements, which use

on-chip system busses to communicate with the memory cores, reusing these exist-

ing on-chip resources for testing the bus-connected memories can lower the BIST

area overhead as well as eliminate the performance degradation caused by the BIST

wrappers. This motivates the second approach, a new hardware/software co-testing

memory BIST architecture . By reusing the existing on-chip resources (bus-based

communication architectures and software stored in the cache and executed on the

77

CHAPTER 6. CONCLUSION 78

embedded CPU), this architecture further reduces the area overhead of the BIST

controller, eliminates the wrapper area overhead and performance degradation for

bus-connected memories, in addition to all the advantages of the first approach. A

greedy test scheduling algorithm developed specifically for embedded SOC memory

testing can further increase the flexibility of the hardware/software co-testing ap-

proach. By partitioning the number of wrappers added to bus-connected memories,

using the proposed scheduling algorithm, less silicon area can be consumed to meet

certain testing time and power dissipation constraints. The experimental results prove

the benefits of the novel features of both approaches.

The research findings presented in this thesis have been validated using two man-

ufactured circuits that include SRAMs. Although these architectures are applicable

to heterogeneous memories, the existing restriction is that test algorithms must be

March-based. For some types of memories, such as large embedded DRAMs, March-

based test algorithms are not sufficient to detect certain physical defects. Therefore,

a future work can improve the proposed architectures to support both March-based

and non March-based test algorithms for embedded DRAM-specific memory faults,

such as SNPSFs (see Chapter 2). Moreover, since the yield of large embedded mem-

ory cores is very low [53], built-in memory repair is currently emerging as a necessary

technology to increase the overall SOC yield. Since the architectures proposed in this

thesis do not support self-repair implicitly, an additional future improvement will be

to extend the proposed architectures with explicitly support for self-repair.

Appendix A

Silicon Implementation

To empirically validate the proposed architectures using real silicon instead of simu-

lation, the proposed BIST architectures have been included in two digital chips and

submitted for fabrication through CMC [9].

Figure A.1 shows the micro photo of the fabricated chip that implements the

hardware-centric MBIST architecture. The chip is implemented in TSMC [37] 0.18µ

CMOS technology with high density embedded synchronous RAMs (SRAMs) pro-

vided by Virage Logic [41]. The total silicon space of this chip is 2000x2000 micron2

and is granted by CMC [9]. It embeds two 1kx32 SRAMs, four 256x32 SRAMs as a

memory cluster and one 256x32 SRAM to store the test instructions. The fabricated

chip was tested using the IMS/ATS1 test and validation system [14] and it was proven

that it can correctly perform the designated memory BIST tasks.

The second approach, hardware/software co-testing MBIST architecture was im-

plemented on a 2000x2500 micron2 die. It comprises the LEON-2 (version 1.0.9) [17]

SOC platform. Given the the limited space allocation, it includes only 4k bytes I-cache

and D-cache memory, 8 register windows, and two 256x32 bus-connected memories.

This chip is still under testing, however the back-annotated simulations have shown

that it can perform the designated BIST functions. Figure A.2 illustrates the layout

view of this chip.

79

APPENDIX A. SILICON IMPLEMENTATION 80

Figure A.1: Microphoto of Hardware-centric MBIST Architecture

APPENDIX A. SILICON IMPLEMENTATION 81

Figure A.2: Layout View of Hardware/Software Co-testing MBIST Architecture

Bibliography

[1] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing and

Testable Design. IEEE Press, 1995.

[2] S. M. Al-Harbi and S. K. Gupta. An Efficient Methodology for Generating

Optimal and Uniform March Tests. In Proc. IEEE VLSI Test Symposium, pages

231–237, 2001.

[3] D. Appello, F. Corno, M. Giovinetto, M. Rebaudengo, and M. S. Reorda. A

P1500 Compliant BIST-Based Approach to Embedded RAM Diagnosis. In Proc.

IEEE Asian Test Symposium, pages 97–102, 2001.

[4] ARM Inc. AMB Web Site. http://www.arm.com.

[5] P. H. Bardell, W. H. McAnney, and J. Savir. Built-In Test for VLSI: Pseudo-

random Techniques. John Wiley & Sons, Inc., New York, 1987.

[6] T. J. Bergfeld, D. Niggemeyer, and E. M. Rudnick. Diagnostic Testing of Em-

bedded Memories Using BIST . In Proc. of the Design, Automation and Test in

Europe Conference, pages 305–309, 2000.

[7] M. L. Bodoni, A. Benso, S. Chiusano, S. D. Carlo, G. D. Natale, and P. Prinetto.

An Effective Distributed BIST Architecture for RAMS. In Proc. IEEE European

Test Workshop, pages 119–124, 2000.

[8] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic Testing. Kluwer

Academic Publishers, 2000.

82

BIBLIOGRAPHY 83

[9] Canadian Microelectronics Corporation . CMC Web Site. http://www.cmc.ca.

[10] J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W. Maly. Enabling Embedded

Memory Diagnosis via Test Response Compression. In Proc. IEEE VLSI Test

Symposium, pages 292–298, 2001.

[11] H. Cheung and S. K. Gupta. A BIST Methodology for Comprehensive Test-

ing of RAM with Reduced Heat Dissipation. In Proc. IEEE International Test

Conference, pages 386–395, 1996.

[12] R. M. Chou, K. K. Saluja, and V. D. Agrawal. Scheduling Tests for VLSI Systems

Under Power Constraints. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 5(2):175–184, June 1997.

[13] G. L. Craig, C. R. Kime, and K. K. Saluja. Test Scheduling and Control for

VLSI Built-In Self-Test. IEEE Transactions on Computers, 37(9):1099–1109,

September 1988.

[14] Credence Systems Corporation. Credence Web Site. http://www.credence.com.

[15] J. Dreibelbis, J. Barth, H. Kalter, and R. Kho. Processor-Based Built-In Self-

Test for Embedded DRAM. Solid-State Circuits, 33(11):1731–1740, November

1998.

[16] F. Gray. Pulse Code. U.S. Patent Application 94 111 237.7, Mar. 1953.

[17] Gaisler Research. LEON Web Site. http://www.gaisler.com.

[18] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici. Test Data Compression: the

System Integrator’s Perspective. In Proc. of the Design, Automation and Test

in Europe Conference, pages 726–731, 2003.

[19] International SEMATECH. The International Technol-

ogy Roadmap for Semiconductors (ITRS): 2001 Edition.

http://public.itrs.net/Files/2001ITRS/Home.htm, 2001.

BIBLIOGRAPHY 84

[20] V. Iyengar, K. Chakrabarty, and E. J. Marrinissen. On Using Rectangle Packing

for SOC Wrapper/TAM Co-Optimization. In Proc. IEEE VLSI Test Symposium,

pages 253–258, 2002.

[21] M. Keating and P. Bricaud. Reuse Methodology Manual for System-On-A-Chip

Designs. Kluwer Academic Publishers, third edition, 2002.

[22] S. Koranne, C. Wouters, T. Waayers, S. Kumar, R. Beurze, and G. S.

Visweswaran. A P1500 Compliant Programmable BistShell for Embedded Mem-

ories. In Proc. IEEE International Workshop on Memory Technology, Design

and Testing, pages 21–27, 2001.

[23] E. J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti, and Y. Zo-

rian. On IEEE P1500’s Standard for Embedded Core Test. Journal of Electronic

Testing, 18(4):365–383, August 2002.

[24] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel. Towards a

Standard for Embedded Core Test: An Example. In Proc. IEEE International

Test Conference, pages 616–627, 1999.

[25] P. Mazumder and K. Chakraborty. Testing and Testable Design of High-Density

Random-Access Memories. Kluwer Academic Publishers, 1996.

[26] H. Mehta, R. M. Owens, and M. J. Irwin. Some Issues in Gray Code Addressing.

In Proc. IEEE VLSI Great Lakes Symposium, pages 178–181, 1996.

[27] W. M. Needham. Nanometer Technology Challenges for Test and Test Equip-

ment. Computer, 32(11):52–57, November 1999.

[28] N. Nicolici and B. M. Al-Hashimi. Power-Constrained Testing of VLSI Circuits.

Kluwer Academic Publishers, Frontiers in Electronic Testing (FRET) Series,

2003.

[29] Open Verilog and VHDL International . Accellera Web Site.

http://www.accellera.org.

BIBLIOGRAPHY 85

[30] P1500 SECT Task Forces. IEEE P1500 Web Site.

http://grouper.ieee.org/groups/1500.

[31] M. Powell, S. H. Yang, B. Falsafi, K. Roy, and N. Vijaykumar. Reducing Leakage

in a High-Performance Deep-Submicron Instruction Cache. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 9(1):77–89, February 2001.

[32] R. Rajsuman. Testing a System-on-a-Chip with Embedded Microprocessor. In

Proc. IEEE International Test Conference, pages 499–508, 1999.

[33] R. Rajsuman. Design and Test of Large Embedded Memories: An Overview.

IEEE Design and Test of Computers, 18(3):16–27, May-June 2001.

[34] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreeprakash,

and M. Hachinger. A Case Study of IR-Drop in Structured At-Speed Testing.

In Proc. IEEE International Test Conference, pages 1098–1104, 2003.

[35] Sparc International Inc. Sparc Web Site.

http://www.sparc.org/standards/V8.pdf.

[36] Synopsys Inc. Synopsys Web Site. http://www.synopsys.com.

[37] Taiwan Semiconductor Manufacturing Corporation. TSMC Web Site.

http://www.tsmc.com.

[38] C. H. Tsai and C. W. Wu. Processor-Programmable Memory BIST for BUS-

Connected Embedded Memories. In Proc. Asia and South Pacific, Deisng Au-

tomation Conference, pages 325–330, 2001.

[39] A. J. van de Goor. Testing Semiconductor Memories: Theory and Practice.

A.J. van de Goor, 1998.

[40] V. A. Vardanian and Y. Zorian. A March-Based Fault Location Algorithm for

Static Random Access Memories. In Proc. IEEE International Workshop on

Memory Technology, Design and Testing, pages 62–67, 2002.

[41] Virage Logic. Virage Logic Web Site. http://www.viragelogic.com.

BIBLIOGRAPHY 86

[42] Virtual Silicon Technology, Inc. Virtual Silicon Web Site. http://www.virtual-

silicon.com.

[43] J. F. Wakerly. Digital Design Principles and Practiecs. Prentice Hall, third

edition, 2001.

[44] C. W. Wang, J. R. Huang, Y. F. Lin, K. L. Cheng, C. T. Huang, C. W. Wu, and

Y. L. Lin. Test Scheduling of BISTed Memory Cores for SOC. In Proc. IEEE

Asian Test Symposium, pages 356–361, 2002.

[45] C. W. Wang, R. S. Tzeng, C. F. Wu, C. T. Huang, C. W. Wu, S. Y. Huang,

S. H. Lin, and H. P. Wang. A Built-In Self-Test and Self-Diagnosis Scheme for

Heterogeneous SRAM Clusters . In Proc. IEEE Asian Test Symposium, pages

103–108, 2001.

[46] C. W. Wang, C. F. Wu, J. F. Li, C. W. Wu, T. Teng, K. Chiu, and H. P. Lin.

A Built-In Self-Test and Self-Diagnosis Scheme for Embedded SRAM. In Proc.

IEEE Asian Test Symposium, pages 45–50, 2000.

[47] W. L. Wang, K. J. Lee, and J. F. Wang. An On-Chip March Pattern Generator

for Testing Embedded Memory Cores. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 9(5):730–735, October 2001.

[48] V. N. Yarmolik, Y. V. Klimets, A. J. van de Goor, and S. N. Demidenko. RAM

Diagnostic Tests. In Proc. IEEE International Workshop on Memory Technology,

Design and Testing, pages 100–102, 1996.

[49] J. C. Yeh, C. F. Wu, K. L. Cheng, Y. F. Chou, C. T. Huang, and C. W. Wu.

Flash Memory Built-In Self-Test Using March-Like Algorithms. In Proc. IEEE

International Workshop on Electronic Design, Test and Applications, pages 137–

141, 2002.

[50] K. Zarrineh and S. J. Upadhyaya. On Programmable Memory Built-In Self-

Test Architectures. In Proc. of the Design, Automation and Test in Europe

Conference, pages 708–713, 1999.

BIBLIOGRAPHY 87

[51] Y. Zorian. A Distributed BIST Control Scheme for Complex VLSI Devices. In

Proc. IEEE VLSI Test Symposium, pages 4–9, 1993.

[52] Y. Zorian, E. J. Marinissen, and S. Dey. Testing Embedded-Core Based System

Chips. In Proc. IEEE International Test Conference, pages 130–143, 1998.

[53] Y. Zorian and S. Shoukourian. Embedded-Memory Test and Repair: Infras-

tructure IP for SoC Yield. IEEE Design and Test of Computers, 20(3):58–66,

May-June 2003.

Index

address generator, 38, 50

AF (Address decoder Fault), 17

at-speed test, 6, 7

ATE (Automatic Test Equipment), 3

ATPG (Automatic Test Pattern Gen-

eration), 2

average power dissipation, 8

BAO (BIST Area Overhead), 54, 76

BCM (Bus-Connected Memory), 28, 35,

61

BCM wrapper, 62, 64

BISD (Built-In Self-Diagnosis), 31, 77

BIST (Built-In Self-Test), 3, 4

BPG (Background Pattern Generator),

39, 50

CF (Coupling Fault), 16

CMOS (Complementary Metal-Oxide Semi-

conductor), 1

core wrapper, 5

CUT (Circuit Under Test), 3

delay fault, 7

deterministic BIST, 6

DFT (Design-For-Test), 4, 40

distributed MBIST architecture, 32

dynamic power dissipation, 7

functional memory testing, 20

functional model, 13

functional test, 2

gray-code counter, 38, 50

hardware-centric MBIST architecture,

32, 41, 77

hardware/software co-testing MBIST ar-

chitecture, 34, 60, 77

IC (Integrated Circuit), 1

IEEE P1500, 5

instruction memory, 43

IP (Intellectual Property), 4

LFSR (Linear Feedback Shift Registers

), 38

manufacturing test, 1

March algorithm, 20

March element, 20, 49, 53

March primitive, 20

MBIST (Memory BIST), 4, 26

MBIST controller, 26, 41, 43, 60, 62

MBIST wrapper, 26, 41, 47, 60

88

INDEX 89

memory fault, 14

NBCM (Non Bus-Connected Memory),

28, 35, 61

NBCM wrapper, 63, 64

non-partitioned testing, 36, 74

NPSF (Neighborhood Pattern Sensitive

Fault), 17

parametric test, 2

partitioned testing with run to comple-

tion, 11, 36, 74, 77

peak power dissipation, 8

power dissipation, 7, 74

programmable MBIST architecture, 30

SAF (Stuck-At Fault), 15

SOC (System-On-a-Chip), 4

software-centric MBIST architecture, 34

standalone MBIST architecture, 30

static power dissipation, 7

structural test, 2

TAM (Test Access Mechanism), 5

test cost, 9, 29

test data, 5

test data compaction, 5

test data compression, 6

test quality, 10

test scheduling, 35, 68, 69, 74, 77

testability, 5

testing time, 6, 56, 75, 76

TF (Transition Fault), 15

VLSI (Very Large Scale Integration), 1,

77

WIR (Wrapper Instruction Register),

48, 52

	Abstract
	Acknowledgments
	Introduction
	Manufacturing Test of Integrated Circuits
	Digital Test Methodologies: ATE vs. BIST
	System-on-a-Chip Test Challenges
	Embedded Memory Testing
	Thesis Organization

	Theoretical Background on Memory Testing
	Functional Model and Memory Faults
	Fault Combinations
	Functional Testing and March Test Algorithms

	Previous Work on Memory BIST and Motivation
	Memory BIST Challenges
	Memory BIST Architectures
	Power-Constrained Test Scheduling
	Special Design Implementation
	Motivation for New Memory BIST Solutions

	Hardware-centric Memory BIST Architecture
	Memory BIST Architecture
	Memory BIST Controller
	Memory BIST Wrapper
	Experimental Results
	Summary

	HW/SW Co-testing Memory BIST Architecture
	Memory BIST Architecture
	Software Implementation
	Test Scheduling
	Experimental Results
	Summary

	Conclusion
	Silicon Implementation
	Bibliography

