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Abstract

High Level Synthesis (HLS) is a promising approach to managing design complexity

at a more abstract level as integrated circuit technology edges deeper into sub-micron

design. One useful facet of HLS is the ability to automatically integrate architectural

components that can address potential reliability issues, which may be on the increase

due to miniaturization . Research into harnessing HLS for fault tolerance (FT) has

been progressing since the early 1990’s. There currently exists a large body of work

regarding methods to incorporate capabilities such as fault detection, compensation,

and recovery into HLS design.

While many avenues of FT have been explored in the HLS environment, very little

work has considered the effectiveness and feasibility of these techniques in the context

of large HLS systems, which presumably is the raison d’etre of HLS. While existing

HLS FT approaches are often elegant and involve highly sophisticated techniques to

achieve optimal solutions, the costs of HLS infrastructure in regards to scalability are

not well reported. The intent of this thesis is to explore the ramifications of applying

common HLS techniques to large designs.

Furthermore, a new HLS tool entitled RIFT is presented that is specifically de-

signed to mitigate infrastructure costs that mount as greater parallelism is utilized.

RIFT is named for its design philosophy of ”Reducing Interconnects for Fault Tol-

erance”. RIFT iteratively builds a logical hardware representation, which consists

of both the components instantiated and their interconnections, one operation at a

time. It chooses the next operation to be ”mapped” to the burgeoning design based

on scheduling constraints as well as the extra hardware and interconnect costs re-

quired to support a particular selection. Emphasis is placed on minimizing the delay
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of the datapath in effort to reduce the performance cost associated with the extra

interconnects needed for FT. RIFT has been used to generate efficient solutions for

FT designs requiring as many as a thousand operations.
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Terms & Abbreviations

alter ego a value produced on the other side of a control branch

ASAP As Soon As Possible

ALAP As Late As Possible

CAD Computer Automated Design

CDFG Control Data Flow Graph

CED Concurrent Error Detection

CPU Central Processor Unit

DFG Data Flow Graph

DMR Double Modular Redundancy

DSP Digital Signal Process(or/ing)

EDA Electronic Design Automation

FCR Failover Control Register

FFSM Failover Finite State Machine

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

FT Fault Tolerance

FU Functional Unit

HDG Hardware Description Graph

HDL Hardware Description Language

HLS High Level Synthesis

IC Integrated Circuit

LO Logical Operation
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LUT Look Up Table

lower buddy redundant FU for upper buddy in failover mode

mux(es) multiplexor(s)

redux redundant multiplexor

RIFT Reduced Interconnects and Fault Tolerance

SEU Single Even Upset

STAR Self Testing ARea

TMR Triple Modular Redundancy

upper buddy an FU protected by an adjacent lower buddy

VHDL Very High Speed IC HDL

VLSI Very Large Scale IC

XOR exclusive OR
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M.A.Sc. - D.J. Lemstra - McMaster

Chapter 1

An Introduction to High Level

Synthesis

1.1 Introduction

As a consequence of rapid advances in semiconductor manufacturing, very large scale

integrated (VLSI) circuit design is beginning to push conventional design methods to

their limits. This trend is steadily motivating the case for VLSI design to be carried

out at a higher level of abstraction than is currently the norm in an effort to mitigate

rapidly growing complexity. Another consequence of rapidly decreasing process sizes

is a greater exposure to long term reliability issues [13]. As such, much research has

been focused on architectural solutions that create more robust circuits. The focus

of this research is the efficient insertion of Fault Tolerance (FT) in VLSI designs

at an abstract level in such a way as to transparently identify and compensate for

latent defects. After this chapter, current approaches to automated FT are surveyed

and then a new FT approach, the subject of this research, will be presented. First,

however, this chapter will review some of the historical forces that have brought

us to the current level of abstraction. Then the principles underlying High Level

Synthesis (HLS), and the general HLS techniques on which most work is based will

be introduced.

1



1.2. History of Abstraction in IC Design M.A.Sc. - D.J. Lemstra - McMaster

(a) 1974: 8080 (b) 1978: 8088 (c) 1982: 286

Figure 1.1: Early Intel ICs: A progression of EDA induced organizationa

aIntel Microprocessor Hall of Fame (intel.com/intel/intelis/museum/online/hist micro/hof)

1.2 History of Abstraction in IC Design

The beginning of Electronic Design Automation (EDA) commenced soon after the

emergence of the integrated circuit in the 1960’s. The very first use of EDA was

essentially as electronic drawing aides for interactive design [41]. Then, in the 1970’s,

forays were made into the automation of interconnect insertion, an especially tedious

task, and the placement of transistors. The first level of abstraction achieved was

the introduction of the standardized cell. Before this, transistors had been manually

placed as needed, but the use of cells allowed for logic design to be abstracted from

transistor layout. About this time, the first significant conflict originating from the

use of EDA arose. Standardized cells required interconnects to be placed in channels

between columns of abutting cells. Because this is a well characterized problem,

standardized cells and channel routing was much more amendable to place and route

automation, especially considering the computing resources available at that time.

EDA critics correctly pointed out, however, that the resulting circuits were inferior in

performance and area to unstructured Integrated Circuits (IC) designed manually by

skilled designers. Two factors ushered in the acceptance of automated placement and

routing. First, the construction of cell libraries did have a greater initial cost. This,
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1.2. History of Abstraction in IC Design M.A.Sc. - D.J. Lemstra - McMaster

however, was mitigated by the fact that having performance characteristics of the

cells readily available made for easier simulation. Secondly, as process technologies

shrank and complexity grew, the manual design process simply could not keep up

with the demand for new products. The result was a rapid shift to place and route

EDA methodologies in 1980 [27].

The next jump in abstraction was achieved with Hardware Description Languages

(HDL). The creation of first HDLs in the early 1970s was driven by the need to rep-

resent gates at a higher level as IC capacity rose past tens of thousands of gates. At

first these tools were not so much used for design, but for the simulation of designs

[5]. HDLs allowed for more efficient simulation through use of multi-bit operations,

busses, and registers and also supported the use of programming control constructs.

Collectively, these began to be referred to as Register Transfer Level (RTL) models.

Many different HDLs were developed, but in the mid 1980s, Verilog HDL and Very

High Speed IC HDL (VHDL) became predominant. While originally most HDLs

modeled ICs using concurrent modeling structures, the concept of sequential assign-

ments was eventually introduced. This in turn eventually led to products, starting in

the late 1980s, that could synthesize a gate level net-list from the original RTL rep-

resentation [41]. From there, a design would go through an increasingly automated

design flow that, from the mid 1980’s onwards, commonly included separate stages

for floor planning, global routing, detailed cell placement, local routing, and finally

transistor level layout. The RTL level of abstraction is the starting point from which

most mainstream digital IC development is done in the current day.

Designing at the RTL level constitutes a significant time savings over less abstract

methodologies. There are several key components that allow for abstract design.

Multi-bit values, or vectors, can be specified as logical variables, much as in software

programming. Assignment statements generally describe how a desired result is ob-

tained by manipulating input arguments. In general, if a statement result is stored

to a register, it is thought of as a variable, otherwise it is thought of as a continuous

signal. Concurrent constructs can be used to represent concurrently executed hard-

ware components. Outside these constructs, statements are generally used to create

combinational logic networks, or signals. Inside the constructs, which are generally

3



1.3. The Next Level M.A.Sc. - D.J. Lemstra - McMaster

triggered by a clock or other signal, a series of sequential statements can be made

using variables and signals to generate results that are stored with a latch or flip-flop.

Thus the term RTL reflects a specification of how values are to be manipulated as they

are transfered from one combinational signal or storage register to the next. Con-

trol structures, such as ’If-Then-Else’ statements, make it much easier to abstractly

define Finite State Machines (FSM), which can be used to control a datapath. Var-

ious automated tools exist to convert these abstract FSMs into efficiently encoded

control logic in hardware. Loops can also be used to iteratively define hardware for

synthesis, as opposed to iteratively processing data at runtime as is the case in the

context of software programming. Designs can also be parameterized in conjunction

with vector notation and ’For’ loops. Once a component has been designed, it can be

reused in a hierarchal manner, which is possible only because it is an abstract, logical

representation. The advantages of RTL allow the designer to more easily specify the

behavior of a circuit, as opposed to the circuit itself, and utilize the EDA tool flow

to work out the lower level details such as timing, placement, and routing. This level

of abstraction and automation is essential as the design space moves into the era of

ICs with hundreds of millions of transistors.

1.3 The Next Level

At the time of this writing, RTL synthesis has been used for well over a decade

and a half. The exponential nature of Moore’s law, which states that gate density

will double every 18 months [44], suggests that capacity has increased three orders

of magnitude in that time. RTL design principles are being strained and having

difficulty coping on their own and several new paradigms are gaining currency as

a result. In 1980, Paul Russo noted in [54] that increased capacity was allowing

the different subsystems of what is now the Central Processor Unit (CPU) to be

brought onto a single piece of silicon. The idea of ”Systems on a Chip” is much

the same, however, now the idea involves moving multiple specialized computing

”cores” onto a single chip, such as microprocessors, Digital Signal Processing (DSP)

cores, encryption cores, and the like [53]. A further extension of this idea is the

4
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”Network on a Chip” concept, which involves a standardized communication network

between cores [7]. These approaches allow for utilization of increased capacities while

avoiding the recurrent engineering costs of building those functionalities from scratch.

Indeed, leading CPU manufacturers Intel, Sun, and AMD are not using the next

iteration of Moore’s law to make further architectural advancements as per usual.

Instead they are instantiating multiple instances of their previous designs onto a

single die [3, 26, 57]. It is true that this change in direction is partly due to heat

management issues because leakage current has not scaled down as well as feature size

and clock frequency. However, this could also be construed as a obvious indication

that production capacities are beginning to eclipse design capabilities by a large

margin.

1.4 High Level Synthesis

Another approach to utilizing capacity is called either Behavioral Synthesis or High

Level Synthesis (HLS). HLS describes a broad range of methods to achieve different

design goals, but most HLS systems accept a behavioral description of the work to be

executed. Then, using predefined components, the HLS tool assembles a structural

description of a circuit in RTL that satisfies area and timing constraints and that

can be synthesized. Most approaches create a design that completes the required

processing over multiple clock cycles, which allows components to be reused. Some

research, however, has explored the development of micro-architectures as well [18]. It

is commonly the minimization of either area, latency, clock period, or a combination

thereof that drives the HLS process. By changing the constraints, multiple design

variations can quickly be generated and compared on the basis of area or latency

and sometimes the clock period. If a particular design has at least one metric that is

better than in all other designs, it is said to be Pareto optimal. Because IC design is

often about making tradeoffs between several metrics, automated system level design

can be used to quickly identify Pareto optimal designs from which the designer can

select the most appropriate. HLS thus not only accelerates IC design, it can also be

considered as an automated design space exploration tool that is built on top of the

5



1.5. Behavioral Description M.A.Sc. - D.J. Lemstra - McMaster

RTL design flow, much the way RTL design was built upon the previous generation

of placement and routing tools. The rest of the chapter is a brief survey of issues

and methods of HLS systems. Much is based on De Micheli’s authoritative text,

”Synthesis and Optimization of Digital Circuits” [42], and should be referred to for

a deeper treatment HLS fundamentals.

1.5 Behavioral Description

There are different perspectives on which format HLS should interpret the behavioral

description given to it. Some promote abstract extensions based on current HDLs,

such as SystemVerilog. Others have promoted the use of system level description tools,

such as SystemC, which are derived from programming languages [17, 39]. Some see

no reason to try to express hardware and its idiosyncrasies in terms of a computer

science language. The other perspective is that such languages or HDL combinations

would ease the burden of design for those unfamiliar with hardware principles, or

perhaps allow hardware software co-design tools to more easily partition the two in

a continuous fashion [43]. Irrespective of where the behavioral description originates,

it can be parsed into what is known as a Data Flow Graph (DFG) as seen in Figure

1.2. The vertices depict the flow of data into and out of nodes, which are called

Logical Operations (LO) and represent the processing or manipulation of the input

data. The DFG is also useful in determining the precedence of data operations in

that a node cannot begin execution until all of its ancestor nodes have generated

their outputs. The DFG can be extended to a Control Data Flow Graph (CDFG)

which also depicts control structures such as ’If-Then-Else’ branches or ’For’ loops.

These graphs represent the processing that will need to be accomplished by the HLS

design when completed, but do not represent the hardware implementation of the

final design.

6
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1.6 HLS Hardware Resources

Components used in HLS fall into several classes. Functional resources are perhaps

the most important class, consisting of different types of data manipulation units, such

as adders, multipliers, other mathematical operators, or custom logic modules. These

generally are provided as part of a library or are supplied by the designer. Specifics

such as the number of operands, commutativity of the operands, the number of clock

cycles the unit requires, and so forth are assumed to be known. An instantiation of

a particular functional resource is referred to as a Functional Unit (FU) henceforth

and is thought of as both a data consumer and a data producer.

Registers are a second class of resources. They are used to store values from any

data source, be they inputs, FUs, or other registers. When they are suppling data

to FUs, other registers, or outputs, they are thought of as sources. When they are

accepting data, they act as sinks.

Inputs and outputs allow new data into the system and calculated data out. They

tend to be a trivial aspect in the realization of a complex HLS design.

Finally, when an HLS system is completely specified, wiring is needed to connect

inputs, registers, and FUs together. Multiplexors (muxes) allow a data value to be

selected from among several sources. In many HLS systems, FU related costs are

assumed to be much greater than the costs associated with wiring and muxes. This

is because adding infrastructure to share a particular FU would not be worthwhile if

several instances of that FU required less area than the shared HLS solution. Thus

the costs of interconnects are often ignored.

1.7 HLS Timing

Execution time in an HLS design system is usually described in terms of clock cycles.

If time is to be either optimized or constrained, it is most often done in terms of

the number of clock cycles. A time constrained approach will generally add FUs

only as needed to meet that timing constraint while minimizing the number of FU

instances, and thus area, needed. In some systems, a technique called ”chaining”

7
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is used whereby operations with short delays are ”chained” together such that they

process data sequentially within a single clock step. This is particularly useful if FUs

with long delays are being used concurrently with shorter operations. In this case,

the measure of the clock period is also important and usually included in performance

measures. Wiring and muxes will also affect the clock period, but is often considered

to a lesser extent.

1.8 HLS Metrics

There are many different strategies that fall under the scope of HLS. There are sev-

eral different criteria for HLS metrics, the most common being area, latency, and the

clock period. Different approaches will limit one factor or more and seek to optimize

the remaining metrics. At the HLS abstraction level, the absolute characteristics of

different hardware components may or may not be known, however, the relative char-

acteristics should be available. For instance, use of a carry look ahead adder should

be faster than a ripple carry adder, though the latter will require more area. Fre-

quently, area estimation relies simply on how many instances of a particular resource

unit is needed by comparative designs: more instances of a unit type will require more

area. Thus many HLS strategies limit or optimize the number of instances needed,

as opposed to actual area. Some HLS systems may try to alter the original behav-

ioral specification to reduce the number of FUs required [10]. For instance, using

associativity and commutativity laws may result in a variation that requires fewer

expensive units. The following transform would require both less operations and less

multiplications, which usually is relatively expensive compared to addition.

a ∗ c + b ∗ c −→ (a + b) ∗ c

Timing, in terms of the number of clock cycles, is usually a very well defined aspect

of a problem and can be given as a direct constraint. The period, however, is difficult

to estimate. The period depends, not only on the components, wiring, and muxes

utilized, but also on the what type of technology the final design will be compiled

on. Because the HLS CAD tool’s final output is an RTL output, the actual period
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timing is not known until the RTL is compiled using an external tool flow. For these

reasons, it can be convenient to ignore clock period and instead make comparisons of

work based on the number of resources and clock cycles needed.

1.9 HLS Methodology

The transformation of the CDFG into hardware model is considered to be an NP-

hard problem [52], and thus is often segregated into stages [25]. Each stage discussed

here is depicted with a small 5-Tap Finite Impulse Response (FIR) filter example in

Figures 1.2 to 1.5. Additions require one clock cycle, while multiplications require

two. Scheduling is the process of determining the clock cycle in which each LO will

be executed (Figure 1.5). Determining which FU each LO will be executed on is

called binding (Figure 1.3). For convenience, the steps together will be referred to as

mapping. Once mapping has been completed, the lifetime of each value produced by

each FU in each clock cycle is fully defined. Register mapping determines when and

to what physical register each value will be mapped. Register multiplexing is often

used to reduce the actual number of physical registers required (Figure 1.4). Once FU

mapping and register mapping is completed, the data-flow of the entire system is fully

specified. At this stage wiring and muxes can be added as needed to facilitate the

specified data-flow. The completely specified solution is then also used to construct

an FSM to control data-flow, register enables, and conditional executions, where the

main state is equivalent to the clock cycle count.

1.9.1 Scheduling

Much research has been done into various HLS scheduling algorithms and related

optimizations. Scheduling is the determination of when each LO will be executed.

The simplest may be the as-soon-as-possible (ASAP) and as-late-as-possible (ALAP)

algorithms, which is overlaid onto the CDFG in Figure 1.2. ASAP scheduling sets

each LO with no precedent values to clock 1. Each subsequent node is scheduled in

the clock after its latest dependency is generated. The longest path from a starting

9
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Figure 1.2: A CDFG for 5 tap FIR with ASAP, Mobility,
& ALAP

Figure 1.3: A binding table
with 1 adder and 2 multipli-
ers

Figure 1.4: Assignment of values
to registers by Left Edge Sort

Figure 1.5: Scheduling LOs to clock steps
10
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LO scheduled in the first cycle to the final output determines the minimum number

of clock cycles needed and thus the critical path, which is the lower latency bound.

ALAP starts by scheduling the last LO with either the latency constraint, or, if

not given, the critical path latency found by ASAP. Each LO is then scheduled

”backwards” such that it produces its value immediately before the earliest child

needs it. As with ASAP, LOs that require multiple clock cycles to execute must also

be accounted for. The difference between the ASAP and ALAP scheduling for each

LO is called the slack or mobility, and reflects the different clock cycles that may be

scheduled. The ASAP and ALAP algorithms are used as a starting point for several

other scheduling algorithms [25].

If the goal is strictly the minimization of latency, only ASAP scheduling is needed.

More elaborate approaches are required to satisfy latency constraints while also min-

imizing the total number of FUs required. List scheduling is a classic approach that

iteratively schedules LOs one clock cycle at a time [14]. In each clock step, a list of

”eligible” LOs, those with satisfied precedences, is chosen from based on a secondary

ranking which depends upon the goals of the List algorithm variation being used. As

many LOs are chosen as there are available FUs. If LOs with zero slack times exist,

they must be scheduled in that clock cycle to avoid violation of the latency constraint.

If the number of LOs requiring scheduling exceeds the number of FUs available, then

an extra FU of the required class must be instantiated to accommodate the LO with

zero slack. For this reason, LOs with the nearest ALAP time are usually scheduled

first to make a best effort in avoiding the need for an extra FU instantiation. It is also

possible to use List scheduling as a latency minimized, resource constrained problem

by restricting the FUs and selecting LOs on the basis of ASAP only.

A prevalent heuristic is Force Directed scheduling [50], which can be implemented

as the secondary selection algorithm in List scheduling. It makes use of measurements

of the ”demand” for each resource and determines how each possible LO scheduling

alters the demand for the entire system. The change in demand is thought of as a

force, where larger forces result in a ”stretched” scheduling. LO selections that have

the smallest or even negative force associated are scheduled first. The rationale of

the heuristic is that it will work to minimize concurrency required of each FU class

11
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using broader considerations than merely choosing LO with the nearest ALAP value.

It is regarded as superior to List scheduling for most applications, but is of cubic

complexity and thus less useful for larger problems.

1.9.2 Binding

Binding is the spatial assignment of LOs to FUs. In some instances, binding can be

done before scheduling, usually for timing related approaches such as FU chaining.

However, to deal with complications arising in part from the implementation of con-

trol logic, binding is often completed in step with scheduling [20]. Without control

logic, the number of LOs that can be mapped is equivalent to the number of FUs of

that class that exist, less those that are multi-cycle and still in use from the previous

clock cycle. Multiple LOs in mutually exclusive (mutex) branches, however, can be

bound to the same FU, which complicates scheduling a great deal. By scheduling and

binding each LO in the same step, it is assured that every scheduled LO will in fact

also have a binding in that clock cycle. Conversely, the integrated scheduling binding

algorithm can continue to possibly schedule mutex LOs in FUs that might otherwise

be considered occupied by segmented algorithms. When performing integrated bind-

ing, there is little opportunity to utilize binding to optimize for secondary factors.

What can be done is to give preference to bindings that place mutex LOs in the same

FU and clock cycle in an effort to fit as many LOs as feasible into the available FUs.

1.9.3 Register Mapping

Once LO mapping has been completed, the source, start time, and end time of the

value produced by each LO is known. In most cases, an effort is made to reduce the

number of registers needed to store the values during their lifespans by multiplexing

them. Minimizing the number of registers reduces to a interval graph that can be

solved optimally using a left edge sort algorithm [35], of which a very brief example is

shown in Figure 1.4. Mutex LOs can be taken advantage of by mapping their values

to the same physical register. More complications are discussed in Section 3.7.2 in

conjunction with the discussion on implementation.

12
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1.9.4 Insertion of Interconnects

Once scheduling, binding, and register mapping have been completed, most of the

components and data flow requirements are completely specified. A model of the

physical hardware can then be built. Inputs, outputs, physical FUs, and registers

are all added to the model. Each register and FU operand are wired to input muxes

which will be used to select from appropriate sources as required by the schedule and

controlled by the FSM. Every LO is compared to the FU to which it is assigned, and,

if needed, the appropriate wires are added from the required inputs or registers to

the requisite operand’s input mux. If the FU in question possesses the commutative

property, operands can be rearranged to minimize the number of separate inputs the

largest mux has in order to reduce size and delay. Much more elaborate reduction

strategies are discussed in Chapter 3. A connection must exist from the FU output

to the required register’s input mux as well. Once this hardware model is complete,

it will fully describe the datapath and can be converted into an RTL description.

1.9.5 FSM

For the datapath to operate as required, control information must be properly or-

chestrated by a FSM. Especially in the case where there are no control statements, it

might be possible to create a separate FSM for each component. However, a conven-

tional FSM that can be properly compiled later by an RTL compiler benefits greatly

when control information originally associated with each LO is aggregated into one

FSM entity. This FSM has states that often correspond to the clock cycle count. In

each state the required configuration of each mux and possibly an enable for each

register is stored. It is possible that each of these signals be contingent on conditional

logic dictated by the control statements in the original behavioral description. When

this information has been collected and aggregated, it can be converted to an RTL

description, which completes the HLS design process.
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1.10 Summary

HLS has been investigated since at least 1990 in many different applications. Some

work involves adapting software compiler concepts such as transformations and re-

organization for more efficient scheduling. CPU design has also been an influence,

suggesting things like insertion of predictive branch techniques. Others have discussed

strategies to improve scheduling in control oriented systems by moving LOs into or

out of branches [19]. Other techniques involve the principles of HLS but with differ-

ent aims and different procedures discussed here. The work discussed here represents

what might be considered mainstream HLS. The next Chapter will examine different

research completed into extending HLS advantages for the purpose of adding various

FT capabilities. Chapter 4 presents a new FT system, called RIFT, that provides

cost effective, transparent, online defect detection and compensation meant specifi-

cally for large, highly parallel systems. But first, Chapter 3 will present work on a

method to reduce interconnect costs, which is an essential component of RIFT.
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Chapter 2

Use of HLS for Fault Tolerance

As advancing technology allows further advances into deep submicron design, the

long term reliability of integrated circuits are increasingly coming to question. Is-

sues discussed in [13], such as electromigration and high frequency resistance make

it increasingly likely that an IC may pass manufacturing test only to develop defects

prematurely while in use. These defects may first be expressed as intermittent faults

before progressing to a permanent fault. Single Event Upsets (SEU), sometimes re-

ferred to as transient faults, are nonrecurring errors that are caused by energized

particles, environmental noise, electromagnetic interference, and the like. These er-

rors are becoming more common as feature size shrinks and stored charges become

smaller and are thus more easily influenced [15]. Intermittent faults differ from SEUs

in that they are caused by physical, possibly worsening, defects. A principle cause

is electromigration, which can create frequency dependent opens and shorts. Elec-

tron tunneling is another cause, as it can eventually breakdown the gate oxide in

transistors. Intermittent faults can lead to permanent faults as damage accumulates.

Permanent faults as a result of manufacturing are on the decline, however the inci-

dence of permanent faults occurring while in use is becoming increasingly problematic

[13].

While increasing susceptibility to faults, shrinking process technologies are also

allowing greater capacity for design complexity. This in turn is allowing for many
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architectural advancements. Both the emergence of core centered designs and plat-

forms, and the staggering amount of logic that can increasingly be fit onto a chip

tend to back the case for HLS. It would make sense, then, to exploit the advances

enabled by miniaturization, to mitigate the very consequence of that miniaturization,

namely, long term reliability. This argument is compellingly supported by the large

amount of research that has gone into HLS in general, and for Fault Tolerance(FT)

related HLS work in particular. A survey of this work is presented in this chapter.

A complete FT system may require several different capabilities, including fault

detection, isolation, compensation, and recovery, depending on the the level of FT

required. HLS techniques have been applied in each of these areas. Of the first

two, fault isolation is really a subset of detection. Isolation identifies what hardware

component is at fault, whereas detection can only report that an error has occurred.

Compensation is the ability to avoid errors due to the fault once it has been detected.

Recovery is the ability to catch and correct every error as they occur. Techniques sur-

veyed use either hardware or time redundancy or a combination thereof to determine

the presence of and possibly the location of a fault. Care must be taken in selecting

FT methods to ensure protection is achieved for the faults that are of concern, as not

every method deals with every type of fault. Temporal duplication may detect inter-

mittent and transient faults, but be susceptible to permanent faults. The converse

may be true for other methods. Few methods can protect against all fault classes,

and those that do tend to be expensive. In addition, most research, including that

presented in Chapter 4, assumes that only one fault is present at a given time. Most

approaches guarantee treatment of one fault and handle each subsequent fault with

decreasing assurance.

2.1 Fault Detection and Isolation

The capability of detecting and isolating faults while an IC is in use is often called

Concurrent Error Detection (CED). This is different from the more common case
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of off-line testing, which is usually reserved for manufacture related testing. A con-

ventional CED system generally needs two distinct sets of hardware to detect er-

rors and three to isolate the faulty unit. This is called Double and Triple Modular

Redundancy(DMR, TMR). A similar method uses temporally derived detection by

using double or triple recomputation techniques. HLS methodologies use high level

knowledge of the system to insert detection or isolation capabilities in a manner that

requires less time or resources than required by standard spatial DMR and TMR.

Fault Security is an attribute of a system that guarantees that either the result is

correct, or that any observable error will be reported. In an early paper, [31], Karri

and Orailoǧlu duplicate the CDFG and try to map the second onto the same hard-

ware as the first, adding FUs as needed. The technique uses the algebraic properties

of associativity, distributivity, and commutativity to aid mobility in scheduling the

duplicate CDFG and thus take better advantage of idle resources. In [32], they again

use duplication, but in this method the CDFGs are split into regions defined by a

chosen LO and its ancestors. The original region can be ”secured” by storing, if nec-

essary, and comparing its result to the duplicate region, which can now be scheduled

at different times, ideally on preexisting idle FUs. It is also possible for the duplicate

region to break its input dependencies by using data from the original CDFG before

it is produced and verified by the duplicate. This ”delineation” gives greater mobility

to duplicated LOs and allows greater mapping flexibility. In order to ensure that

a fault doesn’t corrupt both results, all LOs within the two regions must be bound

to disjoint FUs. By utilizing previously idle resources, this method is able to detect

faults with as much as 37% less area than DMR on small examples. However, these

are theoretical results in that they only account for the extra FUs required and do

not represent actual synthesized gains.

In [36], Jha et al. consider the possibility of fault aliasing in the absence of a

strict requirement for disjoint hardware between regions. By requiring LOs to be

bound on distinct FUs, but allowing an FU to be used in both the original and

duplicate regions, hardware requirements can be reduced. This, however, leads to the

possibility that a fault in such a shared FU could result in a error on each distinct LO

in such a way that the final result produced by the regions are equal but erroneous.
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This concept is referred to as aliasing and can result in undetected faults. In [32]

above and other work, aliasing was avoided by always using disjoint hardware for

each original and duplicate region pair. In [36], additional algorithms are used to

relax this constraint in an effort to achieve more hardware reuse. They identify

possible faults and calculate the probability aliasing will occur. If acceptably low, the

possibility is ignored. Otherwise the arrangement is retracted or an explicit check is

scheduled to catch errors. Synthesized average results are as much as 22.3% less than

DMR.

In [61], Wu and Karri also address the issue of error aliasing in the context of

temporal re-computation. Instead of adding extra FUs for fault detection, they use

re-computation on the same hardware using different allocations. They calculated

that the risk of aliasing is reduced when the number of times an FU is used changes

as much as possible between the original and the re-computation. They implement

a system that minimizes the chance of missing an error. Area overhead for a FIR

filter is reported to be 18% with a maximum chance of missing an error at 27%. By

partitioning the CDFG into smaller recomputing regions, the probability of missing

a fault is reduced to 4% with an area overhead of 30%. In [60] they also introduce to

HLS a data diversity method first proposed in [48, 49]. It utilizes operand shifts in the

re-computed CDFG so that errors are propagated to different bits in the compared

results. They found that data diversity aliasing can be reduced by increasing the

shift amount and increasing the defective FUs usage in a CDFG region. However,

the data path width of the system must be increased by the same amount as the

shift desired. Data diversity anti-aliasing efforts result in 12-25% area costs with a

probability of missing an error less than 2.5%. Using partitioned CDFGs increases

the area to 14-29% but reduces the chance for false positives to less than 1%. The

re-computing method does, however, require twice as many clock cycles. Operand

shifting may not work for non arithmetic FUs. In [62], Wu and Karri add the ability

to break data dependencies to partly overlap re-recomputation to reduce the 100%

clock cycle increase.

Isolation of a fault to a particular hardware unit, as opposed to merely determining

one has occurred, is somewhat more involved. Many of the previous detection methods
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can be extended to their equivalent of TMR. In [22], Hamilton and Orailoǧlu use

an error coding system to correlate errors in multiple regions to isolate a common

faulty FU. They report synthesized results of 43% and 11% less area overhead than

standard TMR and DMR, respectively. This technique, however, is vulnerable to

transient faults and to errors that are not necessarily expressed for every calculation.

This problem tends to limit this system to isolating permanent faults.

2.2 Fault Compensation

The other half of fault tolerance is recovery from defects, also known as built in self

repair (BISR). The classic approach, used in a broad array of disciplines, is the N +1

fail over system with one redundant unit for every N FUs to be protected [55]. A

common N + 1 design has the single redundant unit take over the role of any failed

unit. Thus it requires the input connections from all of its protectorate. An example

is [34], by Kumar and Lach, which uses a reconfigurable unit so that the N protected

FUs may be of different classes.

Most BISR HLS research, however, tends to depend on rescheduling to existing

hardware instead of using an N + 1 based design, in part because it is not obvious

how to leverage HLS advantages otherwise. Guerra et al. takes an approach in [16]

whereby an alternate mapping of LOs to FUs is used for each different possible FU

or register failure. The alternate mapping can include algebraic transformations to

favour usage of surviving modules. When no other options exist, extra hardware is

added. Reported chip area overhead results are 2.3-61% and 4.4-19.3% for scheduling

and transformation based reconfiguration, respectively. However, the examples used

are different and the number of clock cycles used are not reported. Karri et al. have

experimented with rescheduling to deal with faulty units as well in [30]. They use

specifically designed multi-function FUs to add more flexibility to scheduling. They

report synthesized results of 5-11% area cost to meet single fault requirements. Double

fault coverage ranges from 14-68%. It is also noted that as more distinct schedules

are needed to accommodate possible faulty units, the area required for interconnects

grows rapidly.
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Graceful degradation is a second class of redundancy proposed by Chan and

Orailoǧlu that uses the remaining intact modules, but uses alternate mapping with

an allowance for the use of extra clock cycles. In [11], the scheduling table, which is

a grid of FUs and clock cycles, is split into upper and lower triangles for each class

of FUs. If a fault in an FU occurs, the lower triangle is delayed by one cycle and

the operations to the right of the faulty FU, inclusive, are remapped to the FU on

the right. In the upper triangle, operations including and to the left of the faulty

unit are rescheduled to the FU on the left. LOs are scheduled into these triangles

normally, except for the additional constraint that LOs in the upper triangle with

precedents generated in the lower triangle must be scheduled at least one cycle after

they are produced. Otherwise a data hazard occurs in compensation mode as when

the lower triangle is delayed, values might be produced too late for upper triangle LO

consumption. The reported performance degradation in terms of clock cycles is 7-

60% when the worst possible FU suffers a failure. Area costs of using a reconfigurable

architecture over a non-FT static design are not reported. The work is extended in

[45] to support register faults in the same manner. The reconfigurable design requires

25% more registers. Performance degradation when reconfigured is 7-55%. Inter-

connect complexity, as measured by the number of wires needed, goes up by 66%,

54%, and 114% when support for FU, Register, and both types of failover are added,

respectively.

A separate approach to graceful degradation is advanced by Karri et al. in [29]

and is called Phantom Redundancy. It is similar to [11] in that separate schedules

with relaxed timing constraints are used to accommodate failure of an FU. No spare

modules are required. In contrast with [45], Karri et al. recognize the need to

manage the design process to minimize the additional interconnects needed to support

reconfigurable datapaths. To this end, a genetic algorithm based routine is used in an

effort to reallocate LOs in failed FUs to the same alternate FU. Phantom Redundancy

is reported to require 11-79% more clock cycles and a relatively cheap estimated

area overhead of 0.7-5%. In addition, it is acknowledged that extra muxes cause an

approximate additional 10% performance cost as a result of an increased period.
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2.3 Fault Recovery

The FT method embodied by Fault Recovery might be considered the most compre-

hensive of the different levels of FT, as it aims to detect and correct faults, as well as

the errors produced, immediately. The common approach is to insert checkpoints in

the schedule where all internal values are stored until the next checkpoint is reached.

The CDFG is duplicated as in DMR. Between checkpoints, the duplicated results are

compared and, if a discrepancy is found, the calculation is restarted, or ”rolled back”

to the last checkpoint. The costs associated with this method are the duplication,

voting circuitry, and extra registers which hold the values of the previous checkpoint.

There is also a performance issue as the rollback re-calculation will require extra time

and delay subsequent results. [46] addresses three major issues in designing such

systems. The first is in determining, given the quantity of checkpoints required, be-

tween which clock steps they should be added. Because all the existing values at a

checkpoint must be saved, effort is made to schedule LOs such that their produced

values, and thus registers, are minimized at the checkpoints. Values with longer lifes-

pans are targeted to cross checkpoints, as they will already occupy a register for more

of a checkpoint cycle regardless. [47] expands on these methodologies by using a

multi-dimensional force directed scheduling algorithm. Algebraic transformations of

the duplicate CDFG are incorporated to allow better resource allocation, similar to

the HLS DMR work presented earlier. A synthesized recoverable 16 point FIR filter

design with fault recovery is reported to be 2.7 times larger than a non FT design.

It is also reported that 85% of the area is dominated by interconnect. It should be

noted, also, that this rollback design is subject to a nondeterministic delay during

recalculation due to the possibility of a transient fault that lasts multiple checkpoint

cycles. In the case of a permanent fault, rollback is unable to recover unless a TMR

approach is used.

In [9], Blough et al. approach the fault recovery in a more formal framework,

first using specialized algorithms to determine lower bounds on the number of FUs

and registers needed. Two approaches are then used to determine schedules with

rollback checkpoints inserted. The first is the prioritized cost function method where
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the number of FUs is constrained to the lower bound, and scheduling then seeks to

minimize register cost using branch and bound search. The weighted cost method

loosens the FU constraints in a stepwise fashion in an effort to extract cost savings

from better register use. The best costing solution based on the relative register

to FU cost then determines the best solution. Although synthesized results are not

presented, [9] claims optimal solutions and 10-30% improvement over [47].

Hamilton and Orailoǧlu present in [23] and [56] an interesting method for adding

recovery that also supports permanent as well as transient faults. It uses the concept

of checkpointing and DMR, as before, and also assumes that there is more than one

value stored at each checkpoint, which implies parallel computation ”strings”. When

an error is detected, the subsequent checkpoint iteration abandons duplication and

recalculates the erroneous calculation on completely different FUs. The remaining

FUs can be used to perform, in duplicate, the calculations that would have been run

had there not been an error. If they depend on the erroneous result, each half of the

duplicate computation pair will use one of the two results, even though it is known

that one data input is incorrect. At the end of the second checkpoint cycle, the

redundant calculation will determine which of the original duplicate computations

was originally at fault, information which can be used to select the correct depen-

dent duplicate of the current cycle as well. Care must be taken that the dependent

computations use the same disjoint FU subsets as the original erroneous subsets and

use the corresponding suspect results. Thus it can be assumed if the fault caused

another error, it will only corrupt the duplicate that already has the incorrect input

value anyways. Execution then proceeds in normal DMR mode until another error

is detected. Obviously, this scheme relies on a single fault assumption, and also has

some fairly stringent scheduling requirements. The advantage is that computation is

not interrupted or delayed in the event of a fault, in contrast to the rollback methods,

regardless of whether the fault is transient or permanent. The authors also discuss

a variation that is less hardware intensive and uses at most one checkpoint cycle to

correct transient and permanent faults. They report results for this technique com-

bined with graceful and sparing recovery methods at 47-50% and 35-43% area less

than TMR, respectively.
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2.4 FPGA Specific FT Approaches

In recent years, field programmable gate arrays (FPGA), because of their flexibility

and growing capability, are increasingly being used in critical systems. Typical HLS

FT compensation systems work by reorganizing how LOs are mapped onto a hardware

configuration. FPGA approaches to FT can be enlightening in that they typically

work towards the opposite: reorganizing the hardware in an effort to support the

logically mapped design requirements. Another parallel is that both FPGA FT and

generic HLS FT are interested in providing diagnosis or alternate configurations which

can be pressed into service when needed without the use of CAD tools. This section is

a brief survey of FPGA FT concepts and methodologies that may prove useful when

contemplating FT for the generic architecture.

2.4.1 Fault Detection and Isolation

In [58], Tahoori et al. discuss a simple offline test method to only identify faults in the

interconnects and Look Up Tables (LUT) that are to be used by a particular design on

a FPGA. This allows for the idea of application-specific FPGAs which can distinguish

and ignore faults that are outside the required FPGA resources. For high volume

FPGA designs, yields can be improved by not testing parts of the FPGA that are not

used. Abramovici et al. propose a method capable of testing FPGAs online, however,

the method only works with FPGAs capable of partial online reconfigurability [2].

The technique uses reserved groups of blocks called ”STARs”, for self-testing areas.

Within each group, one block is configured as a test pattern generator, which feeds two

other blocks under test. Another block in the group analyzes the responses. As the

test progresses the role of the blocks rotates. The STARs are able to swap places with

functional parts of the FPGA and thus test the whole chip in a ”roving” fashion. A

method published by Lala and Burress in [37] decomposes logic expressions such that

they can be mapped into a FPGA LUT along with a redundant LUT that outputs

the complement. The LUTs can be cascaded with others to allow for larger logical

functions. The two outputs are compared and indicate an error if they disagree. The

result is an online self-checking FPGA circuit.
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2.4.2 Fault Compensation

A method for using HLS to add redundancy to FPGA designs is suggested in [4].

The CDFG is broken into ”detectable subgraphs”, similar to the secure CDFG re-

gions discussed earlier. The idea is to try and map each subgraph into a ”tile” on

the FPGA in a manner that minimizes interconnect requirements between subgraphs.

Then spare tiles can be reserved in the FPGA which will be less costly to use as a

replacement for any subgraph found to contain a defect. Hanchek and Dutt present

work concerning how to reconfigure FPGAs to use pre-allocated spare configurable

logic blocks without having to use CAD tools to generate a new design that circum-

vents a fault [24]. They propose that FPGAs incorporate switches that can bypass

logic blocks while loading the FPGA configuration. During the generation of the orig-

inal FPGA configuration, extra wiring is reserved in anticipation of using a redundant

logic block. The method mostly amounts to merely extending wires one block. Once

a faulty resource has been located, a switch in the FPGA programming bus is used to

bypass the defective logic block and add the spare. Then the original CAD generated

configuration can be loaded onto the FPGA for normal operation. The authors also

suggest that spare interconnects could be added in parallel with used interconnects.

Defective wire could be bypassed by using switches that redirect signals over the ad-

jacent spare path. Unfortunately, these methods must be built in by the fabricator.

The actual fault identification could be coupled with an online isolation scheme such

as [37] or an offline approach as described in [51].

2.5 Motivation

Originally, the goal of this research was to determine methods by which FPGA designs

could be made to have FT capabilities without the need for reconfiguration. The

methods mentioned for FPGAs in the previous section are promising, but none to

our knowledge, with the exception of STAR, are capable of compensating for faults

without offline reconfiguration. STAR is reconfigurable online, but relies on a partial

reconfiguration technique only available on a small subset of FPGAs, as well as an
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external controller. It is also not immediately clear how the STAR technique can

transparently relocate state and run-time data when moving the testing area. Because

most FPGA architectures are not disclosed, it becomes necessary to add FT at an

abstraction level higher than the physical layout. The work presented in the next

two chapters still satisfies this original goal and the results are generated on FPGAs.

However, the methodology itself and the following motivation is generic enough that

it is equally applicable to ASIC design as well.

Many ideas and approaches to FT systems have been advanced. However, they all

suffer to some degree from two major problems introduced by HLS infrastructure:1

1. An increasingly complex and deep FSM

2. A substantial amount of extra interconnects are introduced.

When compared to an optimal non-fault tolerant HLS produced design, it is obvious

that the failure of any unit cannot be tolerated, as this would preclude that optimality.

Thus to accommodate a single failure, either the number of execution steps must be

increased, or one or more additional units must be incorporated. Both options then

imply the first problem listed to be true, as both require alternate arrangements to

redistribute the work, and therefore different mappings. When a component fails,

the physical wiring inputs which did feed it must be redirected to an alternate unit,

thus requiring extra wiring. This may not be so bad in itself, but the alternate FU

may require extra routing in the form of a new or larger mux. If not considered, this

could, in aggregate, considerably affect the critical path of the HLS infrastructure

and consequently increase the period and thus reduce the performance of the design.

Fault detection and isolation also requires extra routing and control and thus also

incurs these two costs, although possibly to a lesser extent.

Presumably as chip size grows, HLS is supposed to harness the increased capacity

by implementing greater parallelism through the use of more modules, ideally without

further burden on the designer. It is submitted that the promise of HLS is in how

it can be used to leverage preexisting modules as capacities increase by easily and

1Henceforth, the term ”arbitrary” should be understood to mean without due consideration of
these two factors.
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efficiently increasing parallelism. However, when HLS systems become increasingly

parallel, even massively parallel, the potential exists for the two HLS issues listed

above to increasingly dominate performance and area considerations if not adequately

managed. Consider that FPGA products currently available (circa 2005) can contain

as many as 96 DSP oriented blocks that can be configured as 36x36 bit multipliers [1].

If HLS arbitrarily maps fault tolerant LOs to this many multipliers, it is conceivable

that an input consumed by one multiplier might also need to be redirected to many of

the other multipliers for redundant configurations. Or a redundant unit might have as

inputs the complete set of the protected units’ inputs, depending how redundancy is

configured. The ramifications concerning the HLS FSM are not insubstantial either.

Indeed, it would be difficult for an HLS FSM to accommodate separate configurations

for the continuum of a hundred units without protracting the critical path, especially

if the work involves hundreds or thousands of clock cycles.

Much work has been done towards optimally packing operations, fault checks,

and redundancy into the mapping grid. Yet for large and massively parallel systems,

the cost of adding or reserving a few units for FT will likely be inconsequential

compared to the importance of managing overall complexity. Some research has

already moved in this direction. For instance, Phantom Redundancy is a variation

of graceful degradation where emphasis is in moving all displaced operations to a

common replacement unit in an effort to reduce interconnect complexity, though

with the requirement of more clock cycles [29]. In their conclusion in [28], the authors

acknowledge that the largest cost of HLS FT designs is ”interconnection complexity”.

It is observed in [47] that rollback and recovery techniques can require as much as

85% of chip area. Unfortunately, most FT oriented HLS research, referenced here

or otherwise, report performance in terms of clock cycles and added interconnect

complexity, while rarely are the consequences on clock period reported. Given this

is an important determinant of actual performance cost, it could be surmised that

either the experiments were not carried out to this level, or that this metric is not

favourable. Furthermore, although classic benchmarks such as the 16-tap FIR filter

help to serve as a basis for comparison, it seems somewhat preposterous to utilize

such elaborate HLS algorithms and then demonstrate them on small examples that
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have already been redesigned ad nauseam. In any case, the effects of HLS augmented

FT on actual circuit performance is relatively unexplored, especially as concerns large

parallel systems for which HLS should prove most conducive. The intent of the work

presented in the remaining chapters is to explore interconnect complexity and FT as

it pertains to large systems, and to demonstrate a method by which these costs can

be reduced.

27



M.A.Sc. - D.J. Lemstra - McMaster

Chapter 3

Reducing Interconnects

As should be somewhat evident from Chapter 1, there are many differing methods

to approach the generic HLS problem. The criteria for which improvements, or even

optimality, is desired will greatly serve to determine the approach taken to HLS.

The addition of FT invariably necessitates greater interconnect complexity and the

costs associated with it. Thus, before FT is examined in Chapter 4, this chapter will

examine the nature of interconnect costs and methods to mitigate them. The chapter

concludes by presenting experimental results of HLS designs implemented on FPGAs

that compare interconnect ignorant and aware approaches.

3.1 Common HLS Criteria

Research in HLS has been conducted in areas varying from standard timing and con-

trol oriented optimization to various fault detection, isolation, and recovery methods.

Generally, these approaches explore performance and resource cost tradeoffs in effort

to find Pareto optimal designs. However, in most cases, performance is measured in

the somewhat narrow terms of the number of clock cycles required to complete the

work. Similarly, the number of FUs required is often considered as equal to area,

though in fact, it is only proportional. However, this definition of area and perfor-

mance is appealing when dealing with mapping algorithms, as the final result can

be shown on a mapping grid as in Figure 3.1, where one axis reflects FU resources,
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Figure 3.1: Resource & time tradeoff results in an HLS system

and the other the available clock cycles. Competing scheduling approaches can be

easily evaluated by comparing the resources and clock cycles used. This can be useful

when dealing with complex algorithms, particularly for scheduling control structures.

Unfortunately, in the final implementation, other issues can significantly affect the

final real world performance of an HLS designed system.

3.2 Interconnect Cost Components

The cost of interconnects has always been acknowledged in HLS design [20]. However,

it is often dealt with as an unavoidable or perhaps trivial cost as compared to the main

area and ”performance” objectives. As the HLS design problems under consideration

increase in size, complexity, and parallelism, the costs associated with interconnects

will become more important.

Before a more complete treatment of interconnect associated costs can be given,

it is important to more precisely define what is meant by the term ”interconnects”

. In the context of this work, interconnects are the components of a chip that direct

and transport data between inputs, outputs, FUs, and registers. This definition thus

includes both the wiring and the steering logic, which usually consists of muxes, but

can also consist of tri-state buffers when busses are under consideration. Because

FPGAs are the focus in this work, busses and tri-state buffers are not considered.

Most useful IC designs require interconnects. If a CDFG were to be directly converted
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into an IC, all the vertices would become simple wires and steering logic would be

unneeded. Most such designs, however, would need substantially more FUs because

there would be no FU reuse. HLS methods aim to lessen the number of FUs required

by reusing them, but to do so must add extra wires and steering logic when an FU

requires data from different sources. These extra interconnect requirements are part

of HLS’s infrastructure costs, along with the registers now needed to store data until

it is used. Registers add to the number of data sources and so also add to interconnect

costs. If registers are used to store data from multiple sources, then even more steering

logic will be required, further increasing HLS cost. Let I, O, FU , OP and R represent

the number of inputs, outputs, FUs, operands per FU, and registers that exist in a

system, respectively. Then the theoretical maximum number of connections needed

can be expressed as follows:

Interconnect Complexity = Sources · Sinks

= (I + FU + R) · (O + R + (FU ·OP ))

− FU · (FU ·OP )

lim
I,O→0

= FU · (R + R ·OP ) + R2

The FU2 · OP term is removed because values produced by FUs must be registered

before they are used as FU inputs. The R2 is a result of allowing register to register

transfers. When parallelism is increased and the inputs and outputs become trivial,

the remaining complexity is a strong function of the number of FUs and registers.

There are at least two costs associated with interconnects. The first and obvious

one is that both wiring and muxes will require area on the chip. Wiring area is

difficult to estimate in HLS circumstances because the floor plan and thus the length

of the wires cannot be known until lower in the design flow. Thus, at the HLS level,

wiring area, at best, can only be though of as proportional to the number of point

to point connections. The area required by muxes is somewhat more defined, as the

size, relative to a two input mux, is proportional to the number of inputs less one.

The second cost is that interconnects add extra delay. Wire delay is proportional
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to length, which again is unknown. In the case of FPGAs, wires are fixed and their

routing depends on statically configured switches which can considerably increase the

propagation delay. Muxes also can add considerable delay. Like area, a muxes’ delay

can be estimated based on the delay of a two input mux. The delay is proportional

to dlog2 (N)e, where N is the number of inputs. When a mux is used on an FPGA, it

is usually instantiated with a LUT. Because a LUT has a limited number of inputs,

larger muxes require several LUTs and thus usually several ”logic blocks” which must

be connected together by wires. This means that muxes on an FPGA are distributed

in nature and can be quite costly.

3.3 Interconnect Specific Work

From the beginning of HLS research, it has always been recognized that the HLS

infrastructure adds some interconnect related costs. An early paper by Tseng and

Sieworek orients the HLS procedure around the data paths ”for the minimization

of the number of storage elements, data operators, and interconnection units” [59].

They map the sources, FUs, and sinks to separate graphs and use clique partitioning

to determine the number of components needed and to partition data transfers to

busses. The approach does try to reduce area by reusing interconnects, however, it

does not consider the area requirements of steering logic nor delay.

Cloutier and Thomas present in [12] an approach whereby scheduling and binding

are integrated into a single step that also considers interconnects. It is based on a

force directed method that has been extended. Although the algorithm considers the

interconnect savings to be gained by reordering commutative operands, it does not

consider wiring outside this consideration. For this reason, and because force directed

scheduling uses a weighted average of several other considerations, emphasis is not

placed on minimizing interconnect costs.

A simultaneous scheduling and binding algorithm using simulated annealing is

presented by Kollig and Al-Hashimi in [33]. One of the changes that can randomly

be made to the model during the simulated annealing process is to swap the inputs

of a LO if they are commutative. The cost function includes FUs, registers, and also
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the equivalence in input muxes. As such, the area of muxes are considered directly

and the area of wires connected to muxes are indirectly considered, but delay is not.

In [52], Rim et al. propose both an Integer Linear Programming and a heuristic

method for binding FUs and registers. It specificly considers the cost of point to point

wiring and also mux area. While the work is comprehensive, it does not consider

delay introduced by muxes. Furthermore, because the methodology does not include

scheduling, there is no freedom to minimize the costs by managing the schedule.

A binding algorithm is presented by Bhattacharya et al. in [8]. It is focused on

minimizing the critical path of combinational networks used to implement conditional

execution in control oriented designs. It does not, however, address period reduction

for registered datapath architectures common to HLS. Opportunities to reduce the

period when scheduling and allocating resources are not addressed either.

3.4 Delay Components

In the prior work presented in the previous section, the area costs of interconnect

are well considered. However, the manner in which interconnects are constructed can

considerably affect the critical path. The clock period is proportional to the critical

path of a circuit and is comprised of several components. The largest contribution

to delay would most likely be from the FUs. Because the design of the FUs are

supplied by the designer, HLS can do nothing to address this delay. If the HLS

infrastructure allowing reuse of FUs is more expensive in terms of area and delay

than the actual FUs themselves, it would be more effective to simply use extra FUs.

Not only would the delay cost of HLS be avoided, but the greater parallelism (if

not already maximized) would allow for execution in fewer clock cycles. Therefore

there is some point were the ratio of the mux to the FU delay and area would favour

abandoning HLS techniques. If the the ratio was high because the mux is supporting

a large number of inputs, it may be better to consider using more FUs than strictly

necessary rather then inordinately increase mux size and delay for greater reuse. An

example of these principles can be seen in Figure 3.2. In this case, because the cost

of the FU is small compared to the two operand muxes, it can be replaced with three

32



3.4. Delay Components M.A.Sc. - D.J. Lemstra - McMaster

Figure 3.2: HLS cost considerations

FUs and still have less delay. This tradeoff would be worthwhile if only three or less

of the four possible input combinations are needed. The configuration using muxes

would be worthwhile if the area cost of the FU were much greater than the muxes

combined. Generally, for HLS, this is assumed to be the case.

A second delay source could, in some cases, be the control logic. Generally the

finite state machine is regarded as a smaller and more simple than the rest of the

design as well as ”adjacent” to the datapath, as depicted in Figure 3.3, and thus

unlikely to impact the critical path. However this assumption may not be justified

for designs that are predominantly control oriented, especially if some manner of FT

mechanism is added.

The final major component of delay in an HLS design is the routing infrastructure

added by the HLS CAD tool itself. The central tenant of HLS is to reuse expensive

FUs by executing multiple operations on each in succession. This requires each FU
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Figure 3.3: Delay components of an HLS system

to be able to read multiple values on each of its operand inputs as dictated by bind-

ing. Therefore, muxes must be inserted to allow values to originate from different

input ports or registers to be consumed by the FU. The more distinct input sources

required, the larger the required mux, which increases the delay of the mux propor-

tional to dlog2e of the number of inputs. If using a homogenous set of FUs, the critical

path length is determined by the set of muxes with the largest number of distinct

inputs, and is again proportional to dlog2e of that amount. The same is also true

of multiplexed registers, which also contributes to the critical path. Therefore, the

component of clock delay where HLS has the greatest opportunity to improve the

critical path is the two layers of muxes that feed FUs and registers, as seen in Figure

3.3.

3.5 Difficulties in Considering Delay

In a broader sense, it is obvious that to minimize the critical path, the muxes at the

FU and register level need to be balanced. Traditional HLS, however, is unsuited to
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these considerations, and in fact, often ignores them for several reasons. The classic

design procedure first schedules and binds LOs from the CDFG onto the available

physical FUs with the aim of attaining the highest possible utilization rate. In other

words, concentrate the work into the smallest amount of time and resources possible.

Once this step is completed, the results produced by each LO have a well defined

start time and lifespan, the end of which is determined by the start time of the

consuming LOs. This allows a left edge sort to be used to pack the produced values

into the fewest number of physical registers. Once these steps have been completed,

the wiring requirements are almost completely specified. The only exception is that

commutative FU have some flexibility regarding the ordering of their operands. Thus

it is difficult to add delay considerations to the standard HLS procedure.

The problem can be further explained as one of cyclical dependencies. If it were

known during LO mapping which FU had an existing wire to an available register, LO

binding could be done in a way that reduces the number of distinct register inputs.

During LO mapping, only the original input wires are concretely defined. Other

inputs will come from values stored in registers, but which register in particular is

not known until register mapping has been completed. Thus, managing connections

to FUs during LO binding can only be done with values, which are not yet bound

to specific registers. Thus there is no knowledge of how different binding choices will

affect FU input mux size. As such, it is difficult for classic HLS CAD tools to continue

to work at a more abstract level and still deal with the lower level details of how the

components are actually wired. For these reasons, HLS approaches have been more

focused on improving mapping against a clock cycle benchmark as opposed to the

more complex endeavor of improving a design based on a clock period x clock cycles

measurement of performance.
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Figure 3.4: Improvements possible using an enhanced Left Edge Sort

3.6 Delay Centric Approaches

3.6.1 Enhanced Left Edge Register Sorting

It would be advantageous for a FU with an existing connection to a register to reuse

that register as much as possible. However, this is difficult to take advantage of

with the current model. The LO mapping must be completed before the left edge

packing algorithm can be used to determine the specific register to which a produced

value will be stored. It is possible to modify the left edge sort routine to consider

the source of a value when packing onto physical registers (as LO mapping has been

already completed). However, depending on the aggressiveness of the new routine,

this may lead to some degree of sub-optimal register packing. A delay aware register

packing algorithm would capture an extra degree of freedom, the choosing by source,

in reducing delay as depicted in Figure 3.4. However, gains available by manipulating

the binding and scheduling of LOs, as demonstrated in Figures 3.6 and 3.7, cannot

be realized with this post-scheduling approach.
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3.6.2 Heuristic Approach

A second possible way to approach the problem could be to use a heuristic. This

method has been used by several others for various aspects of the mapping problem,

such as mapping problem solved with simulated evolution [40] and simulated anneal-

ing in [33]. Use of heuristics to optimize delay could be computationally costly. The

first difficulty would be the basis on which to measure improvements of a design. It

is possible to complete the design flow down to placement and routing for each iter-

ation and use the resulting frequency performance as feedback for the next iteration.

However, adding this step to a heuristic loop would necessarily imply an expensive

iterative cost, and consequently, a high overall computational cost.

The heuristic approach could be improved by instead treating the size of the

largest FU and register multiplexors as proportional to the delay introduced by the

HLS procedure, thus avoiding the synthesis step. Even so, the scalability of such an

approach is questionable. There are several degrees of freedom, which contribute to

a fairly large design space:

• The number of instances of each resource type.

• The timing options for each LO.

• The binding options for each LO.

• The binding options for inputs of commutative FUs.

• The number of registers to use.

• The binding of values to registers.

The timing for register scheduling is fixed by the mapping of LOs to FUs, and is thus

not a free variable, unless one considers esoteric tricks such as moving values around

to open registers over the value’s lifetime. Several of these variables are essentially

graph colouring problems with extra constraints and considerations, making them

NP-hard. It should be possible to use such a brute force approach in designing delay

aware HLS systems. However, given the rapid growth in the size of the design spaces
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(a) List: Breadth first (b) RIft: Depth first

Figure 3.5: Breadth vs. Depth methods

under consideration, a design driven approach capable of making rational tradeoffs

instead of random guesses is likely to be more computationally efficient. Furthermore,

it may be more difficult to explore nuanced architectural enhancements in a heuristic

framework.

3.6.3 An Interconnect Driven Greedy HLS Approach

The approaches discussed so far had the disadvantages of either having cyclical de-

pendencies, or required the use of brute force with little capacity for nuance. The

final approach proposed here is to flatten the HLS procedure such that LO and regis-

ter mapping are completed concurrently one LO at a time in a greedy fashion. This

would mean mapping a LO to a clock cycle and FU as well as selecting a register to

store the output value in, all in one step. The process is then repeated for subsequent

LOs until all are scheduled. This changes the way in which the hardware is designed,

as shown in Figure 3.5. Whereas before hardware was built up in stages of first all

the FUs and then as many registers as needed, this method builds the hardware in-

crementally. If first mapping all the FUs and then mapping the registers is thought

of as a ”breadth first” routine, the new approach would be a ”depth first” method.

Alternatively, this method could be described as a datapath focused design effort,

as opposed to resource based. The main disadvantage to this approach is increased
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Figure 3.6: Advantage of considering delay while scheduling

complexity in having the LO and register scheduling and binding problems all open

at once and being solved incrementally, without complete knowledge of the previous

”stage”. Adding wiring as a consideration only adds to this complexity. Nevertheless,

the advantage is substantial. The incremental approach allows for various opportu-

nities to be taken advantage of in a greedy fashion, such as use of current knowledge

of the circuit to reuse existing wiring. This advantage is demonstrated in Figure 3.6,

where the ability to consider wiring while manipulating LO scheduling can lead to

a less complex wiring configuration. In this example, an input wire is reused when

the ’+B’ is deferred a clock cycle. In Figure 3.7, an example is shown where wiring

knowledge is used during binding to reuse existing register wires. This datapath based

approach also more easily allows for additional architectural additions, such as fault

tolerance, addressed in the next chapter, or buffered multiplexors. This new method

is named thus after its advantages: ”Reduced Interconnects and Fault Tolerance” or

RIFT.

3.7 Implementation of RIft

The remainder of this chapter will concern itself with the details and performance

of the first component of RIFT, namely the reduction of interconnects. FT is an
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Figure 3.7: Advantage of considering delay while binding

extension of this topic and will be discussed in the next chapter. To distinguish

between the two versions, the version that only reduces interconnects will henceforth

be written as RIft, with a lowercase ”ft”. When the version with FT is referred to,

all capitals, as in RIFT, will be used.

3.7.1 A RIft Cost Structure

The basic premise of how RIft works is to incorporate into HLS the incremental cost

of adding the hardware required to accommodate the mapping of subsequent LOs. It

follows then that the first step in deciding which LO to map next is to determine the

cost of mapping every eligible LO on every available and compatible resource. This is

determined by examining the possible variations of the following decision variables:

• The physical FU to be mapped to.

• The mapping of LO inputs to physical FU input muxes

• The existing or new register the produced value is to be mapped to.

The mapping of logical inputs to physical FU input muxes is done in a greedy fashion

for each possible mapping of a commutative LO to an FU. The selection of an appro-

priate register is directed by run time specified options and further discussed in the
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next subsection. When all possible allocations have been determined, the following

cost components for each possible LO to FU mapping are described in the following

list. Their formal cost is also stated in the respective line of Equation 3.1.

Input Wire Cost: The number of wires that would be added to the FU input

muxes.

Register Cost: The number of new registers that would need to be added.

Register Wire Cost: The number of input wires required by the register input

mux.

Marginal Cost: The increase in size of the largest FU mux of a class.

Costi→j = Cinput ·
|operands|∑

k=1

ek
j (3.1)

+ Creg · fj

+ fj · Creg wire · gj

+ Cmarginal · Tj

Costi→j denotes the total cost of assigning operation i to the physical FU j. The

Cx variables are all cost coefficients that can be set by the designer. The first line is

the cost incurred by the addition of inputs to the mux of FU j. ek
j is a boolean variable

that is 1 if for the jth FU the kth operand requires the addition of a new distinct

input. Creg is the cost of a new register, and fj is a boolean variable indicating if one

is needed. Creg wire is the cost of adding a wire to a register input, and gj indicates if

a new wire is needed for the chosen register. The final segment is the marginal cost

multiplied by Tj which is ’1’ if this allocation results in a new maximum operand mux

size for this FU class. This is meant to penalize any mapping that could increase the

critical path.

As an example, the use of the cost calculation in selecting the next mapping can

be seen in Figure 3.8. The first panel demonstrates how operations ’A, B, & C’ have
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already been mapped from the CDFG to the Hardware Description Graph (HDG).

The HDG has been drawn with timing information superimposed. Between FUs ’+1’

and ’+2’, the clock steps 1, 2, and 3 are denoted in descending order on the dashed

lines. An accounting of the value stored in a register is immediately beneath that

register, where time increases to the right. The three remaining white panels depict

some possible ways in which the single remaining unmapped operation ’D’ could be

mapped. The cost is determined for the three possible allocations and presented in

the included table. In this case, it is least expensive, and most logical, to bind ’D’ to

FU ’+2’ and reuse register 2. As LOs are iteratively mapped, the options available

to the remaining unscheduled LOs will change, as will their associated costs, and

thus the cost and compatibility information for remaining LOs must be updated after

every new LO mapping. It is important to note that a classic ”breadth first” multi-

stage mapping algorithm would not have the interconnect information shown in 3.8

and thus would not be able to consider the routing costs. RIft is able to do so only

because of its integrated scheduling, binding, and register allocation routine.

3.7.2 Register Mapping

For every LO to FU allocation that is considered, a particular register is chosen to

store the produced value based on several rules which are selected by the designer.

The simplest case is that of partitioning. When this directive is specified, every FU

is connected to its own registers and does not share with other FUs. The exception

is for the implementation of conditional logic. If in one conditional branch, a value

is produced on a different FU type than in a subsequent branch, the register that

stores that value will need to accept connections from each FU of different types.

The following code segment would lead to such a situation:

if condition then c = a + b;
else c = a ∗ b;

If the different values for ’c’ are not stored in the same register, then subsequent

operations needing to access value ’c’ would not know what register to look in without

some manner of elaborate and costly setup. The two example assignments each are
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Figure 3.8: Different allocation costs for ’D’

represented by LOs and it is convenient to euphemistically refer to them as ”alter

egos”. If the conditional value is produced by the same class of FU, RIft will attempt

to use the same FU for each branch. However, the cost coefficients for register and FU

input wires may yet dictate a mapping to separate FUs. The advantage of partitioning

is that, excepting conditional requirements, no register muxes and their associated

control circuitry are needed. The disadvantage is that there likely will be more

registers, and thus also more sources which the FU muxes must potentially accept

values from, which could complicate routing at the FU level.
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Without the partitioning directive, RIft will attempt to share registers wherever

possible. Compatible registers are selected in the following order:

If already instantiated, an alter ego must be connected to the appropriate1

register regardless of wiring.
Any available and compatible connected register that has a mutex2

compatibility, excluding those reserved for an alter ego.
Any other available connected register, excluding those reserved for an alter3

ego connection.
Any available register with a mutex compatibility, by smallest input amount.4

Any other available register, by smallest input amount first.5

A new register is created.6

The first rule is dictated, as discussed above, by the need for alter egos to store

their values to the same register. Thus if a register is being selected for an alter

ego, RIft must check to see if the alter ego’s counterpart already has been assigned a

register, and if so, that one must be used. Otherwise, the selection proceeds normally.

In order to ensure a register is available to the alter ego counterpart when it is needed,

an ”alter ego hold” is placed on that register to ensure no other values, including

mutually exclusive values. This is removed when all the counterparts have been

mapped. If the required selection does not involve an alter ego, the next prospective

group of registers are those that are already connected to the targeted FU. Registers

that already hold values that are mutually exclusive with the value to be stored are

preferred since it is less likely that any other produced value will be able to use that

register.

If no connected register is available, RIft will proceed based on the register and

the register input wire coefficient costs, Creg and Creg wire. If a wire is less costly than

a register, RIft will try to select a register used by other FUs, again trying to find a

mutex compatibility first. Of the eligible register candidates, that with the smallest

number of existing inputs will be chosen. This is because a wire will need to be added

between the FU and the selected register, and by selecting the smallest, increase of

the critical path caused by register mux expansion is avoided when possible. Finally,

if an available register still has not been found, a new one will be created. However
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the register is selected, only the cost of using that one register for that particular

candidate LO to FU allocation is considered.

Finally, there is one more register selection directive that is meant to give RIft

some ability to accommodate different target platforms. A size threshold can be set

that will limit the number of inputs that register muxes may have. This threshold is

ignored when alter ego requirements must be satisfied, however, RIft tries to anticipate

alter ego requirements and use a new register where appropriate. On an FPGA, large

muxes can be relatively expensive, yet every register essentially has a built in two-

input mux, due to the cellular architecture. Therefore, it may be advantageous to set

the threshold to two inputs. It would be expected that the number of registers needed

would be significantly reduced, as compared to partitioning and with only a trivial

increase in routing complexity. For ASIC targeted designs, large mux instantiations

are relatively more compact, and thus larger muxes may be less costly to implement.

Even so, the threshold can be used to control how many mux levels will be allowed

in the critical path according to

critical path ∝ dlog2 (threshold)e

For instance, an input threshold of 5 to 8 would be specified to limit register muxes

to 3 levels of two-input muxes.

3.7.3 RIft Scheduling

The addition of RIft changes the manner in which LO mapping is carried out. List

and Force Directed scheduling are mainly concerned with choosing the next LO to

be scheduled in the current clock cycle and RIft can be added as an extension to

either. Because classic List scheduling only uses different levels of eligibility when

selecting LOs to map, the RIft cost can be used more directly in selecting both the

next LO to map and also the FU for that LO to be mapped to. Since Force Directed

scheduling already uses a cost, that of the ”stress” removed by scheduling a particular

LO, it would be more ungainly to incorporate a RIft based cost as well. However,

RIft cost could still be used in determining which FU a chosen LO should be bound

to. For purposes of investigating the advantages of the RIft approach, it is probable
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Figure 3.9: LO selection methods

that the more complex Force Directed scheduling would be more likely to obscure the

results achieved by the addition of RIft algorithms. For these reasons, RIft has been

implemented as an extension to the List Scheduling algorithm.

The algorithm for RIft is less intuitive than that of List Scheduling. The version

of List scheduling implemented splits up LOs that have their precedents satisfied into

three distinct groups:

now : Now LOs are those that must be scheduled in the current clock cycle in order

to meet the systems latency constraints.

soon : Only multicycle LOs can be in the soon category. They do not need to be

scheduled in the current clock cycle, but they will need to be scheduled within

the number of cycles this LO type takes to execute.

eligible: All other LOs that have their precedences satisfied but do not fall into the

previous two categories.

This leads to two separate conflicting LO selection criteria. The first is to ensure that

now nodes are scheduled without the need for additional FUs where possible, and that

soon nodes preempt eligible LOs. The second criteria is to select the cheapest LOs

from the largest possible pool of eligible LOs, as this constitutes the greedy method.
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If the now LOs are scheduled first, the cheapest LOs from the soon and eligible sets

may be blocked or overlooked. However, if the cheapest LOs are scheduled first,

they could block now LOs that have no other compatible FUs, which would force

the addition of a costly FU. This problem can arise whenever a lower priority LO is

selected while a higher priority group contains an LO that has less allocation options

than there are members in that higher priority group. By selecting the lower priority

LO in these cases, it is possible that the higher priority LO would eventually be

unnecessarily blocked in the current or some subsequent clock cycle, which would

lead to the addition of an unnecessary FU.

A RIft selection algorithm is also constrained by the need to accommodate condi-

tional logic. This means there can be mutually exclusive LOs that can be scheduled

in the same FU and clock cycle. Thus the amount of LOs that can be scheduled to

free FUs is not known until completed. Thus, selection cannot be treated as simply

examining the
(

N
R

)
possible selections, where N is the number of LOs and R is the

number of FUs, and choosing that with the lowest cost.

Thus in summary, a solution must:

• not rely on knowing how many LOs can fit into the available FUs.

• continue until no other LO can be mapped.

• ensure that now LOs are never blocked.

• ensure that soon LOs are never blocked by eligible LOs.

• as much as possible choose from the largest possible pool of LOs to ensure

selection of the lowest cost LO available.

The algorithm described in Algorithm 1 was developed and implemented to solve

these mutually conflicting requirements. First, for every available LO, it is determined

how many compatible binding opportunities exist, which is described in steps 1 to 3.

The cost of mapping each compatible LO to FU combination is determined in steps

4 and 5. The selection process starts with the now LOs, which are initially the only

LOs in what can be thought of as the selection pool LOSelection (Step 7). If a now LO
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Algorithm 1: Selection of next LO to schedule

Input : LONow, LOSoon, LOEligible, FUtype

Output: LOBest

LOAll = LONow ∪ LOSoon ∪ LOEligible1

foreach (LOCandidate in LOAll) do2

FUCompatible[LOCandidate] = DetemineCompatibileFUset(LOCandidate,3

FUType)

foreach (FUCandidate in FUCompatible[LOCandidate]) do4

Cost[LOCandidate, FUCandidate] = DetemineCost(LOCandidate,5

FUCompatible)
end

end

TooSmall = FALSE6

LOSelection = LONow7

foreach (LOCandidate in LOSelection) do8

if (0 < |FUCompatible[LOCandidate]| ≤ |LONow|) then9

TooSmall = TRUE10

end
end

if (TooSmall 6= TRUE) then11

LOSelection = LOSelection ∪ LOSoon12

foreach (LOCandidate in LOSelection) do13

if (|FUCompatible[LOCandidate]| ≤ |LONow|) then14

TooSmall = TRUE15

end
end

end

if TooSmall 6= TRUE then16

LOSelection = LOSelection ∪ LOEligible17

end

Return LowestCostLO(LOSelection)18
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exists that has a number of mapping options greater than zero and equal or less than

the amount of now LOs still to be scheduled, there is a situation where the given now

LO’s mapping options could all be blocked. Thus a lowest cost LO selection must

be constrained to the set of now LO’s until this condition is removed (steps 8-10).

If every now LO has sufficient mapping options, then the selection pool of LO’s can

be expanded to include the set of soon LOs in addition to the now LOs as in steps

11 to 15. The same conditions are then applied to the selection set to determine if

the eligible LOs can be added to the selection set (Steps 16, 17). Once the selection

set is determined, the lowest cost LO is chosen for allocation, and the whole selection

process is restarted. In this way the lowest costing LO possible is selected in a manner

that guarantees higher priority LOs will not be blocked in the current clock cycle and

makes a best effort to avoid blocking in the future. It is important that steps 2 to 5 be

completed before every single LO selection, as compatibility and cost can be affected

by the allocation of the previously selected LO. The algorithm will continue until all

the remaining unallocated LOs have no remaining allocation options. Not mentioned

in Algorithm 1 is that if at this point there is a now LO still unscheduled because

it did not have any compatible options to start with, it will force the creation of a

new FU. RIft is not expected to better or match the resource allocation produced by

the conventional mapping algorithms, however, it should be able to satisfy the same

latency constraints. How well RIft actually compares, as well as the effect of several

extra optional modes of operation, is discussed in the next section.

3.8 Results for Reducing Interconnects

This section presents the first half of results achieved by the RIft system for im-

plementing an HLS design with an interconnect minimizing strategy. However, it

is important to realize that the results are expected to be strongly affected by the

characteristics of the test cases. For instance, a test case that uses only one type of

FU should be expected to have a differing outcome than a test case having several

classes of FUs. Likewise, a simple data processing design will result in different char-

acteristics than a control oriented design. Thus a discussion of the pertinent aspects
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of test cases is presented in SubSection 3.8.1.

It is also important to note that the goal for RIft is to advance the state of HLS

with regards to realistic cases for which it would be useful to use such a tool. This

implies the use of test cases that work on more than the trivial ”validation” exam-

ples, usually consisting of less than 40 operations, but nonetheless commonly used

for benchmarking. The premise of RIft is to explore HLS in the context of design

problems that are large enough for an HLS system to be useful. Thus the empirical

studies to be presented utilize hundreds of operations, which is a significant depar-

ture from most prior work that typically uses small ”validation” examples. The larger

results presented are, unfortunately, literally without compare, and little in the way

of useful observations to previous work can be made in this regard. For this reason

an interconnect unaware HLS CAD tool, based on classic List scheduling, has been

developed as a fair reference to RIft. For the sake of protocol, a trivial benchmark,

the commonly implemented symmetric 16-tap FIR filter has been included to in some

way compare RIft to other approaches. Rather than use common small benchmarks,

emphasis is placed on how well RIft works for designs of differing attributes. Un-

derstanding of how the fundamental attributes of a proposed design will affect RIft

performance allows for those expectations to be extrapolated to the arbitrary design.

This seems appropriate since HLS is meant to streamline custom designs, rather than

redesign that which is already well established.

3.8.1 RIft Context: The Test Cases

The test cases developed can be categorized in several ways. The first has strictly

to do with size. As can be seen in Table 3.1, the first part of the naming scheme

uses either ”large” or ”huge”. In general, the large cases consist of more than four

hundred logical operations, while the huge cases typically contain approximately a

thousand LOs. Table 3.1 lists some of the attributes, including a breakdown of the

number of instances of each type of LO. The number of clock cycles each test case is

constrained to is also listed. This number is typically set to match the critical path

so as to maximize the parallelism of the design. Each of the large and huge test cases
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Test Case Initial Design(cycles)[Instantiated] Operation Allocation
+(1) -(1) *(2) C. Cycles Rounds Ops/Round History

Sym16 FIR 15 8 10 - - -
large plus 428 13 15 30 3
large minus 428 13 15 30 3
large mult 428 13 15 30 3
large plus minus 201 227 13 15 30 3
large mixed 198 169 73 31 25 18 2
large long 202 202 94 58 50 10 2
large wide 186 145 77 9 6 80 2
huge plus 958 20 20 50 3
huge minus 958 20 20 50 3
huge mult 958 20 20 50 3
huge plus minus 484 474 20 20 50 3
huge mixed 425 430 323 56 40 30 2
huge long 404 442 342 79 60 20 2
huge wide 312 314 282 16 10 100 2

Table 3.1: Test case characteristics

were randomly generated. The third set of attributes concerns the characteristics

of the dependencies within a design. Each test case has a number of consecutively

constructed ”rounds” which contain a fixed number of LOs. All the LOs within

a round are constrained to only use values that have been generated in previous

rounds. This negates the possibility of cyclical dependencies. The final parameter is

the number of rounds of history. This determines from how many previous rounds a

given LO may select values for operand inputs. As the rounds of history are increased,

consumed values will likely need to be stored for longer durations, which should result

in less register sharing, possibly necessitating a larger amount of registers. When the

number of operations per round is increased, more parallelism is introduced, and RIft

can use more instances of FU classes to speed execution of LOs. Finally, modifying

the number of rounds changes the number of operations in a test case. A test case

with a larger number of rounds will have more internal dependencies, a longer critical

path, and should be able to attain greater hardware reuse. In the following synopsis

of each type of test case, ”*” is used to denote both large and huge instances.

* minus: This is the simplest case, consisting only of subtraction operations. The

dependency structure is intended to be moderate.
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* plus: Similar to * minus, except as a commutative operation, addition operations

result in greater complexity due to the greater flexibility of input binding.

* mult: Same as * minus, except a multicycle multiplication is substituted for ad-

dition.

* plus minus Combination of two FU classes should likely be more difficult due to

the possibility of more distinct input sources.

* mixed: Similar to * plus minus except multiplication, a two cycle operation, is

also included.

* long: The same as * mixed, however the dependency structure has been made

”longer”. The number of rounds has been greatly increased and the number

of LOs per round greatly reduced. This should increase the critical path and

reduce concurrency. This is expected to be the worst performing test case under

RIft.

* wide: Same as * mixed, but on the opposite side of the spectrum as * long. Con-

currency is greatly enabled by a larger number of operations per round but with

fewer rounds.

These test cases are used extensively in this chapter to demonstrate the abilities

of RIft, and also in the next chapter where FT is presented.

3.8.2 Testing Procedure

The test cases described in the previous section are the starting point for RIft. The

format of these examples consists of a standard Verilog text file with the normal

input and output definitions and optionally standard Verilog sections that are not

parsed by the RIft CAD tool. Within this file, multiple HLS sections can be inserted.

Each section must list the FU classes available and their characteristics, such as their

symbol, number of operands and clock cycles, and commutativity property. The

main part of this section are the equations that are listed by the designer. They are
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assumed to be written in a sequential, blocking manner. Variables that are to be

outputs can be explicitly indicated. It is also possible to specify which clock cycle an

input becomes valid. Stored values that are not consumed by any other operation are

assumed to be outputs. Inputs are assumed to be unregistered, however, registered

behavior can be specified by using an input to register assignment at the beginning

of the equation section.

In order to provide a baseline upon which to compare RIft, a form of List schedul-

ing has also been implemented which can act on the same input file. To be fair, this

implementation does not incorporate many of the improvements introduced since List

scheduling’s inception, such as more advanced treatment of control structures and so

forth. However, many of these features are not present in RIft either, although it

should be possible to incorporate them. Thus, the use of List scheduling represents

a reasonable and realistic reference point from which to compare the advantages and

disadvantages of RIft.

From the starting point of the Verilog HLS designs, the RIft and List CAD tools

are used to produce a finalized design in legitimate Verilog form. In order to evaluate

the area and performance of a finalized design, it must be compiled by a Verilog

compiler. For the purposes of this testing, Altera Corporation’s Quartus II version

4.0 software was used. Part of the reason for this was the ability to use Altera’s

proprietary LPM modules as the basis for FUs, the basic units that are built upon

by HLS. The time required for each step has not been recorded for each example, but

generally, on a 2.8GHz Pentium 4 PC with 512MB of RAM, RIft takes roughly 1-100

seconds, whereas subsequent compilation by Quartus requires approximately 10-180

minutes, depending on the size of the initial design.

It is possible, and even likely, that different commercial tools would result in better

or worse final results, the different target technologies notwithstanding. However,

the effectiveness of various synthesis tools at finalizing RTL designs is outside of the

scope of this work. By using the same Verilog compiler tool for both the List and RIft

approaches, the relative differences in compiler performance are assumed to cancel

out.

Because of the size of the examples under consideration, the number of clock cycles
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# Instances FU Muxes Reg Muxes
Test Cases Clo List RIft List RIft List RIft

cks +,−, ∗, R +,−, ∗, R # > # > # > # >
Sym16 FIR 10 3,0,5,23 3,0,5,28 12 7 10 5 6 3 0 0
large plus 13 34,0,0,85 34,0,0,127 68 13 68 9 85 8 0 0
large minus 13 0,34,0,85 0,34,0,122 68 13 68 10 85 8 0 0
large mult 26 0,0,34,85 0,0,35,127 68 13 70 8 85 8 0 0
large plus minus 13 18,18,0,86 18,18,0,132 72 13 72 11 82 8 0 0
large mixed 31 7,6,6,50 7,8,8,72 38 25 46 16 43 11 0 0
large long 58 5,4,7,25 5,6,6,50 30 23 34 19 24 12 0 0
large wide 9 22,17,20,163 22,17,20,212 118 9 118 8 134 4 0 0
huge plus 20 49,0,0,161 51,0,0,222 98 20 102 12 155 10 0 0
huge minus 20 0,49,0,161 0,49,0,229 98 20 98 14 155 10 0 0
huge mult 32 0,0,62,155 0,0,62,225 124 16 124 11 142 10 0 0
huge plus minus 20 25,25,0,164 27,25,0,243 100 20 104 14 158 11 0 0
huge mixed 56 8,8,15,74 8,9,16,117 62 44 66 29 72 16 0 0
huge long 79 7,6,11,49 7,9,12,92 48 41 56 25 48 16 0 0
huge wide 16 21,21,39,230 21,21,39,333 162 16 162 14 221 7 0 0

Table 3.2: List vs. RIft: clock steps and FU usage

needed to complete the work, also referred to as the latency, is not a complete measure

of performance. Interconnect complexity is expected to have a considerable affect on

clock delay. Thus the period of a design that has been completely synthesized must

be considered as well. The actual performance of a circuit is the latency × the period,

which, for the purposes of this research, will be called throughput. For all test case

results reported here and in the next chapter, the List and RIft or RIFT versions

of each are both constrained to the same number of clock cycles. Thus a realistic

performance comparison can be made from the reported frequency alone.

3.8.3 Experimental Results

A comparison of the results achieved by List and RIft scheduling is available in Table

3.4 while a breakdown of HLS related hardware components is given in Table 3.2.

To make it easier to discern the difference between the structure of List and RIft,

Table 3.3 presents the difference in the number of components (RIft - List). In each

table, the test case name is listed in the first column. The second column of Table 3.2

states the number of clock cycles needed, while the third and fourth columns detail
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FUs Instantiated FU muxes Reg muxes
Test Case (+,-,*) # Registers # > # >
Sym16 FIR 0,0,0 5 -2 -2 -6 -3
large plus 0,0,0 42 -4 -85 -7
large minus 0,0,0 37 -3 -85 -7
large mult 0,0,1 42 2 -5 -85 -7
large plus minus 0,0,0 46 -2 -82 -7
large mixed 0,2,2 22 8 -9 -43 -10
large long 0,2,-1 25 4 -4 -24 -11
large wide 0,0,0 49 -1 -134 -3
huge plus 2,0,0 61 4 -8 -155 -9
huge minus 0,0,0 68 -6 -155 -9
huge mult 0,0,0 70 -5 -142 -9
huge plus minus 2,0,0 79 4 -6 -158 -10
huge mixed 0,1,1 43 4 -15 -72 -15
huge long 0,3,1 43 8 -16 -48 -15
huge wide 0,0,0 103 -2 -221 -6

Table 3.3: The difference in component requirements (RIft - List)

how many instances of each operation are implemented by the respective algorithm

(’R’ designates registers). It should be noted that, unless otherwise stated, all the

RIft test cases use register partitioning, as discussed in SubSection 3.7.2. In every test

case, RIft either matches or exceeds List in the amount of instances that are required,

and by as much as three subtraction FUs in the case of huge long. While earlier it was

stated that RIft will always be able to make the same latency constraints as List, the

significantly different selection processes are not guaranteed to use the same amount

of FUs. Although RIft has an elaborate method of dealing with possible blocking

scenarios once they are identified, the results suggest that RIft is not as competent

as List in avoiding those scenarios in general.

Nonetheless, RIft achieves a fairly substantial gain in both area and performance,

as detailed in Table 3.4. The reduction in area ranges from 10% to 50%. Area is

measured in terms of Logic Elements (LE). These are the smallest resource type

based on a LUT in most of Altera’s FPGAs. Performance, which should typically

be measured in terms of throughput, can in this case be measured directly from the

maximum frequency, as the number of clock cycles used by List and RIft are the same.

This is in direct contrast to most previous research that considers performance only in
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Area(FPGA LEs) Performance (MHz)
Test Cases List RIft %Less List RIft %Gain
Sym16 FIR 2,550 2,537 0.5 25.44 33.11 30.1
large plus 6,594 3,942 40.2 17.76 25.36 42.8
large minus 6,865 4,203 38.8 17.55 23.5 33.9
large mult 9,178 6,593 28.2 34.13 47.72 39.8
large plus minus 6,662 4,487 32.6 17.76 22.74 28.0
large mixed 5,744 4,730 17.7 18.25 24.46 34.0
large long 4,868 4,341 10.8 22.12 28.25 27.7
large wide 8,094 6,738 16.8 18.67 25.58 37.0
huge plus 13,925 8,200 41.1 13.71 22.04 60.8
huge minus 14,381 9,013 37.3 13.59 19.97 46.9
huge mult 18,920 12,910 31.8 30.54 40.13 31.4
huge plus minus 14,102 9,542 32.3 13.33 20.23 51.8
huge mixed 14,625 10,232 30.0 15.72 22.46 42.9
huge long 11,963 9,301 22.3 16.66 23.64 41.9
huge wide 17,200 13,239 23.0 15.47 20.94 35.4
Average (of large *, huge *) 28.8 39.6

Table 3.4: List vs. RIft: area and performance

terms of clock cycles and neglects entirely the effect of the period on throughput. The

greatest consistent gains are achieved with the * plus and * minus test cases, and the

reasons for this can be determined from columns 5 to 12 in Table 3.2. Columns 5 and

7 list, for each test case, the number of muxes that are needed to direct input wiring

into FU operands for List and RIft, respectively. Columns 6 and 8 list, in terms of

number of inputs, the size of the largest mux for List and RIft, respectively. Columns

9-12 hold data in the same format, except this data concerns the second tier muxes

that feed the registers. The number of FU muxes is obviously not the source of the

improvements, as RIft utilizes a similar amount of muxes or more than List for every

case, which is expected since RIft tends to use more FUs. The difference is that RIft

manages to reduce the maximum mux size, which should reduce the critical path if

the number of inputs is reduced by enough to remove a level. To be fair, since FPGAs

cannot implement muxes as compactly as with an ASIC platform, the performance

gains of up to 60% would probably be somewhat less in a ASIC implementation.
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However, for both technologies, the number of two input muxes, and thus the area,

used by the macro muxes should be roughly proportional to the number of inputs,

and thus both would yet stand to gain.

The greatest difference between List and RIft concerns the Register muxes. Be-

cause List scheduling is forced to arbitrarily bind values to registers, it must instan-

tiate muxes to control the flow of values to the registers. RIft, however, tends to

partition registers based upon the FUs that feed them. It gives a best effort to first

reuse these registers before adding wires to a register in another FU’s ”register par-

tition”. There are two reasons the RIft test cases without control statements have

no register muxes. The first is that RIft is aware when selecting an FU if there is

a register available to hold the produced value. The second reason is that the cost

coefficient for registers is, for this example, the same as a new wire, which causes RIft

to use a new register instead of crossing FU register partitions. Because of this, the

RIft approach, as documented in Table 3.2, can use as many as twice the number of

registers. Because the design is implemented on an FPGA, the extra registers do not

tend to add to the area. This is due to the fact that the LEs used to construct the

muxes also contain an unused register. The savings only escalate for larger register-

mux combinations. When targeted to ASIC implementations, the register is no longer

”free”, however the area consumed by ASIC muxes should be less already, therefore

achieving a reduction in area by way of the ”free” register is less important for an

ASIC implementation. However, the benefits of a reduced critical path are equally

relevant for either technology. The effects of using different register packing directives

are discussed later in this section.

The performance and area gains are reduced for * minus, * plus minus, * mixed,

* wide, and * long, in roughly that order. The reasons for this are instructive. Al-

though the largest mux size plays a large part in determining performance, it does not

seem to be the only consideration. Large minus looks to have a better mux structure

than large plus, and they both use the same FU, where the ’-FU’ class is actually

an Altera adder LPM that is configured for subtract mode. This configuration was

determined, by examining the chip layout, to require two extra LEs and an increase in

the FU’s critical path of 0.584ns. Thus, by substituting subtraction FUs for addition
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FUs in large plus, the area of large minus would be expected to increase by 68 LEs

(2 LEs x 34 FUs) as opposed to 261 LEs. The extra delay would suggest that the

frequency should be reduced from 25.36MHz to 24.99MHz, all things being equal,

instead of the observed 23.50MHz. The unaccounted for difference is likely due to

the extra routing required to satisfy the additional constraints imposed by commuta-

tivity. The same can be noted for huge plus and huge minus. Area increased by 426

LEs and frequency dropped to 19.97MHz, as opposed to the 98LEs and 21.76MHz

expected due to the use of the subtracting FU’s. Therefore, it can be concluded that

RIft’s ability for improvement can be limited by extra constraints on how values are

routed.

A similar conclusion can be drawn from the reduced improvements obtained for

the * plus minus and * mixed cases. Improvements in performance are somewhat

erratic, as large mixed is on par with large minus, and huge plus minus compares

well to huge plus and huge minus. Area improvements, however, are consistently

less than for the single FU class counterparts. Because RIft attempts to partition

LOs based on datapath requirements, it follows that the use of more FUs allows for

more partitions which then can support smaller datapath sets, which improves RIft’s

routing gains. Although the number of LOs are roughly the same across the large*

and huge* test cases, the heterogenous cases use less FUs of each type. Furthermore,

source registers now may be fed by an FU of a different class and interclass value

transfers only add to the number of distinct path sets that must be accommodated.

Thus there is less opportunity for data path partitioning within a class of FUs, and

less opportunity for improvements to routing. This fact also explains another larger

trend in the data set. As the number of FUs used increases from the large* to the

huge* cases, so too does RIft’s performance. This is supported by the fact that all

huge* cases have both better area and performance improvements than their large*

counterparts, especially for the * mixed, * long, and * wide cases. The exception is

the timing improvements of * mult, as large mult has an outstanding area reduction

of 53%, the reasons for which are not fully explained, but may be due to the details

concerning the specialized multicycle setup of the multiplier.

A final factor in RIft’s performance is the effects of the dependency structure for
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# Components Instantiated Register
List RIft ”Fan Out”

Test Case + - * Reg + - * Reg List RIft

large long 5 4 7 25 5 6 6 50 1.56 2.94
large mixed 7 6 6 50 7 8 8 72 2.63 3.13
large wide 22 17 20 163 22 17 20 212 2.76 3.59
huge long 7 6 11 49 7 9 12 92 2.04 3.29
huge mixed 8 8 15 74 8 9 16 114 2.39 3.45
huge wide 21 21 39 230 21 21 39 333 2.84 4.11

Table 3.5: Effects of parallelism on register to FU ratios

particular test cases. Recall that * mixed, * long, and * wide all share the same FU

classes (+,-,*) and have a similar number of operations. * long has a high level of

dependency and is thus expected to use fewer units and have a much larger critical

path, which has been verified in Table 3.2. Because there are fewer FUs than in

* mixed, it should be expected that RIft will not be able to improve routing as well,

which is supported by the results in Table 3.4, where * long has a lower frequency.

What may be somewhat counter-intuitive is RIft’s inability to improve huge wide’s

performance more than huge mixed. This contradicts the earlier suggestion that RIft

should perform better as the number of FUs per class increases. The factor that

reduces RIft performance with increasing parallelism is suggested by Table 3.5, which

sorts large * and huge * by increasing parallelism. It presents calculations of the ratio

of registers to FUs. This measure is not a legitimate measure of ”fan out”, however

it does demonstrate that as dependency is reduced and parallelism increased, the

average FU will on average likely be required to accommodate more inputs, and that

RIft will suffer from this factor more than List, which has randomly allocated inputs.

Thus, as parallelism increases, the growth in number of input sources feeding FUs

tends to reduce RIft’s ability to reduce interconnects and thus performance. The net

result is the suggestion that RIft’s performance as a function of parallelism is akin to

a bell curve: decreasing from some optimum with both less and more parallelism.

As noted previously, RIft tends to eliminate routing at the register level because,

by default, RIft partitions registers under FUs so that each register has only one in-

put, and thus does not need a mux. The test cases were rerun twice with partitioning
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FU muxes Reg muxes
# Registers # > # >

Test Case B ∞ 2 B ∞ 2 B ∞ 2 B ∞ 2 B ∞ 2
Sym16 FIR 28 -4 -4 10 1 5 0 6 7 1 2 1
large plus 127 -36 -24 68 9 0 87 93 1 4 1
large minus 122 -33 -18 68 10 -1 1 0 86 90 1 4 1
large mult 127 -38 -24 70 -2 -2 8 0 89 94 1 4 1
large plus minus 132 -40 -25 72 2 11 -1 0 91 93 1 4 1
large mixed 72 -29 -18 46 -6 -6 16 -1 -1 0 43 50 1 3 1
large long 50 -25 -15 34 -2 2 19 -3 -3 0 25 34 1 5 1
large wide 212 -47 -37 118 8 0 133 124 1 2 1
huge plus 222 -57 -36 102 -4 12 -1 -1 0 157 166 1 4 1
huge minus 229 -65 -41 98 4 14 -2 -1 0 159 166 1 4 1
huge mult 225 -66 -39 124 11 -1 0 158 178 1 4 1
huge plus minus 243 -83 -48 104 -4 -2 14 -1 0 160 169 1 5 1
huge mixed 117 -47 -24 66 2 29 -4 0 70 90 1 4 1
huge long 92 -45 -23 56 -2 -4 25 -3 3 0 47 66 1 7 1
huge wide 333 -91 -63 162 -14 -14 14 -2 -2 0 228 235 1 4 1

Table 3.6: Effect of register sharing on component requirements

turned off: first with unlimited register sharing, and then with a mux input limit of

2. A report of the resulting logical structure is made in Table 3.6, while Table 3.7

accounts for the area and performance consequences of the final gate level designs.

Columns headed with a ’B’, which stands for ’Baseline’, give the data from the pre-

vious partitioned test cases. ∞ indicates unlimited sharing, and a column header of

’2’ signifies the case with a register mux input limit of 2. To facilitate comparison,

Table 3.6 shows only the difference in the number of units needed with respect to the

baseline. If there is no change, the cell is left empty. Likewise, Table 3.6 reports the

percentage difference as compared to the baseline case. Unlimited sharing results in

an approximately 33% reduction in registers and the limited sharing about 20%. The

* long cases benefit the most from unlimited sharing at 50%, which suggests RIft has

more difficulty packing examples with a high amount of internal dependencies. The

effects on the number of FU input muxes is somewhat minimal and mostly due to a

variation in the number of FUs instantiated. The maximum size of the FU muxes is

marginally reduced, most likely due to the reduced number of distinct input sources.

The greatest change is that, by definition, most registers now have muxes, and the

maximum number of inputs will have increased. Even with unlimited sharing, RIft
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Area(FPGA LEs) Performance (MHz)
Test Cases Base ∞(%) 2(%) Base ∞(%) 2(%)
Sym16 FIR 2,537 -2.2 -2.6 33.11 -5.2 -0.5
large plus 3,942 19.7 -4.9 25.36 -19.6 -6.2
large minus 4,203 17.6 -4.0 23.50 -17.1 -7.2
large mult 6,593 8.9 -3.4 47.72 -7.8 -5.7
large plus minus 4,487 14.9 -7.9 22.74 -9.6 -1.0
large mixed 4,730 -1.8 -11.8 24.46 -6.7 -0.6
large long 4,341 -6.6 -3.9 28.25 -13.7 -3.6
large wide 6,738 2.7 -3.8 25.58 -10.4 -9.8
huge plus 8,200 13.0 -1.0 22.04 -16.7 -10.2
huge minus 9,013 11.7 -6.8 19.97 -11.4 -8.5
large mult 12,910 10.6 -2.6 40.13 -12.6 2.2
huge plus minus 9,542 12.0 -6.2 20.23 -16.8 -8.2
huge mixed 10,232 3.5 -2.5 22.46 -10.5 -10.4
huge long 9,301 4.1 -4.1 23.64 -17.0 -14.2
huge wide 13,239 8.7 -5.3 20.94 -23.0 -11.1
Average (of large *, huge *) 8.5 -4.9 -13.8 -6.7

Table 3.7: Effect of register sharing on area & performance

still reuses existing wires whenever possible, which tends to limit the mux size to four

or five inputs, and at most eight for the * long cases.

While the original intent of register sharing had been to save area and possibly

remove complexity from the FU level muxes, the area and performance results suggest

this is not a very good idea. At best, using two input register muxes is supposed to be

a free improvement on an FPGA platform since this mux is already incorporated in the

same LE as the register. In fact, actual area is slightly reduced by 1-10% and 2.9% on

average with two-input muxes, while the cases with mixed FU types seemed to fare the

best. However, performance is reduced by a larger 6.9% on average. The cause of this

performance hit most likely results from the fact that almost every remaining register

now has a mux and thus the FSM must manage that many more control signals to

steer them. The case of unlimited sharing is much worse, where area rose on average

11.5% and as high as 20% in one case. At the same time, performance dropped 13%

on average and 21% at the extreme. From these comparisons regarding mux sharing,
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two important conclusions can be made, at least for HLS on FPGAs. The first is

that routing has a much larger role than registers in the final area and performance

of a design. The second somewhat surprising conclusion is that multiplexing, or the

sharing of registers is actually found to be detrimental to large scale HLS design!

This conclusion is in direct contrast to conventional thinking and methodology, and,

to the author’s knowledge, has not previously been published.

If the target technology was ASIC instead of FPGA, the results could be expected

to be less dramatic. As mentioned earlier, the ratio of mux to FU area and delay

costs will likely be less, given the distributed nature of large muxes in FPGAs. Thus

the area and performance improvements of managing interconnects may also be less.

Nevertheless, the principles of managed interconnects still hold true. This would

suggest that improvements may not be as great on a proportional basis, or may not

materialize until relatively larger muxes are required. Given that ASIC implemented

designs often are performance oriented, these smaller improvements may yet be sig-

nificant. Thus, though these conclusions are more immediately applicable to FPGA

implementations, they may be useful in ASIC platforms as well.

Though RIft performance depends to a certain extent on the design it is being

used on, overall RIft has demonstrated the significant real performance gains that can

be made to HLS derived ICs by considering the important effects of interconnects,

especially for large, realistic applications.
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Chapter 4

Fault Tolerance

The new fault tolerance system introduced in the following sections was developed

in effort to determine if a more efficient alternate approach for large parallel fault

tolerant systems could be devised. A goal is to report what the costs might be in

terms of area and actual performance. The final design was motivated by the following

criteria and rationale:

• Repair Intermittent & Permanent Faults

Most non-critical applications such as consumer, telecommunication, etc. can or

already do tolerate infrequent single event faults in the data path. Yet these are

the most costly to remedy. Alternatively, repair of intermittent and permanent

faults would greatly increase reliability and lifespan. This level of tolerance

would also suggest that repair need not be immediate.

• Minimization of Interconnects

Reuse existing infrastructure as much as possible. Minimize interconnect area

and balance mux sizes. This is theorized to minimize the period and reduce

area, factors that are especially costly with the inclusion of FT.

• FSM simplification

It would be better not to change both the timing and positioning for FT from

a complexity standpoint. Redundancy implies LOs must be moved to alternate
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modules, thus timing should be constrained. If possible, limit each LO to allo-

cation on one normal and one redundant FU. Also, the execution FSM and FT

FSM should ideally be separate, which should reduce the possibility that the

combined FSM will contribute to the critical path.

• Fault Tolerance FSM Scalability

This is required for arbitrary amounts of parallelism.

• Internally Initiated Compensation

For the great majority of applications, human initiated repair can be as or

more costly than complete product replacement. Thus compensation must be

self initiated.

• Online Fault Detection & Isolation

This is required in order to achieve the prior requirement of uninitiated self

repair.

• Platform Agnostic

An HLS solution should not rely on unique features of a particular target tech-

nology such as ASIC or FPGAs. Parallel FT designs would be useful with both

ASICs and FPGAs, and loss of generality would severely limit the usefulness or

adoption of any such CAD tool.

• Module Agnostic

This means that the design should accommodate arbitrary module types. This

would preclude the use of mathematical properties and transformations for ad-

vancement of HLS objectives.

The result is a vision of an architectural approach that adds robustness to everyday,

non-life critical applications in a way that is transparent to the end user. It is possible

that an architecture based on such a design philosophy could also indicate to the

end user, once FT has been activated, that reliability has been compromised and
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Figure 4.1: Common N + 1 redundancy

that preemptive replacement when convenient (perhaps under warranty) might be

considered.

In the next section, the strategy behind RIFT will be presented in detail. Section

4.1.3 details different implementations of distinct Failover FSMs (FFSM) to control

RIFT. Detailed experimental results are presented in Section 4.3. Finally a critique

of RIFT and its FT capabilities is made in Section 4.4.

4.1 RIFT Implementation Strategy

4.1.1 RIFT Topology

The requirements in the previous section are fairly constrictive. Separation of fault

and control FSMs suggests that redundancy should be managed separately from the

HLS aspects of the design in much the same manner that [24] proposes FPGA re-

dundancy in a way that is transparent to the compiler. To achieve this, our starting

point is the classic N + 1 fail over redundancy approach [38].

The most common N + 1 configuration mentioned in HLS FT is the ”common
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Figure 4.2: Balanced N + 1 redundancy

redundant unit” model, as seen in Figure 4.1, of which the FUs have only a sin-

gle operand and input mux for clarity. It is obvious that this configuration is not

scalable, as the redundant mux will disproportionately require more inputs as more

FUs are added, significantly increasing the critical path. An alternative Balanced

N +1 system has thus been selected. Figure 4.2 demonstrates this balanced ”buddy”

arrangement. FU1+ is the redundant FU and the lower ”buddy” to FU1. FU1 is a

standard functional unit that is the ”upper buddy” to FU1+. All other standard func-

tional units are arranged in this pattern, where each has an upper and lower adjacent

buddy. The exception is that the uppermost unit has only a lower buddy, while the

redundant unit only has an upper buddy. The upper and lower terminology is used

because ”left” and ”right” can be misleading, especially when correlating each side

with bit indexing for the FT FSM (Section 4.1.3). If a particular FU fails, the logical

operations to be processed by that FU will transparently be transferred to the failed

FU’s lower buddy. The lower buddy will offload its work to its own lower buddy, and

so forth, until the redundant FU is pressed into service. The reason for this configura-

tion is that there is no need for one redundant unit to incorporate all the inputs used

by all N standard functional units. Instead, each standard unit must accommodate
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only its own inputs and those strictly used by its upper buddy. The inputs of the

upper buddy that are only used for failover are not included in the lower buddy’s

input set. Although each standard functional unit’s input mux size is increased, it

will be an increase that can be balanced among the whole group of functional units.

Thus a large increase in the critical path in the common configuration is exchanged

for a smaller distributed path delay in the balanced topology. Another advantage of

this arrangement is that every non-redundant unit has exactly two configurations: a

standard mode and a redundant mode. If, for instance, FU2 is found to be faulty,

FU2 and all its lower buddies can switch to their redundant modes, thus allowing the

real FU2 to be bypassed, as indicated by the shaded paths in Figure 4.2. This feature

allows fail over to be orchestrated independently of the control FSM, a fact which is

used in Section 4.1.3 to separate the control and fault FSMs.

4.1.2 Performance & Area Optimization

Because the goal is to avoid assignments of an LO to multiple FUs as much as possible,

in contrast to most HLS derived FT approaches, HLS techniques are not used to

determine alternate configurations for FT. HLS, however, does yet have a critical

role, which will be elucidated shortly. An example of more detailed depiction of

the ”Redundant Muxes” in Figure 4.2, which are affectionately called ”reduxes” , is

shown in Figure 4.3. Figure 4.4 demonstrates an aggregated mux structure that is

logically equivalent to the configuration shown in Figure 4.3. Table 4.1 lists how the

inputs feeding each collapsed mux might be categorized with respect to that mux. If

an input is used in standard mode by both a mux and its upper buddy, it is part of

the ”shared upper input” set, and similarly so for the lower set. If, however, an input

is only used in standard mode on a particular mux, but not its buddies, it will be

part of the core set. The converse is that the lower buddy will have said input as a

member of the redundant input set. This type of input is represented by S2 in Figure

4.3 and Table 4.1. If a mux has only a core input, the cost to add redundancy will

be one new input on the lower buddy, or a 100% increase. If N adjacent muxes have

the same connection in their shared lower input set, only one redundant input still
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need be added, implying a relative increase of only N−1. Thus it is beneficial to map

operations to functional units in such a way that LOs with common inputs be bound

on adjacent FUs, especially if they cannot be bound on the same FU. The equivalent

formal optimization goal would be to minimize the redundant and core input sets of

every mux. Though increasing N to include the whole set of muxes would certainly

reduce redundancy costs, minimization of each mux’s complete set of inputs should

obviously still be of higher priority. Area and performance of the mux network should

be improved if LOs can be mapped in such a way so as to reuse wiring as much as

possible, and thus use fewer distinct connections. If, through the above goals, LOs

can be mapped such that each mux has only a small subset of the complete set of

input sources, taking into account both standard and redundant paths, the critical

path and area might both be improved.

RIFT, described in the previous chapter in the context of reducing interconnects,

was developed for the purpose of FT oriented HLS optimization as just described. It

works by incrementally mapping complete operations, including register assignment

and mux wiring requirements, to the balanced N + 1 fail over topology. FUs are

added incrementally in step with the mapping routine, but only as needed. Some of

the incremental, path based scheduling concepts used in RIFT were first presented

in [12]. However, RIFT has been designed to accommodate the balanced N + 1 fault

tolerant topology and to more aggressively minimize interconnects.

Apart from what has already been described in Chapter 3 regarding RIFT, only

a few additions are needed to enable FT support. The first step is to start out by

instantiating one FU for each class of operation and also a second redundant FU which

becomes the first’s lower buddy. As the incremental mapping of LOs to FUs proceeds,

any connection made to a FU must also be made to that FU’s lower buddy, if not

already present. This represents an extra cost, and so must be included in the cost

calculations performed for every possible allocation under consideration. Equation
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Figure 4.3: Redundant multiplexor (”redux”) FU input network

Figure 4.4: Equivalent single level representation

Input Set W.R.T MUX2 W.R.T MUX1

Redundant S1 S2, S3
Shared Upper S2 S4
Core S3 S5, S6
Shared Lower S4

Table 4.1: FU mux input set classifications

69



4.1. RIFT Implementation Strategy M.A.Sc. - D.J. Lemstra - McMaster

3.1 must be adjusted to include the extra FT costs.

Costi→j = Cinput ·
|operands|∑

k=1

(ek
j + ek

j−1) (4.1)

+ Creg · fj

+ fj · Creg wire · gj

+ Cmarginal · Tj

This is achieved simply with the addition of the term ek
j−1 in the first term, which

represents the additional cost of the redundant wire to the lower buddy if it is not

already present.

RIFT specifies FU level muxes as condensed units, instead of the separate mux

and redux configuration originally presented. It is likely that the ordering of inputs

will be different for the lower buddy mux that is required to take over for the upper

mux. This would require the FSM to change the signal to be sent to select the same

input based upon the failover state. Because one objective was not to complicate the

main FSM by adding FT control, an intermediate block must be built that passes the

normal select signals in standard mode, but which accepts the upper buddy select

signals and converts them in failover mode.

Conversion blocks are instantiated to feed the select of each mux belonging to

a non-redundant FU. Algorithm 2 describes the logic employed to convert Mux1’s

select signal for the example in Figures 4.3 & 4.4. It is assumed that the index values

for each input starts at ’0’ on the left and is incremented for each input to the right.

Notice the algorithm does not specify a conversion for the case when Mux 2 sel

equals ’0’. This is because ’0’ corresponds to input S1 of Mux2, which is part of its

”Redundant” set. Thus, ’0’ does not need to be converted because it is not used by

Mux2 in standard mode.

While there is some cost associated with the conversion module, there is, however,

a second advantage. Without them, Verilog compilers would have a much easier time

identifying the presence of redundant input subsets amongst buddy muxes. This setup

should serve to keep the FU muxes more distinct and thus less adverse to a datapath

fault that might affect both the standard and failover input connections. Another
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Algorithm 2: Mux select failover conversion

Input: Mux 1 select, Mux 2 select, Fail over2

Output: Mux 1 select converted

if Fail over2 = Off then
Mux 1 select converted ← Mux 1 select1

else
switch Mux 2 sel do

case ’1’
Mux 1 sel converted ← ’0’2

case ’2’
Mux 1 sel converted ← ’1’3

case ’3’
Mux 1 sel converted ← ’2’4

otherwise
Mux 1 sel converted ← Don’t Care5

advantage is that this setup helps to obscure, as will be discussed in SubSection

4.1.4, the fault detection strategy to the RTL compiler.

4.1.3 Fault Detection & Isolation

In order to use the FT capabilities discussed so far, a system needs to be in place

that will both detect the presence of faults and determine which FU is faulty. It is

important to define what is meant by the terms ”error”, ”fault”, and ”defect”. An

error has occurred when a logical inconsistency is found in a computation. Its origins

may be due to the environment or an internal problem. A fault is an error that is

more precisely defined because its origin has been isolated to a particular hardware

component. A fault may be caused by an external factor such as an energized particle

hitting and altering a stored charge, which would be an SEU. In this case, it could

be expected that the fault, and thus the logical error produced by it, will be unlikely

to recur. Thus this is referred to as a transient fault. A fault may also be the

result of a defect in that particular hardware component. A permanent defect causes
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Figure 4.5: N + 1 Topology used for error detection

a permanent fault, however this may not always be expressed as a logical error.

An intermittent defect is one that results in sporadic but recurring faults and thus

potentially errors as well. Often an intermittent defect will develop into a permanent

defect.

The recovery methods discussed in Section 2.3 deal with how to catch and correct

every error that is expressed, often at considerable cost. The premise behind RIFT

is instead to offer the detection and repair of defects, while possibly missing some

errors. If this proposition is acceptable for the application under consideration, RIFT

offers an elegant solution to FT.

All error detection strategies operate on the premise of duplicating units of work,

either temporally or spatially, and comparing the results for verification of correctness.

In the RIFT N +1 failover topology, this can be done, when in standard mode where
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all units are still assumed to be without fault, by putting an FU in failover mode.

The result will be that both the FU in failover mode and its lower buddy will be

operating with the same input data. This is made possible because of the addition of

redundant inputs to the lower buddies’ input mux and the conversion block driving

that mux’s select signal. If the failover FU has already been found to be defective,

the circuit would already be ignoring its output regardless. Otherwise, the result can

be compared with that of the lower buddy for an equivalence check. Thus, at any

given time, a single FU in a buddy chain can be tested by putting it into failover

mode and using its lower buddy for verification. Of course, as in a normal failover,

all other lower FUs must also be in failover mode. The shaded paths in Figure 4.5

represent the active data channels in use. In this particular case, FU2 is in failover

mode and its lower buddy, FU1, is duplicating FU2’s calculations to produce a result

that can be used to verify FU2’s correct operation. Note that, for clarity, the collector

muxes are not shown and single operand FUs are used. The comparison operation is

completed by applying a bitwise XOR to the outputs of each FU buddy pair. Because

the switch to failover mode can be done transparently for any FU, each FU can be

sequentially tested during normal operation. Thus RIFT forms the basis for what is

essentially a transparent, online, roving FU verification ability.

4.1.4 Masking Redundancy from the Compiler

As alluded to previously in Section 4.1.2, at a fundamental level, the FT infrastruc-

ture should never work. Modern compilers go to great lengths to identify and remove

”redundant” logic, in part because this is by definition untestable. Theoretically, the

values produced by FUs are being compared in such a way that, unless there is a

fault, a difference will never be detected. Of course, the compiler cannot anticipate

that differences are expected due solely to a fault, something that is outside the com-

piler’s consideration. Thus there is the situation that the entire FT infrastructure

is activated by a condition which should logically never occur. Normally, when such

situations are discovered, the compiler will try to remove or ”optimize” the redundant

logic out of the design. Obviously if this were to happen it would be detrimental to
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the usefulness of the redundancy intentionally added to compensate for faults. Fortu-

nately the compiler can be deceived. In this case, the use of a shifting error detector,

FU muxes that have largely indistinguishable redundant input sets, and the novel

FU mux select conversion blocks all serve to greatly obfuscate the existence of a very

large redundant logic path. Verification that the redundant systems remain intact

has been obtained by checking whether the redundant FUs, as well as other compo-

nents, have actually been instantiated. It should be noted that conventional HLS FT

systems that rearrange LOs for FT will in general not experience this problem.

4.2 FSMs for Failover

The previous paragraph describes a method to detect errors, however, more must be

done to isolate a defective FU based on the errors that are reported. If an FU and its

lower buddy are in failover mode and report an error, it is uncertain which of the two

FUs is actually defective and thus which one should be compensated for. A separate

Failover FSM (FFSM) is added to the RIFT architecture to coordinate defect testing

to facilitate the identification of defects from reported errors. A separate FFSM must

be added for each class of FU present. Several approaches with varying costs and

quality of coverage can be taken.

4.2.1 Common FFSM Infrastructure

Three different examples of possible FFSMs are presented, yet they share some com-

mon infrastructure as presented in Figure 4.5. The ”Failover Control Register”(FCR)

consists of N bits, one for each non-redundant FU. Its purpose is to enable the re-

spective FU’s failover mode by controlling the select conversion units and also the

collector muxes that dictate the flow of data through the datapath. Since, when the

N th FU is required to be in failover mode all the lower FUs must also be failed over,

it is convenient to instantiate the FCR as a shift register that shifts in a ’1’ from the

lower side. Determining the correct state of the FCR is the principle task of each

version of the FFSM. The second common part of the FFSM infrastructure is the
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generation of the Error signal. The ”Equality Vector” also consists of a single bit for

each FU of the class, excluding the redundant FU. Each Equality Vector bit is driven

by a non-zero detector coupled with a comparator. The comparator is a multi-bit

exclusive OR (XOR) gate that detects if there is an inconsistency between the moni-

tored FU and its lower buddy. The Equality Vector’s purpose is ostensibly to report

an error, but at any given point, most of the FU pairs are expected to be different

as they are not in test mode and, consequently, most of this vector will always be

reporting ”erroneous” values. Thus the Mask Vector is needed, which is the same

width as the Equality Vector and consists of all zeros except a single ’1’. The ’1’ is

shifted to match the FU pair that is under test. By bitwise ANDing the Mask Vector

with the Equality Vector, only the result from the comparator corresponding to the

FU under test will be passed, which is called the Error Vector. An Error Signal is

then generated by ORing all the bits of the Error Vector together. The least scalable

part of the whole FFSM system is this final ’1’ detector, as it must accept an input

from every FU. Because large OR gates have a relatively short path and the result

is immediately registered, it is very unlikely the OR will ever affect the critical path.

In the next several subsections, this infrastructure is the basis of the different FFSM

variants.

4.2.2 The Simple FFSM

The first FFSM to be presented is the ”simple” FFSM. It is outlined in detail in

Algorithm 3. The problem that must be solved by each FFSM is determining, when

an error is detected, which of the failover buddies is correct and which is at fault.

The general idea of the simple approach is to loop through each FU and test them

sequentially. If an error is detected when testing, for instance, FU2, either FU1 or

FU2 is responsible for that error. The simple FFSM will take note of that error by

shifting from stage 0 to stage 1 (Step 19) and proceeding as normal (Step 20) to

begin testing FU3. Assuming the faulty FU continues to produce errors, the FFSM

can deduce whether FU2 or FU1 is faulty based on whether a second error is detected

while testing FU3. If one is, the simple FFSM determines that FU2 is faulty, shifts
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Algorithm 3: Simple Failover FSM

Parameter: N, THRESHOLD
Input: IERROR, IRESET , COUNTER
State: VFCR[N − 1 : 0], SSTAGE, SERR LATCH

Output: OFAIL

if ( IRESET ) then1

/*Reset All State Variables */
VFCR ← [0...01]2 /*The Failover Control Register (binary vector) */2

SERR LATCH ← 0 /*Latches an Error for each COUNTER loop */3

SSTAGE ← 0 /*Distinguishes the 1st and 2nd stage of fault */4

OFAIL ← 0 /*Set in Failover mode: Disables testing */5

else if ( OFAIL ) then6

/*Failure mode: Determine if VFCR needs shifting down */
if ( SSTAGE = 1 ) then7

VFCR ← 0 � VFCR8

SSTAGE ← 09

else if ( COUNTER = THRESHOLD ) then10

/*Check if Error occurred this loop: act appropriately */
if ( SSTAGE = 1 ) then11

OFAIL ← 112

VFCR ← 0 � VFCR13

if ( SERR LATCH ) then SSTAGE ← 014

else if ( VFCR[N − 1] ) then15

if ( SERR LATCH ) then OFAIL ← 116

else VFCR ← [0...01]217

else18

if ( SERR LATCH ) then SSTAGE ← 119

VFCR ← VFCR �120

SERR LATCH ← 021

else if ( IERROR ) then22

/*Record occurrence of error during this COUNTER loop */
SERR LATCH ← 123
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the FCR down one bit, transfers to the fault mode, and resets the stage to 0 (Steps

11-14). If an error is not detected, the simple FFSM deduces that FU1 must have

been the faulty FU. In this case the FFSM also goes to the Fault mode and shifts

the FCR down one bit (Steps 12-13), however the stage is left at 1. This way, when

the fault mode is entered in the next clock cycle, the FFSM knows it must shift the

FCR down one more time to compensate for faulty FU1 (Step 8). Because of this

extra step, the FCR need only support a single bit down shift, as opposed to a two

bit down shift.

The isolation procedure just presented must deal with the special case of diagnos-

ing the N th FU, not counting the lowest redundant FU. Since there is no (N + 1)th

FU, there is no way to look for the presence of a second error. Thus when the FFSM

starts testing the N th FU, it prepares to roll over to the beginning of the buddy chain

(Step 17). If the (N − 1)th FU does not report an error, but the N th FU does, the

FFSM assumes that the N th FU is faulty and, without the second verification test of

stage 1, goes directly to the fault mode (Step 16).

Although this FFSM is fairly simple, it possesses at least one major inadequacy.

In the event of the detection of an SEU unrelated to an actual defect, the sim-

ple FFSM will go into fault mode whether a second error is detected or not. This

is the reason that testing of each FU is carried out until the COUNTER reaches

the THRESHOLD and only then is the decision on how to proceed made. The

THRESHOLD is, in fact, when COUNTER becomes all ones in the actual RIFT

implementation, and the designer can only specify the width of COUNTER, which

is shared by the FFSM for all FU classes. During each clock where COUNTER does

not equal THRESHOLD, the Error Signal SERROR is checked (Step 22), and if an

error is detected, flagged in the SERR LATCH state bit (Step 23). This reduces the

likelihood that errors originating from the upper unit will be missed in the second

stage after the first error has been detected. Though the designer can adjust the

susceptibility to intermittent faults by adjusting the COUNTER width, exposure to

SEU is in no way reduced. If this should be an issue for the application in question,

other FFSM strategies may be more suitable.
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4.2.3 The Counting FFSM

The ”Counting” FFSM is an attempt to mitigate vulnerability to SEUs seen in

the simple FFSM and is presented in Algorithm 4. With this FFSM, there is no

COUNTER to wait a certain amount of clock cycles for every FU test. Instead a

counter of designer specified width is included with each FU pair comparator. This is

used to count the number of errors caught while that particular FU is in test mode.

Once the counter has reached the top of its range, it is prevented from restarting

from 0 and also forces that particular Equality Vector bit to 1, which indicates that

a number of errors have occurred. This allows the FFSM to be fairly confident that

any Error Signal received is not SEU induced. This FFSM continuously tests each

FU in a sequential manner until it sees an Error Signal for two FU tests in sequence

(Steps 9-14). The end FUs are still the weak points of the counting FFSM setup.

Each one lacks a second pair with which a second test may be used to corroborate a

failure detected by the first reported error. As with the simple FFSM, the failure of

an end FU must be assumed if an error signal reported in absence of an error from

the next innermost FU. For example, if while testing FU1 an error signal is detected,

FU1 has already detected 2W −1 errors, where W is the designer designated width of

each failover pair counter. If FU2 does not also report an error, the FFSM assumes

that FU1+ is the source of the errors and acts appropriately (Steps 13-14). The dan-

ger is that FU1 is the true source of the errors, and due to the randomness of the

errors caught, the FU1 counter fills up before the FU2 counter, in which case the

fault would be erroneously attributed to FU1+. In an effort to reduce this possibility,

RIFT increases the width of the lower and upper error counters by one bit. Thus, for

an end failover pair, an error condition will not be reported until twice, or 2∗(2W −1)

errors are reported, which is much less likely to occur before the FU2 counter satu-

rates if FU1 is the actual faulty unit. If the FU2 counter saturates first, the FFSM

will simply ignore it until a second unit reports an error (Step 15). Although this

version of FFSM will be more reliable in the case of SEUs, it comes at the cost of

more storage bits and counter logic which will grow proportionally with the number

of FUs required.
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Algorithm 4: Counting Failover FSM

Parameter: N, THRESHOLD
Input: IERROR, IRESET

State: VFCR[N − 1 : 0], SSTAGE

Output: OFAIL

if ( IRESET ) then1

/*Reset All State Variables */
VFCR ← [0...01]2 /*The Failover Control Register (binary vector) */2

SSTAGE ← 0 /*Distinguishes the 1st and 2nd stage of fault */3

OFAIL ← 0 /*Set in Failover mode: Disables testing */4

else if ( OFAIL ) then5

/*Failure mode: Determine if VFCR needs shifting down */
if ( SSTAGE = 1 ) then6

VFCR ← 0 � VFCR7

SSTAGE ← 08

else if ( SSTAGE = 1 ) then9

if ( IERROR = 1 ) then10

OFAIL ← 111

VFCR ← 0 � VFCR12

if ( VFCR[2] = 1 ) then13

SSTAGE ← 0 /*The Redundant Unit is defective */14

else SSTAGE ← 0 /*Error not verified: back to Stage 0 */15

else16

/*Stage = 0 */
if ( IERROR = 1 ) then17

if ( VFCR[N − 1] = 1 ) then18

SSTAGE ← 0 /*This error detected on last FU */19

OFAIL ← 1 /*Shift back twice */20

else21

SSTAGE ← 1 /*Goto Stage 2 */22

VFCR ← VFCR �123

else24

if ( VFCR[N − 1] = 1 ) then VFCR ← [0...01]2 /*Last FU: Restart */25

else VFCR ← VFCR �1 /*Test next FU */26
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4.2.4 The Circular FFSM

The most critical weakness of the previous two FFSMs is the method by which they

extrapolate the existence of a recurring fault in the FUs on the either end of the buddy

failover chain. Not only is the method subject to error, but the special cases in the

FFSM control logic for dealing with end FUs complicates the FFSMs. It can be noted

in Figure 4.5 that FU1+ lacks its own input and collector mux because it does not

have its own logical identity. It would be possible to give FU1+ its own input mux and

connect FUN such that FU1+ can mirror FUN ’s calculations as well as FU1. Because

FU1+ would not be an actual failover upper buddy to FUN , only a comparator need be

attached between them. By an extension of the FCR and other FFSM infrastructure

vectors, the testing of FU1+ against FUN would provide a second reference point for

distinguishing a defect in either of the end FUs in an elegant manner. If the extra

input mux was orchestrated at the beginning of the RIFT mapping process, it would

also be subject to RIFT’s normal interconnect optimization. Unfortunately, although

this solution is technically feasible, due to the non-trivial development needed to

implement it, this FFSM has not yet been incorporated into the RIFT CAD tool

and thus comparative experimental results are not presented. Should this method

be combined with the simple FFSM method, it will still be subject to SEU induced

faults. However, a combination of the counting and circular FFSM methodologies

would result in a fairly compact and robust FFSM architecture.

4.3 Experimental FT Results

The experimental procedure for FT testing is largely the same as that described in

Section 3.8. The test cases used are all the same. Again, there is little or no previous

work that explores FT HLS for realistically sized examples as is presented here. FT

of a fashion similar to that implemented in RIFT has been added to List for the sake

of comparison to an interconnect unaware approach. The CAD tool basically adds

an extra redundant FU for each type and arbitrarily connects them together in an

N + 1 buddy failover system similar to RIFT. Redundant wiring is added as needed.
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# Instances FU Muxes Reg Muxes
Test Cases Clo List RIFT List RIFT List RIFT

cks +,−, ∗, R +,−, ∗, R # > # > # > # >
Sym16 FIR 10 35,0,0,85 35,0,0,129 70 26 70 15 85 8 0 0
large plus 13 35,0,0,85 35,0,0,129 70 26 70 15 85 8 0 0
large minus 13 0,35,0,85 0,35,0,126 70 26 70 19 85 8 0 0
large mult 26 0,0,35,85 0,0,36,130 70 26 72 15 85 8 0 0
large plus minus 13 19,19,0,86 18,20,0,134 76 25 76 19 82 8 0 0
large mixed 31 8,7,7,50 8,9,8,72 44 40 50 26 43 11 0 0
large long 58 6,5,8,25 7,7,8,52 36 26 44 25 24 12 0 0
large wide 9 23,18,21,163 23,18,21,213 124 18 124 16 134 4 0 0
huge plus 20 50,0,0,161 54,0,0,214 100 37 108 20 155 10 0 0
huge minus 20 0,50,0,161 0,50,0,226 100 38 100 26 155 10 0 0
huge mult 32 0,0,63,155 0,0,63,228 126 31 126 22 142 10 0 0
huge plus minus 20 26,26,0,164 27,26,0,239 104 36 106 28 158 11 0 0
huge mixed 56 9,9,16,74 11,11,17,117 68 59 78 44 72 16 0 0
huge long 79 8,7,12,49 9,10,13,95 54 48 64 40 48 16 0 0
huge wide 16 22,22,40,230 22,22,40,334 168 32 168 24 221 7 0 0

Table 4.2: List vs. RIFT: Clock steps and required components

It would be possible to improve the List FT further by pairing FUs that have the

most similar input requirements together, however, this has not been done. It could

also be argued that List FT is an overly fair representation of other interconnect

unaware systems because the N + 1 topology is inherently more scalable than those

that randomly reschedule redundant LOs. As such, the following results should be

interpreted in the context of the relative effects of managing or ignoring interconnects

for realistically sized HLS FT designs.

The first set of results, Table 4.2, lists the attributes of both the List and RIFT

FT solutions. Table 4.3 lists, for convenience, the same information in terms of the

difference between the List FT and RIFT FT structures. It can be seen that, once

again, RIFT tends to use more FUs than List, and perhaps does so a little more

erratically than RIFT without FT. RIFT uses between 30 and 50% more registers.

Because of the extra units, RIFT tends to have several more FU muxes, however, the

maximum size of these FU muxes is significantly smaller than for List. The sheer size

of List’s FU muxes is evidence of the significance of ignoring routing in HLS.

One area that RIFT is less competitive in is the number of FUs that it instantiates.

RIFT guarantees that it can make the same latency as List, however, the way in which
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FUs Instantiated FU muxes Reg muxes
Test Case (+,-,*) # Registers # > # >
Sym16 FIR 0,0,0 6 -1 -2 -6 -3
large plus 0,0,0 44 -11 -85 -7
large minus 0,0,0 41 -7 -85 -7
large mult 0,0,1 45 2 -11 -85 -7
large plus minus -1,1,0 48 -6 -82 -7
large mixed 0,2,1 22 6 -14 -43 -10
large long 1,2,0 27 8 -1 -24 -11
large wide 0,0,0 50 -2 -134 -3
huge plus 4,0,0 53 8 -17 -155 -9
huge minus 0,0,0 65 -12 -155 -9
huge mult 0,0,0 73 -9 -142 -9
huge plus minus 1,0,0 75 2 -8 -158 -10
huge mixed 2,2,1 43 10 -15 -72 -15
huge long 1,3,1 46 10 -8 -48 -15
huge wide 0,0,0 104 -8 -221 -6

Table 4.3: The difference in component requirements (RIFT - List)

LOs are mapped using connection costs often results in a different amount of FUs

being instantiated. For instance, large plus minus uses 19 adders and 19 subtraction

units, whereas the RIFT version uses 18 and 20. In half the cases, however, the RIFT

approach requires more than one extra FU instance per class to add FT, while List

will always require only one extra FU. This is a consequence of RIFT’s incorporation

of the extra redundant FU per class into the decision tree from the beginning of

the mapping process. The costs associated with connecting both the standard and

the redundant unit are considered from the beginning, and thus can lead to a much

different design than the non-FT design which does not have the extra redundancy

costs to consider.

Gate level results are presented in Table 4.4 and also in Figures 4.6 and 4.7. The

results overall are fairly favourable for RIFT with improvements over List scheduling

of on average 21.6% and 34.4% for area and frequency improvements, respectively.

The trend that the larger examples experience a larger gain tends to hold with FT

as well. The most startling gains are made by * mult. Though huge mult does

not improve area over large mult, performance improvements are much greater at

76.4%, perhaps possibly due to its use of multiple clock cycles. RIFT gives its worst
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Area(FPGA LEs) Performance (MHz)
Test Cases List RIFT %Less List RIFT %Gain
Sym16 FIR 3,897 3,789 2.8 24.60 25.25 2.6
large plus 12,161 8,352 31.3 12.97 14.54 12.1
large minus 15,696 12,101 22.9 27.27 37.75 38.4
large mult 11,728 6,581 43.9 58.23 69.35 19.1
large plus minus 12,389 9,692 21.8 12.82 14.96 16.7
large hetero 10,987 9,150 16.7 11.23 16.58 47.6
large long 8,158 8,439 -3.4 16.63 18.16 9.2
large wide 14,417 12,346 14.4 13.72 15.26 11.2
huge plus 29,683 18,644 37.2 8.54 12.14 42.2
huge minus 30,949 19,660 36.5 8.11 12.03 48.3
huge mult 34,242 24,411 28.7 17.61 31.06 76.4
huge plus minus 29,586 20,667 30.1 7.4 11.73 58.5
huge hetero 26,975 22,191 17.7 6.82 9.75 43.0
huge long 20,505 19,501 4.9 8.14 10.99 35.0
huge wide 30,701 25,512 16.9 10.7 13.22 23.6
Average (of large *, huge *) 21.6 34.4

Table 4.4: List vs. RIFT: Area and performance

improvements in the * long cases. This is due to a large amount of operations being

run on a smaller amount of FUs, which tends to reduce the amount FU muxes can

be reduced by. Consider large long’s maximum FU mux size to register ratio of 25:26

for List and 52:25 for RIFT. This suggests that for List, at least the largest mux

has inputs from almost every register plus some inputs. RIFT uses twice as many

registers and the largest mux uses only half of those, but this still means 25 inputs

for the largest FU mux. Clearly, RIFT’s decreasing returns for cases of high internal

dependency are showing for this test case. The 9% timing improvement likely is due

to the gate level critical path reduction of four in register muxes.
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FU muxes Reg muxes
# Registers # > # >

Test Case B ∞ 2 B ∞ 2 B ∞ 2 B ∞ 2 B ∞ 2
Sym16 FIR 29 -5 -5 17 1 1 9 0 6 7 1 2 1
large plus 129 -37 -29 70 2 15 -1 0 91 89 1 3 1
large minus 126 -37 -25 70 2 4 19 -3 -4 0 85 95 1 4 1
large mult 130 -39 -28 72 4 -2 15 -1 -1 0 91 93 1 3 1
large plus minus 134 -39 -25 76 4 19 -3 -2 0 93 101 1 4 1
large mixed 72 -26 -17 50 2 -2 26 -3 -2 0 46 50 1 4 1
large long 52 - 27 -15 44 -6 25 -5 0 25 32 1 6 1
large wide 213 -43 -34 124 16 -2 -2 0 131 121 1 3 1
huge plus 214 -58 -38 108 -8 -8 20 1 0 151 166 1 4 1
huge minus 226 -73 -45 100 2 26 -3 -3 0 152 170 1 4 1
huge mult 228 -82 -41 126 4 2 22 -5 -4 0 146 178 1 5 1
huge plus minus 239 -71 -53 106 -2 28 -2 -3 0 164 176 1 4 1
huge mixed 117 -45 -23 78 -4 44 -2 2 0 69 90 1 6 1
huge long 95 -49 -28 64 4 -2 40 -12 0 46 66 1 7 1
huge wide 334 -98 -67 168 -14 -14 24 -1 -1 0 227 239 1 4 1

Table 4.5: Effects of register sharing on the logical structure

The effects of allowing unlimited register sharing and register sharing with a limit

of two inputs is presented in Tables 4.5 and 4.6. As in Table 3.6 and 3.7, the results are

recorded as the change against the baseline test case, which uses register partitioning.

Changes in the number of FU muxes is mainly due to a change in the amount of FUs

instantiated. The maximum size of the FUs are reduced by several inputs, often

by more than the maximum register size is increased. Yet these changes mostly

result in both area increases and performance decreases. The exception seems to be

huge long again. Because for this case the largest mux has inputs from about half

of the registers, a nearly 50% reduction in registers seems to have a highly leveraged

affect on performance.

The overall negative effects of trying to ”balance” routing complexity between

the FU and register routing levels, though perhaps not intuitive, should be expected.

Indeed, the purpose of using wiring cost coefficients was originally intended to allow

complexity to be moved between the two levels. The reasons are best given alge-

braically, but first the context must be explained. When registers are partitioned,

there are no muxes at the register level (excluding control statements). As the limit
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Area(FPGA LEs) Performance (MHz)
Test Cases Base ∞(%) 2(%) Base ∞(%) 2(%)
As 16 FIR 3,789 3.7 0.2 25.25 -2.3 -8.0
large plus 8,352 9.8 14.2 14.54 3.23 -0.9
large minus 8,982 7.9 12.7 15.43 -10.95 -6.0
large mult 12,101 6.8 6.8 37.75 -22.0 -7.5
large plus minus 9,692 3.7 10.4 14.96 -8.76 -5.9
large mixed 9,150 4.0 4.7 16.58 -5.97 -3.4
large long 8,439 -5.7 -3.1 18.16 -2.2 -0.8
large wide 12,346 6.2 15.0 15.26 -9.63 -1.0
huge plus 18,644 4.2 7.0 12.14 -9.64 1.6
huge minus 19,660 6.3 11.3 12.03 -47.71 -0.6
large mult 24,411 8.8 10.5 31.06 -17.3 -20.8
huge plus minus 20,667 6.8 11.1 11.73 -22.59 6.9
huge mixed 22,191 -2.5 1.7 9.75 -3.38 1.9
huge long 19,501 -9.6 -2.6 10.99 27.12 -2.9
huge wide 25,512 6.3 10.6 13.22 -40.32 -5.9
Average (of large *, huge *) 3.8 7.9 -12.1 -3.2

Table 4.6: Effects of sharing registers on area and performance

on the number of register inputs is raised, muxes will be inserted in front of the regis-

ters and they will grow in size. The register muxes grow in size because the registers

are now having values packed to them more aggressively and from more sources. As

such, the number of registers needed will be reduced, as evidenced by Table 4.5. This

should mean there are less distinct sources and thus the FU muxes should in general

become smaller. Although this is not a direct causal relationship, this can be thought

of as a shifting of complexity from the FU level to the register level. To understand

the ramifications of this ”relationship” the following model is used. The model is a

function of N , which is the number of inputs allowed to each register. Because it is

being proposed that the interconnect ” complexity” is inversely proportional between

the register and FU levels, the model will define FU input size to be X−N , where X

is a threshold representing maximum ”complexity”, or number of inputs. Consider,

using two-input muxes, the relationships between the number of inputs, N , a mux
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has and its size and critical path delay.

MUXArea(N) ∝ N − 1

MUXDelay(N) ∝ dlog2 (N)e

The total area of this hypothetical system can now be constructed by adding

MUXArea(N) and MUXArea(X −N) and likewise for delay. The resulting relation-

ships follow:

TOTALArea(N) ∝ (N − 1) + (X − (N − 1)) = X (4.2)

TOTALDelay(N) ∝ dlog2 (N)e+ dlog2 (X −N)e (4.3)

The resulting relationships are plotted in Figures 4.8 and 4.9, where X has been set

to 64. The value N is the bottom x-axis, and for convenience, the inverse amount

of FU inputs are numbered on the upper x-axis. Area, as is obvious from Equation

4.2, should be fairly constant, which is reflected by the fairly consistent area loss due

to register sharing in Table 4.6. Despite the idea that area should remain constant,

the fact is that for most of the test cases there are more register muxes to be added

then there are FU muxes to remove. This would justify the overly negative effect

on area as complexity is moved to the register level. The delay curves in Figure

4.9 show how delay due to the mux size increases in a step-wise fashion with the

dlog2e of the number of inputs, or ”complexity”. The addition of the register and

FU mux delay results in a stepwise negative parabola. Thus delay is maximized,

when the measure of ”complexity”, N , is evenly spread between the two levels. This

suggests that moving some inputs from a large mux to a small or nonexistent mux

is, unfortunately, a very effective way to introduce extra levels of gate delay to the

system. The optimal tradeoff is actually to put all interconnect complexity at a single

level. This would seem to be the reason register partitioning is so effective and why,

as concluded in the last section, register sharing is detrimental for large HLS systems.
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# Components Added FU muxes Reg Muxes
Test Case + - * Reg # > # >
Sym16 FIR 1 1 6 5 2 -6 -3
large plus 1 44 2 2 -85 -7
large minus 1 41 2 6 -85 -7
large mult 2 45 4 2 -85 -7
large plus minus 2 48 4 6 -82 -7
large mixed 1 3 2 22 12 1 -43 -10
large long 2 3 1 27 14 2 -24 -11
large wide 1 1 1 50 6 7 -134 -3
huge plus 5 53 10 -155 -9
huge minus 1 65 2 6 -155 -9
large mult 1 73 2 6 -142 -9
huge plus minus 2 1 75 6 8 -158 -10
huge mixed 3 3 2 43 16 -72 -15
huge long 2 4 2 46 16 -1 -48 -15
huge wide 1 1 1 104 6 8 -221 -6

Table 4.7: Structure of RIFT FT vs. List without FT

Area (FPGA LEs)
Test Cases List List FT Cost(%) RIFT FT Cost(%)
Sym16 FIR 2,550 3,897 52.8 3,789 48.6
large plus 6,594 12,161 84.4 8,352 26.7
large minus 6,865 12,202 77.7 8,982 30.8
large mult 9,178 15,696 71.0 12,101 31.8
large plus minus 6,662 12,389 86.0 9,692 45.5
large mixed 5,744 10,987 91.3 9,150 59.3
large long 4,868 8,158 67.6 8,439 73.4
large wide 8,094 14,417 78.1 12,346 52.5
huge plus 13,925 29,683 113.2 18,644 33.9
huge minus 14,381 30,949 115.2 19,660 36.7
large mult 18,920 34,242 81.0 24,411 29.0
huge plus minus 14,102 29,586 109.8 20,667 46.6
huge mixed 14,625 26,975 84.4 22,191 51.7
huge long 11,963 20,505 71.4 19,501 63.0
huge wide 17,200 30,701 78.5 25,512 48.3
Average (of large *, huge *) 86.4 44.9

Table 4.8: Area costs of adding List and RIFT based FT
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Performance (MHz)
Test Cases List List FT Cost(%) RIFT FT Cost(%)
Sym16 FIR 25.44 24.60 3.3 25.25 0.7
large plus 17.76 12.97 27.0 14.54 18.1
large minus 17.55 12.96 26.2 15.43 12.1
large mult 34.13 27.27 20.1 37.75 -10.6
large plus minus 17.76 12.82 27.8 14.96 15.8
large mixed 18.25 11.23 38.5 16.58 9.2
large long 22.12 16.63 24.8 18.16 17.9
large wide 18.67 13.72 26.5 15.26 18.3
huge plus 13.71 8.54 37.7 12.14 11.5
huge minus 13.59 8.11 40.3 12.03 11.5
large mult 30.54 17.61 42.3 31.06 -1.7
huge plus minus 13.33 7.40 44.5 11.73 12.0
huge mixed 15.72 6.82 56.6 9.75 38.0
huge long 16.66 8.14 51.1 10.99 34.0
huge wide 15.47 10.70 30.8 13.22 14.5
Average (of large *, huge *) 35.3 14.3

Table 4.9: Performance costs of adding List and RIFT based FT

In addition to determining the relative costs of RIFT versus List based FT, one

of the goals of this research was to examine the actual costs of adding FT to large

designs. Table 4.7, compares the number of logical units RIFT requires to the base

case of List without FT insertion. Tables 4.8 and 4.9 give the area and performance

costs of both List and RIFT based FT compared to a baseline case of List without

FT. Figures 4.10 and 4.11 give the same data in chart form. . Logically RIFT requires

marginally more FU instances. Register usage is increased by 30 to 50%, which is

what allows complexity to be offset to the FU level of muxes. This offset is reflected

in a small increase in the maximum size of FU muxes, while register mux maximum

size is reduced by the same amount or more. This would translate into, at most, an

introduction of a one gate delay to the FU muxes while the register level is reduced

by up to four gate delays.

In terms of area costs, List based FT is shown to cost an average of 85%, and as

much as 115% in one case. Compared to this RIFT does the same job at an average
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Area(FPGA LEs) Performance (MHz)
Test Cases RIft RIFT %Cost RIft RIFT %Cost
Sym16 FIR 2,537 3,789 49.3 33.11 25.25 -23.7
large plus 3,942 8,352 111.9 25.36 14.54 -42.7
large minus 4,203 8,982 113.7 23.50 15.43 -34.3
large mult 6,593 12,101 83.5 47.72 37.75 -20.9
large plus minus 4,487 9,692 116.0 22.74 14.96 -34.2
large hetero 4,730 9,150 93.4 24.46 16.58 -32.2
large long 4,341 8,439 94.4 28.25 18.16 -35.7
large wide 6,738 12,346 83.2 25.58 15.26 -40.3
huge plus 8,200 18,644 127.4 22.04 12.14 -44.9
huge minus 9,013 19,660 118.1 19.97 12.03 -39.8
huge mult 12,910 24,411 89.1 40.13 31.06 -22.6
huge plus minus 9,542 20,667 116.6 20.23 11.73 -42.0
huge hetero 10,232 22,191 116.9 22.46 9.75 -56.6
huge long 9,301 19,501 109.7 23.64 10.99 -53.5
huge wide 13,239 25,512 92.7 20.94 13.22 -36.9
Average (of large *, huge *) 104.8 -38.3

Table 4.10: Cost of the FT in RIFT

cost of 45% and up to a maximum of 63% of area. To rephrase this result, RIFT

can be used to add FT to a List designed non-FT circuit for 52% of the cost that a

List based FT approach would use, on average. The performance cost is a 35% and

14.3% average reduction in operating frequency for List based FT and RIFT based FT

designs, respectively. Thus the cost of using RIFT FT is 41% of the cost of using List

for FT insertion. It is interesting to note, that for the * mult cases, RIFT with FT

actually outperforms List without it. These results suggest that directly managing

routing considerations in HLS design can effectively reduce the cost of adding FT by

half.

4.4 FT Analysis

With the discussion on implementation of FT now complete, all the necessary ele-

ments required for an efficient, fully functional FT system have been presented. A

critique is presented of the overall effectiveness of the system in suppressing faults.
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Most prior work is carried out under the ”single fault” disclaimer, which states that

only one fault at a time can be accommodated. This not only alleviates resources

needed for redundancy, it also eliminates the possibility that two faults in concert

might foil diagnosis. RIFT has a similar warranty, though with some caveats. For

any grouping of FUs chained together in a ”buddy-buddy” failover chain, one fault in

that set of FUs can be accommodated. Thus, in the general case, RIFT may actually

be able to deal with as many faults as there are FU classes. However, this assumes

that the faults cooperate and evenly distribute themselves across the FU classes, a

decidedly unlikely proposition. It would be possible to extend the warranty to X num-

ber of faults by adding X redundant units and arranging the extra failover wiring the

same way RIFT currently does for X=1. Based on the results in the previous section,

RIFT would seem the best way to do this. However, the extra routing requirements

would be extremely cost prohibitive. Although RIFT has shown itself to be a far

superior method of adding FT than an interconnect unaware approach like List, the

actual cost of adding FT to a non-FT RIFT design is still quite high at an average

cost of 105% and 38% for area and performance, respectively. Consequently, a stong

economic argument could be made that complete system duplication or triplication

may be more efficient than increasing X past 1. Another way to increase robustness

would be to segment failover chains so that each consists of only a fraction of the

number of FUs belonging to that class. This would not increase the guaranteed fault

coverage, but it would make it more likely that a subsequent fault could also be han-

dled. There are two types of costs associated with using smaller chains. The first is,

as an N + 1 architecture, the extra redundant unit for each chain. The second comes

in the form, again, of increased routing requirements because of reduced partitioning

possible within each subchain, which will require input muxes to have larger sets of

inputs. Neither of these methods for increasing the number of tolerable faults was

compelling enough to incorporate into RIFT.

Another caveat of RIFT, which should not be an issue for large systems, is that the

approach requires at least two FUs plus an extra redundant FU per class to properly

isolate and compensate for faults. RIFT thus automatically instantiates at least

three FUs when directed to add FT to a design. This requirement would obviously
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Figure 4.12: Logical fault coverage

put RIFT at a competitive disadvantage for trivial or highly serial benchmarks. For

the large designs this research is concerned with, however, this is not an issue.

Figure 4.12 is a representation of a generic data path. The suggestion is that any

given fault will appear to damage either a logical FU or a register entity. Each entity

consists of itself and its input mux(es). Also included is the input wiring up to the

divergence points where that wiring feeds more than just that entity and also output

wiring down to the divergence point. Unfortunately, the transition point between an

FU and a register is poorly defined at the gate level, especially in the case of FPGAs,

which use statically configured switches for routing. Though it is seldom mentioned,

there can be points between the output divergence point of one entity and the input

divergence point of the next. For instance, from an FU to multiple registers, a register

feeder wire might split off from the main at different points. A fault between entities

might then affect some but not all receiving registers. In this case, it would appear
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as though several of the registers were faulty as a result of a single real fault. The

same would be true for the case of a single register feeding multiple FUs. RIFT will

not be able to properly recover from this class of fault, even though it does concern

the datapath.

There are several other faults that RIFT cannot correct. Under the single fault

assumption, some faults in the RIFT infrastructure itself are covered. Failures in

the redundant inputs, comparators, or collector muxes will all be observed to be an

error in the logical FU and thus garner the same result. An unfortunate result, if

faults incurred are proportional to area usage, is the RIFT infrastructure will actually

increase the likelihood of experiencing a fault. Further research into by how much

the benefits of FT are reduced by this factor is a generic FT issue and outside the

current scope. Nonetheless, it does exist.

Finally, there are components of the final circuit that are completely unprotected

by RIFT. These include the voting circuitry, the actual FSM, RIFT’s own FFSMs,

and the actual inputs to and from the design. Almost all research in the field of HLS

FT assumes these components to be immune to faults or to have its own built in

FT system, which is rarely implemented in experimental setups. An example of a

controller with FT built in is [21]. As such, though outside the scope of this research,

an actual FT design should undergo a formal characterization of reliability. This

topic is thoroughly addressed by Lala in [38], among others, and includes the effects

of voter reliability on the overall reliability of N + M redundant systems, where M

is the number of redundant units.

RIFT currently only has the capability to design for faults in a logical FU. A next

logical step for future work would be to incorporate FT for registers in a way that

embodies the ideals of simplicity and scalability that are the basis of RIFT. From the

results already presented, it is very critical that a solution’s highest priority should be

to minimize the amount of additional routing needed. A promising approach may be

to add an extra register per FU grouping for an N +1 arrangement and then somehow

pipeline the verification process to avoid impacting the design’s delay. Regardless, it

will be a difficult challenge to solve well.
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Chapter 5

Conclusion

By building and demonstrating RIFT, three contributions are made. The first is to

give credence to the possibility that, though proposed HLS approaches to FT are

comprehensive, feasible, and conceptually interesting, they often ignore the ramifica-

tions of implementation in realistic designs of substantial size. It is generally accepted

that adding FT to a design is costly, especially as the size of the design under con-

sideration escalates. The fact that the body of work considering the area and delay

costs of FT, particularly with respect to interconnects, is relatively small, suggests

this is a difficult problem to treat well. It may be that slow rate of commercial ac-

ceptance for HLS in general and HLS FT in particular has meant that issues arising

with large designs have not yet become prominent. Or perhaps the converse is true

and HLS FT has not gained popularity commercially because HLS FT is not yet able

to address usefully sized designs in an economically justifiable way. Results presented

here for a small common benchmark indicate an area cost of approximately 50% as

well a performance reduction of about 3% when List’s particular mix of FT is added.

However, when sample designs are enlarged to nearly a thousand operations, these

costs jump to as much as 100% and 50% respectively. Thus this research suggests

that scalability, especially with consideration to FT, is an important but somewhat

dormant issue. The first contribution is not to solve this issue, but merely to bring it

to light.

The second contribution is an attempt to demonstrate how the cost of realistically
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sized HLS FT systems can be reduced, particularly as pertains to the interconnect is-

sue. By managing interconnect issues from the beginning, even at the cost of possibly

suboptimal mapping, RIFT manages to reduce, in some instances, area and perfor-

mance penalties by a factor of three. This is fairly substantial improvement. However,

once HLS scalability is better understood, it should possible to improve upon these

results and introduce interconnect oriented methods for other configurations as well.

The final contribution is made partly in response to recent interest in bringing FT

features from the exclusive domain of critical spacecraft, military, and medical sys-

tems to the more mundane IC applications of everyday life [6]. The vision behind the

criteria listed in the beginning of Chapter 4 is for a unique and relatively inexpensive

FT system that places greater emphasis on robustness instead of the data integrity

assurances required of critical systems. Though unsuitable for critical applications,

this FT model could be used to enhance the reliability of the vast majority of com-

puting infrastructure that encompasses and facilitates modern society. Because of its

overriding emphasis on interconnect reduction, RIFT could be regarded as one of the

first FPGA ” specific” approaches to FT that allows fully transparent compensation.

For large production runs of FPGAs using the same design, RIFT could be used

to improve manufacturing yield by circumventing faults without the need for design

recompilation or even FPGA reconfiguration. However, the larger potential, consid-

ering how FPGAs are increasingly dominating ”common” applications, may be the

use of HLS FT methods to extend these product’s lifespans. FT may be costly, but

if there is already extra space reserved on the FPGA, perhaps for ”future proofing”,

it may be possible to add FT essentially for free. In any regard, as IC fabrication

capabilities move to 0.65 microns and beyond, architectural FT may well become an

essential tool for long term reliability.
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[32] R. Karri and A. Orailoǧlu. Time-constrained scheduling during high-level synthe-

sis of fault-secure VLSI digital signal processors. Reliability, IEEE Transactions

on, 45(3):404–412, September 1996.

[33] P. Kollig and B. Al-Hashimi. Simultaneous scheduling, allocation and binding

in high level synthesis. Electronics Letters, 33(18):1516–1518, August 1997.

[34] V. V. Kumar and J. Lach. Heterogeneous redundancy for fault and defect toler-

ance with complexity independant area overhead. In International Symposium

on Defect and Fault Tolerance in VLSI Systems, pages 571–578, 2003.

[35] F. J. Kurdahi and A. C. Parker. REAL: a program for REgister ALlocation. In

DAC, pages 210–215, 1987.

[36] G. Lakshminarayana, A. Raghunathan, and N. K. Jha. Behavioral synthesis of

fault secure controller/datapaths based on aliasing probability analysis. IEEE

Transactions on Computers, 49(9):865–885, 2000.

[37] P. Lala and A. Burress. Self-checking logic design for FPGA implementation.

Instrumentation and Measurement, IEEE Transactions on, 52(5):1391–1398, Oc-

tober 2003.

[38] P. K. Lala. Fault Tolerant and Fault Testable Hardware Design. Prentice-Hall

International, Englewood Cliffs, N.J, 1985.

[39] S. Liao. Towards a new standard for system-level design. In Hardware/Software

Codesign, Eighth International Workshop on, pages 2–6, 2000.

103



BIBLIOGRAPHY M.A.Sc. - D.J. Lemstra - McMaster

[40] T. A. Ly and J. T. Mowchenko. Applying simulated evolution to high level

synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 12(3):389–409, March 1993.

[41] D. MacMillen, M. Butts, R. Camposano, D. Hill, and T. W. Williams. An

industrial view of electronic design automation. IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, 19(12):1428–1448, December

2000.

[42] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Inc.,

Burlington, MA, 1994.

[43] G. D. Michell and R. Gupta. Hardware/software co-design. Proceedings of the

IEEE, 85(3):349–365, March 1997.

[44] G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.
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