
On Using Hardware Assertion Checkers for Bit-flip

Detection in Post-Silicon Validation

ON USING HARDWARE ASSERTION CHECKERS FOR BIT-FLIP

DETECTION IN POST-SILICON VALIDATION

BY

POUYA TAATIZADEH, B.Eng. M.Sc

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Pouya Taatizadeh, February 2017

All Rights Reserved

Doctor of Philosophy (2017) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: On Using Hardware Assertion Checkers for Bit-flip De-

tection in Post-Silicon Validation

AUTHOR: Pouya Taatizadeh

B.Eng., (Electronic Engineering)

University of Southampton, Southampton, UK

M.Sc., (System-On-Chip)

University of Southampton, Southampton, UK

SUPERVISOR: Prof. Nicola Nicolici

NUMBER OF PAGES: xviii, 184

ii

To My Family

Abstract

With the rising demand for integrating more features in a single product, modern

designs feature more and more functionality on a single die. The complexity resulted

from this growth makes it more difficult to guarantee that all errors are detected and

fixed before the product is manufactured. Efforts carried out before the design is

manufactured, known as pre-silicon verification, are unable to detect all the errors.

Electrical errors, such as those caused by cross-talk or power droops, are particularly

difficult to catch during the pre-silicon phase because of the insufficient accuracy of

device models, which is often traded-off against simulation time. This challenge is

further aggravated by the rising number of voltage domains, especially if subtle errors

are excited in unique electrical states. These electrically-induced subtle errors most

commonly manifest in the logic domain as bit-flips in flip-flops. Therefore, once the

design prototypes are available, the verification tasks continue on them to identify

and eliminate errors that have escaped pre-silicon verification phase and have the

potential to cause catastrophic problems if they remain undetected. This task is

commonly referred to as post-silicon validation and has become an important step in

the design flow of system-on-chip devices.

Limited internal node observability is one of the main challenges of post-silicon

validation because it causes long error detection latencies. The existing approaches

iv

that try to improve this limited observability usually rely on ad-hoc methods which

are difficult to maintain when particular changes are requested from one project to

another. Hence in this thesis, we propose novel systematic methods which can be

used for automatic generation of on-chip blocks that improve internal observability

and reduce error detection latency in post-silicon validation.

First we propose an automated methodology that generates and selects hardware

assertions for bit-flip detection in post-silicon validation. As part of this methodology,

we will introduce two quantitative metrics, the bit-flip coverage estimate and the flip-

flop coverage estimate that can be used to assess the quality of the selected assertions.

Next, we improve the run-time and the accuracy of our proposed methodology by

using emulation platforms that can automatically be integrated into the proposed flow

to enable fast, yet accurate assertion selection. Finally in the last contribution, we will

propose a novel solution for automatic generation of hardware assertions by leveraging

the internal mechanism of Boolean satisfiability solvers, namely learned clauses. In

addition, we will formally evaluate the potential of the discovered hardware assertions

using an incremental SAT solving approach to assess these hardware assertions for

bit-flip detection. We will show that by using this new method, the proportion of

errors that can be detected are improved while the area overhead is reduced.

State-of-the-art post-silicon validation practices rely primarily on ad-hoc methods

for bit-flip detection and there is a lack of systematic methods that can be applied

to generic digital blocks. Consequently, the contributions from this thesis are a step

towards introducing assertion-based methods and architectures that facilitate system-

atic bit-flip detection in post-silicon validation.

v

Acknowledgements

Similar to every big achievement in life, it is impossible to list everybody who had an

impact on how I managed to close this chapter of my life. However there are those

whose help and influence are unforgettable and hence deserve my appreciation.

I would like to thank my family who have always stayed by my side, supported me

and have given me nothing but love and courage. Their presence is the most valuable

thing I possess in life.

I would also like to express my deepest gratitude to my advisor, Prof. Nicola Nicolici

for his endless patience and unswerving commitment which gave me the opportunity

to grow both technically and personally. It goes without saying that this work would

have been impossible without his tireless efforts and guidance. When I joined Mc-

Master, I was “the youngest” in his own words. I am not sure if the implication of

that statement holds true any more.

I also would like to thank my PhD committee members, Dr. Shahram Shirani and

Dr. Yaser Haddara for their precious time in reviewing my thesis and their valuable

advice to improve my work.

I am grateful to both the former and present members of the Computer-aided

Design and Test laboratory members at McMaster University, Dr. Adam Kinsman,

Dr. Henry Ko, Dr. Zahra Lak, Dr. Jason Thong, Dr. Xiaobing Shi, Phil Kinsman

vi

and Amin Vali for their valuable assistance and helpful discussions that enriched the

paths that I followed in my research. I would also like to thank Yasamin Fazliani for

her support that significantly lessened the burden of this whole journey.

Finally, I would like to thank the administrative and technical staff of the ECE

department at McMaster for their assistance.

vii

Notation and abbreviations

ABV Assertion Based Verification

ASIC Application Specific Integrated Circuits

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generation

BDD Boolean Decision Diagram

CNF Conjunctive Normal Form

CPU Central Processing Unit

CUT Circuit Under Test

CUV Circuit Under Validation

DFD Design for Debug

DFT Design For Test

DUT Design Under Test

EDA Electronic Design Automation

ELA Embedded Logic Analyzer

FPGA Field Programmable Gate Array

FSM Finite-State Machine

IC Integrated Circuit

viii

IP Intellectual Property

LUT Look Up Table

MOS Metal Oxide Semiconductor

OVL Open VErification Library

PSL Property Specification Language

PTE Programmable Trigger Units

QBF Quantified Boolean Formula

QED Quick Error Detection

SFF Scan Flip-flop

SoC System-on-a-chip

SVA System Verilog Assertion

TAP Test Access Port

TDI Test Data Input

VCD Value Change Dump

VLSI Very Large Scale Integrated Circuits

ix

Contents

Abstract iv

Acknowledgements vi

Notation and abbreviations viii

1 Introduction 1

1.1 History of Computing . 2

1.2 Design Flow of VLSI Circuits . 4

1.3 Pre-Silicon Verification . 6

1.4 Manufacturing Test . 8

1.5 Post-Silicon Validation . 11

1.6 Contribution and Organization of the Thesis 15

2 Background and Related Work 18

2.1 Controllability . 19

2.1.1 Stimuli generation in pre-silicon verification 19

2.1.2 Stimuli generation in post-silicon validation 20

2.2 Observability . 21

x

2.2.1 Observability in pre-silicon verification 22

2.2.2 Observability in post-silicon validation 22

2.2.3 Root-cause analysis . 24

2.3 Assertion-based verification . 24

2.4 DFD structures to improve observability 30

2.4.1 Scan chain-based technique 31

2.4.2 Trace-based technique . 34

2.5 Event detection . 36

2.5.1 Quick error detection tests . 36

2.5.2 Programmable trigger-units 39

2.5.3 Assertion-based trigger units 40

2.6 Summary . 44

3 Automated Design of Embedded Bit-flip Detectors 46

3.1 Proposed Methodology . 47

3.1.1 Potentials of Assertions . 47

3.1.2 Automatic Assertion Generation 49

3.1.3 Preparation Experiments . 51

3.1.4 Mapping Assertions to Hardware 54

3.1.5 Assertion Ranking . 54

3.1.6 Confirmation Experiments . 55

3.2 Ranking Algorithm . 59

3.2.1 Bit-flip coverage estimate maximization 59

3.2.2 Flip-flop coverage estimate maximization 62

3.3 Experimental Results . 70

xi

3.3.1 Bit-flip Coverage Estimate . 73

3.3.2 Flip-flop Coverage Estimate 74

3.3.3 Running Times . 79

3.4 Summary . 80

4 Emulation Infrastructures for the Evaluation of Hardware Asser-

tions 82

4.1 Background . 83

4.2 Assertion Synthesis . 89

4.3 Architecture . 95

4.3.1 Benefits of Emulation for Assertion Assessment 95

4.3.2 Hardware Architecture and Tool Flow 98

4.4 Results and Discussion . 109

4.4.1 Preparation experiments . 112

4.4.2 Confirmation Experiments . 115

4.4.3 Run-times for different steps of our methodology 122

4.5 Concluding remarks . 123

5 SAT-based Methodology for Designing Bit-flip Detectors 124

5.1 SAT Fundamentals . 125

5.2 Generation of Hardware Invariants 130

5.3 Converting Learned Clauses to SVA Assertions 136

5.4 Evaluation of Hardware Invariants . 140

5.5 Selection of Hardware Invariants . 145

5.6 Results . 146

xii

5.7 Summary . 152

6 Conclusion 153

6.1 Summary of thesis contributions . 154

6.2 Future research direction . 156

xiii

List of Figures

1.1 Number of components on an integrated circuit available in [1]. . . . 3

1.2 Typical chip design flow representing different phases of the design cycle. 5

1.3 Scan-chain architecture for manufacturing test 9

2.1 Different sub-areas in post-silicon validation. 19

2.2 An example of a PSL and a SVA assertion describing an identical

behavior. 25

2.3 IODINE Framework [2]. 27

2.4 GoldMine Framework based on [3]. 29

2.5 Differences in scan architecture in manufacturing test and post-silicon

validation [4]. 32

2.6 Clock control timing diagram for different operation modes. 33

2.7 Example of an embedded logic analyzer unit introduced in [4]. 35

2.8 Using duplicated instructions to shorten error detection latency which

is introduced in [5] . 37

2.9 Redundant Multi Threading QED Transformation introduced in [5] . 39

2.10 Using hardware assertion checkers with a centralized embedded FPGA

introduced in [6]. 42

xiv

2.11 Debug control registers for enabling and disabling hardware assertion

checkers [7]. 43

2.12 Capturing violated assertions using debug trace [7]. 43

3.1 Tool flow for selecting the most suitable assertions to embed on-chip

under wire constraints . 50

3.2 Preparation Experiments illustrating steps towards creation of the Vi-

olation Matrix. Each entry in this violation matrix shows the total

number of violations of the assertion (from the corresponding column)

when the bit-flip was injected in the respective flip-flop (identified by

the row). 53

3.3 Hypothetical example for representing the difference between bit-flip

and flip-flop coverage estimates. 57

3.4 Flow for the heuristic algorithm that is geared towards maximizing bit-

flip coverage estimate. Note that in step 4, VC represents the assertions

violation count for a particular flip-flop in the violation matrix. . . . 60

3.5 An example showing the different steps on choosing a sub-optimal set

of assertions to maximize flip-flop coverage estimate. 68

3.6 Bit-flip coverage estimate for the three largest ISCAS89 circuits [8]. . 73

3.7 Analysis of flip-flop coverage estimate and the area overhead based on

varying the number of wires, running the assertion ranker and carrying

out the confirmation experiments. Wire count is the total percentage of

wires used based on the number of flip-flops in the ISCAS89 benchmark

circuit. 77

xv

4.1 Tool flow for selecting the most suitable assertions to embed on-chip

under wire constraints . 84

4.2 Violation Matrix for a circuit with 4 flip-flops and 5 assertions. 86

4.3 Hypothetical example for representing the difference between bit-flip

and flip-flop coverage estimates. 88

4.4 Example of an System Verilog Assertion (SVA assertion). 91

4.5 Example showing the equivalent hardware circuit for the SVA assertion

“assert property ((a == 1) && (b == 0) |−> (c == 1)). ” 92

4.6 Example showing the equivalent hardware circuit for assertions used

in this work. 93

4.7 Example of instrumenting CUV with hardware assertions. In case there

is a bit-flip in any of the X,Y or Z registers, the output of the assertion

unit will evaluate to 1 which indicates a property violation. 96

4.8 An example of a violation matrix prepared by emulation-based exper-

iments. The red elements are different from the elements in the same

position in the matrix from Figure 4.2. 97

4.9 Tool flow for automatic generation of emulation-ready hardware archi-

tecture to accelerate error injection experiments in post-silicon validation. 99

4.10 Memory interface for two-clock domain (a) and single-clock domain

(b) architectures in preparation experiments. Note that flop ID and

assertion ID are concatenated to the output of the MUX which then

will be written to the memory. 102

xvi

4.11 Controller FSM showing two different state machines for fast and slow

clocks. Note that k is user defined and represents the number of clock

cycles for which the circuit runs after each bit-flip injection. 105

4.12 Memory interface for (a) bit-flip coverage estimate and (b) flip-flop

coverage estimate. When write enable is granted, a single-bit 1 is

written to the memory. 107

4.13 Memory layout for (a) preparation experiments, (b) bit-flip coverage

estimate in confirmation experiments and (c) flip-flop coverage esti-

mate in confirmation experiments. 109

4.14 Running preparation experiments in multiple emulation sessions. . . . 113

4.15 Evaluation of area overhead with respect to different wire budgets for

the largest ISCAS circuits when the ranker is set to maximize bit-flip

coverage. 117

4.16 Evaluation of the flip-flop coverage and the resulting area overhead in

confirmation experiments for different wire counts. 121

5.1 Three steps of the proposed SAT-based methodology. 125

5.2 Example of all possible assignments to a SAT instance. 126

5.3 An example showing steps of a CDCL algorithm reproduced from [9].

Implied assignments are shown with yellow circles. 129

5.4 An example circuit used to illustrate the different sub-steps in hardware

invariant generation. 132

5.5 Sequential miter configuration used to constrain the SAT solver to

produce learned clauses for an extensive period of time. 134

xvii

5.6 An example for showing how to reduce the number of incremental SAT

queries during the hardware invariant evaluation for bit-flip detection. 144

5.7 Total number of discovered invariants as well as their distribution in

terms of their temporal depth for the three largest ISCAS circuits. . . 150

xviii

Chapter 1

Introduction

Recent advancements in process technologies have enabled very large scale integrated

(VLSI) circuits to be built with millions and billions of transistors. As the digital inte-

grated circuits (ICs) become more complex, ensuring their correct functional behavior

also become more challenging. Nevertheless, the existing verification techniques that

are used prior to tape-out (pre-silicon phase) are inadequate to detect and eliminate

all the errors (bugs) that have the potential to cause catastrophic problems if they

remain undetected. Hence, once the early chip prototypes are available and before

committing to high-volume manufacturing, it is sensible to continue the verification

process on those prototypes to detect the errors that have escaped the pre-silicon

phase. This task is commonly referred to as Post-Silicon Validation.

Because of the sheer complexity of the designs, validation of VLSI circuits cannot

be done manually which justifies the need for designing sophisticated automated

methodologies. This motivates the contributions described in this thesis which focuses

on introducing new concepts and automated methodologies for improving the existing

techniques in post-silicon validation.

1

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

The rest of this chapter is organized as follows: At first, a quick overview of how

computing has evolved and how computer-aided design has stepped into the chip

design cycle is provided. Afterwards, important phases of the chip design flow are

explained which determines the position of post-silicon validation in this flow. Finally,

the chapter is closed by outlining the structure of the thesis.

1.1 History of Computing

The introduction of computational engines dates back to the 19th century [10]. In

1832, Babbage designed a mechanical calculator called Difference Engine that re-

moved sources of mistakes in mathematical computations. The complexity and cost

of the design made the concept impractical. Later on, the electrical solutions that

were based on magnetically controlled switches (or relays) turned out to be more cost

effective. Nonetheless, the age of digital electronic computing only started in full with

the introduction of the vacuum tubes. While vacuum tubes were initially being used

exclusively for analog applications, it was realized that they are also useful for digital

computations. ENIAC (designed for computing artillery firing tables) and the UNI-

VAC (the first commercial computer) [11] are examples of the systems built based on

this technology. High integration density soon pushed this design technology to its

limits. In addition, reliability problems together with excessive power consumptions

made manufacturing larger machines practically infeasible.

The invention of transistors at Bell Telephone Laboratories [12] together with the

introduction of bipolar transistors by Schockley [13] in 1949 revolutionized this trend.

It however took some time until these new technologies translated into a set of com-

mercial integrated-circuit incorporating logic gates, called the Fairchild Micrologics

2

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

family [14]. The theories and principles of MOSFET transistors had been investi-

gated by J. Lilienfeld in 1925 and O. Heil in England in 1935 [10]. However, their

practicality had not been realized due to insufficient knowledge about the behavior of

these materials. Once this roadblock was resolved, MOS digital ICs started to appear

in 1970s [10] which revolutionized the design of the computers.

Complexity and integration density of digital ICs have been continuously rising

in the past couple of decades. Gordon Moore, the co-founder of Intel predicted in

1960s that the number of transistors on a single die would grow exponentially [15], a

prediction that later on proved to be true as shown in Figure 1.1.

the company was going to introduce soon. The first data point on the graph represents
the original planar transistor that we introduced in 1959. The planar transistor was
the starting point for the integrated circuit’s basic technology, so it deserved to be on
this curve also.

Between the point for our 1959 planar transistor and our 1965 new device with
sixty components were several points representing the Micrologic family of integrated
circuits that Fairchild Semiconductor had introduced. Plotting these points using a
log-base-two scale, I saw that the points fell closely along a line representing a dou-
bling of complexity every year through 1965. To make my requested prediction, I sim-
ply extrapolated this same line for another decade, thereby predicting a thousandfold
increase in complexity. The rather obscure log-base-two scale that I used on the verti-
cal element of the graph made it a bit difficult to see that I was extrapolating from
sixty to sixty thousand components. Nevertheless, the curve did seem to make sense
with the existing data and some people who looked at this line and said, “That’s a rea-
sonable extrapolation.”

1975 SPEECH

I never expected my extrapolation to be very precise. However, over the next ten years,
as I plotted new data points, they actually scattered closely along my extrapolated
curve (Figure 6). At the end of these ten years, I gave a talk at the IEEE International
Electron Devices Meeting to show what had actually happened since my 1965 predic-
tion, to analyze how the semiconductor industry had accomplished that degree of
progress, and to make a prediction for upcoming years. To do this, I broke down the
complexity curve into several contributing factors (Figure 7).

72 ARTICULATIONS

Figure 5. 1965 projection
of number of components
on an integrated circuit.

Figure 1.1: Number of components on an integrated circuit available in [1].

Clearly, as the integration density increases and designs become more complex,

the existing design and verification methodologies need to evolve to keep pace with

this trend. As stated earlier, this complexity together with aggressive time-to-market

pressure necessitates the engineers to rely on automated, yet efficient methodologies

3

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

that enables them to meet these constraints while keeping up with the new require-

ments that improve the performance of digital ICs.

Computer-Aided Design (CAD) helps engineers to rely on computers during differ-

ent phases of IC development. Nonetheless, with the continuing rise in the complexity

of digital ICs, demands for extended capability of CAD tools in different phases of IC

design flow increases [16]. Therefore, there has been a tremendous amount of research

done in the past five decades that addresses different stages of IC design flow with

main emphasis on scalable tool development [17]. In the following subsections, the

different stages of IC development are explained together with their unique challenges.

1.2 Design Flow of VLSI Circuits

There are three major steps that comprise the design of VLSI circuits: Specification,

Implementation and Manufacturing as shown in Figure 1.2. The specification deter-

mines the expected functionality of the VLSI circuits and is typically expressed in

high-level description languages such as SystemC [18]. Details of the internal com-

ponents such as CPUs, memories, internal bus, etc., are abstracted from the speci-

fication. Therefore, specification is concerned with computations and data transfers

without elaborating into specific details. To detail more information about the im-

plementation, hardware description languages (HDLs) such as VHDL [16], Verilog

[19] and System Verilog [20] are commonly used. When using HDLs, the flow of data

between the internal registers as well as any logical operation are described at the

register transfer level (RTL) abstraction level. By using the RTL model of the design,

synthesis can be performed. Synthesis is defined as the process of transforming the

circuit model from a higher abstraction level to a lower one. During synthesis, the

4

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

transfer functions are optimized and transformed into logic equations that can be

mapped to the gate-level components available from the target technology.

Specification

Pre-Si Verification

 System-C
 HDLs

Implementation Manufacturing

 Full-custom
 Semi-custom
 Cell libraries

 Metal oxide
semiconductor
Technology

 Simulation
 Formal

Manufacturing Test
 Scan
 Automatic Test

Pattern Generation

Post-Si Validation

Lo
g

ic B
u

gs

Fu
n

ction
al

Escaped
 Pre

-Si verificatio
n

In
com

p
le

te
 sp

ecification
C

ir
cu

it
 B

u
gs

El
ec

tr
ic

al
 b

u
gs

Su
b

tl
e

 s
u

b
m

o
d

u
le

in

te
ra

ct
io

n
s

 Physical probing
 Hardware

assertions
 Scan-based debug
 Trace buffers

No?

To customer

Does Implementation
meet specification?

Is there any
manufacturing defect?

Does the manufactured
chip meet specification?

Figure 1.2: Typical chip design flow representing different phases of the design cycle.

5

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

1.3 Pre-Silicon Verification

Following to preparing the RTL model of the design from the specification, many veri-

fication steps are carried out before design’s tape-out to ensure that the implemented

design meets the given specification. This important step is known as pre-silicon

verification. With the rising trend in complexity of digital hardware, it has been

reported that as much as 70% of the product development cycle is spend at this time-

consuming step [21]. There are two types of pre-silicon verification techniques that

are commonly used: simulation-based approach and formal verification approach [22].

Event-based simulation techniques using functional simulators is a popular method

that models the dynamic behavior of the simulated circuits by loading the events one

by one and propagating them through the design. However, one key limitation of

all simulation-based techniques is the inability to guarantee that the design is 100%

error free. This is because with the large number of inputs in today’s designs, there

exist a large number of input enumerations that need to be applied to the circuit in

order to ensure that the design is error-free [23]. Therefore, it is sensible to prepare

testbenches that apply constrained-random stimuli to the circuit. The effectiveness

of these tests can be evaluated using several coverage metrics such as code coverage,

tag coverage [24], event coverage [25] and state-machine coverage [26]. In addition

to this, some monitors known as assertions are added to the design to check specific

properties that have to hold true indefinitely [27]. These assertions normally capture

high-level design properties that should be respected by the design, for instance a

request and acknowledgment relation in a data transfer protocol.

Formal verification on the other hand is concerned with mathematically proving or

6

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

disproving the correctness of a system with respect to certain specifications or proper-

ties [21]. Thus, formal verification performs an exhaustive exploration of all possible

behavior rather than an explicit enumeration of the possible behaviors as in func-

tional simulation-based approaches [28]. Formal verification methods can broadly be

classified into two categories: formal model checking and formal equivalence checking

[29]. The former uses mathematical techniques to verify behavioral properties of a

design and the latter uses mathematical techniques to prove equivalence of the design

under verification (DUV) to a reference design. With the rising interest in performing

formal verification, techniques for automating this process have evolved [30]. However

one should note that although formal verification can ensure complete design correct-

ness with respect to the given design properties without needing a testbench, the

design is verified against the specification from which the circuit model is extracted.

Therefore, if the specification is incomplete or has flaws, then the correctness of the

formal verification is compromised.

As mentioned before, although simulation is a must for functional verification

that helps with detecting the majority of bugs, it cannot provide 100% coverage of

the entire design’s state-space and hence, cannot ensure 100% design correctness.

This justifies the need for an extra step in the chip-design flow, called post-silicon

validation that is introduced in section 1.5 and detailed in chapter 2, to further

eliminate design errors before high-volume manufacturing. The contributions from

this thesis are placed within the context of post-silicon validation.

7

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

1.4 Manufacturing Test

Manufacturing test is an important phase in chip design flow that checks the manu-

factured circuits against the implementation to detect physical defects that can cause

the circuit to malfunction [31]. During manufacturing test, different input vectors

are applied to the circuit and the corresponding output responses are checked for

pass/fail analysis. The process of applying the set of input vectors to the circuit

under test (CUT) and the corresponding check against the golden model is normally

done by an automatic test equipment (ATE). There exists two types of tests for which

input vectors and corresponding responses are produced: functional test and struc-

tural test. During functional tests, the entire functionality of the circuit is tested.

For instance, an exhaustive functional test of a 64-bit ripple carry adder requires

2129 number of test vectors. Using an ATE that works at 1GHz, the complete test

requires 2.158 × 1022 years to finish [31]. Therefore, exhaustive functional test is

impractical. On the other hand, structural testing relies on the netlist structure of

the circuit. Different fault models are defined to guide the automatic test pattern

generation (ATPG) algorithms to be developed for test generation, application and

evaluation. Some common fault-models are single stuck-at, path-delay and bridging

fault models. The most commonly used one is the single-stuck at model where it

assumes a logic net to be stuck at logic value 0 (s-a-0) or stuck at logic value 1 (s-a-1)

[32]. To compare this with functional testing, when using the single-stuck at fault

model for the 64-bit ripple-carry adder, only 1728 stuck-at faults would need to be

evaluated with 1728 test patterns in the worst-case [31].

For modern large and complex VLSI designs, it is very common to have some

internal state signals that cannot be easily controlled by primary inputs. Therefore,

8

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Combinational network

D Q D Q D Q1

0

1

0

1

0

Scan-Chain 1

Scan-Chain 2

Scan-Chain n

Circuit Under Test (CUT)

scan_enable = 0

functional input

functional output

functional input functional output

functional outputfunctional input

(a) Functional mode.

D Q D Q D Q1

0

1

0

1

0

Scan-Chain 1

Scan-Chain 2

Scan-Chain n

Circuit Under Test (CUT)

scan_enable = 1

scan input

scan output

scan input scan output

scan outputscan input

Combinational network

(b) Scan mode.

Figure 1.3: Scan-chain architecture for manufacturing test

9

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

to improve controllability and observability of the internal nodes, design for testability

(DFT) circuitry is employed. The most commonly used DFT methodology is the

scan-based DFT where all or part of the internal state-elements (i.e., flip-flops) are

replaced with scan flip-flops (SFFs). A SFF is a flip-flop which has a multiplexer at

its input. During normal operation, the enable signal of the multiplexer is at logic

0 and the data flow is done normally as shown in Figure 1.3a. On the other hand,

during the test mode, the scan enable will be set to logic 1 and the SFFs form a shift

register structure known as a scan-chain, as shown in Figure 1.3b. Input test vectors

are serially shifted into the scan chain and the circuit response is analyzed at the

output of the scan chain [31]. Since internal nodes can be controlled and observed

using this method, the test generation can be done using a combinational ATPG tool

which is simpler than a sequential ATPG. Hence, a number of studies on improving

scan chain structures have been proposed in the literature [33, 34, 35].

Although manufacturing test is a key step in accelerating yield ramp-up that

grantees product quality, it cannot detect errors that have escaped pre-silicon verifi-

cation and are of design nature rather than manufacturing detect. As stated earlier,

manufacturing test, verifies the fabricated circuit against the implemented design and

relies on the circuit netlist as the reference model. Therefore, design errors that have

escaped pre-silicon verification also exist in the netlist and cannot be detected by

manufacturing test. Post-silicon validation is a complementary step whose focus is

on detecting those bugs that have still remained undetected.

10

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

1.5 Post-Silicon Validation

As stated in section 1.3, although pre-silicon verification offers full controllability and

observability, it is known to be considerably slow when compared to the real-time ex-

ecution; for example, register-transfer level (RTL) simulation speed is approximately

6 orders of magnitude slower than the execution speed in silicon prototypes [36].

Considering the rising trend in the size and complexity of modern designs, functional

verification might require tens and even hundreds of person-years and the computing

power of thousands of workstations [37]. Employing server farms in this step requires

huge amount of energy and time for simulating different aspects of design, but even

then, due to limited number of simulation cycles and state space explosion, certain

aspect of the design cannot be verified in an acceptable practical time [36, 37]. In

addition to this, in spite of all the verification efforts that are carried out before man-

ufacturing, errors are still discovered in around two thirds of the silicon prototypes

[38]. If SoCs that contain undiscovered subtle errors are delivered to the market and

subsequently malfunction at some point during their operation, the outcomes will be

unexpected and can impose significant operational and financial burden on the man-

ufacturer, example of such is the Cougar Point SATA bug in Intel’s Sandy Bridge

chipset [39].

Due to lack of accurate delay timing models in pre-silicon verification, the correct-

ness of timing characteristics cannot be ensured. Despite the availability of accurate

tools that evaluate electrical features of the design such as crosstalk, certain electrical

characteristics cannot be ensured due to the slow nature of simulation techniques to

model these effects. When combining the above constraints with tight time-to-market

windows, it is common practice that designs are taped-out whenever the verification

11

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

confidence is deemed sufficient. Though before committing to high-volume manufac-

turing, some verification steps have to continue on the prototypes, a task commonly

referred to as post-silicon validation (also called silicon debug[40][41]). Post-silicon

validation is a complementary step after pre-silicon verification that can account for

up to a third of the development time for a new design [38] and allocation of significant

financial resources [42].

Although both post-silicon validation and manufacturing test deal with the man-

ufactured chips, one should note the fundamental differences between the two. As it

was articulated in section 1.4, manufacturing test is concerned with the detection of

fabrication defects for every single fabricated chip. On the other hand, post-silicon

validation aims to check the design correctness rather than the imperfections in the

manufacturing process. Instead of validating all the manufactured chips, a few proto-

types are selected and a large number of validation tests, ranging from random input

sequences to end-user applications, such as operating systems, computer games or

scientific applications, are applied to the silicon prototype and its behavior is mon-

itored at runtime for unexpected events, such as system crashes or incorrect results

[42].

There are two main types of design errors (or bugs) that escape to silicon: func-

tional errors and electrical errors. Functional errors occur when the implementation

deviates from the specification, e.g. the condition for a state transition was incor-

rectly described in the RTL code [43]. Electrical errors, on the other hand, are caused

by subtle interactions between the design and the electrical state of the system, such

as power supply noise or thermal effects [44]. Due to the approximations used in

circuit-level modeling, as well as the computational requirements needed to account

12

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

in sufficient detail for the device physics, it is difficult to discover all the electrical

errors before tape-out. Therefore, they are the dominant type of design errors that

escape to silicon. They emerge at apparently random times under unique and dif-

ficult to reproduce conditions. For instance, a sub-block of a circuit might exhibit

faulty behavior only at a certain working temperature due the variations in power

supply. This means that even if there exists a mechanism for controlling certain op-

erating conditions such as the temperature, the electrical errors that occurred at a

specific temperature might not be easily reproduced as there are many factors that

contribute to the emergence of the error. These subtle electrically-induced errors

commonly manifest in logic domain as bit-flips in flip-flops [44, 45].

It is important to stress that, unlike fault-tolerant mechanisms that are focused

on fault containment and recovery [46], post-silicon validation aims at detection and

localization of such errors. Subsequently, once the bug has been identified, steps can

be taken in order to determine if it can be repaired[47], corrected by using software

patches[48] or sent for a costly re-spin.

Limited observability makes error detection and localization cumbersome. Many

design for debug (DfD) architectures and methodologies have been proposed to im-

prove internal observability. For instance, embedded logic analysis [38] is used to

record data on on-chip trace buffers. The collected data can then be transferred into

the simulation frameworks for post-processing in order to locate the error. Another

example is the method presented in [49, 50] to record instruction footprints for mi-

croprocessors. In all these methods, since the traces that are acquired on-chip are

constrained in depth, it is critical to detect bit-flips within a small number of clock

cycles after their occurrence in order to confirm that the recorded data on the trace

13

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

buffers is relevant to the root cause of errors, both in terms of time and location

of occurrence. For instance, as stated in [51], a chip with roughly 200,000 flip-flops

running at 100 MHz can easily creates 20,000 Gigabits of information per second.

Dumping this information in real-time for offline processing is impractical.

To reduce the error detection latency, which is defined as the amount of time it

takes for an error to cause an observable failure, system-level methods have been in-

vestigated [5]. The core idea from [5] is to detect errors rapidly using time-redundant

execution, which is diversified and combined with fine-grained checking. The trans-

formation of validation tests is done in a systematic manner, nonetheless the method

has been architected for, and hence restricted to, microprocessor-based designs. A

more detailed explanation of the idea in [5] is discussed in chapter 2.

A fundamentally different, yet effective and promising direction of research for

reducing detection latency, which is generic and not dependable on type and op-

eration of circuit blocks, is to rely on embedded hardware monitors for run-time

property checking. Assertions are properties that must be satisfied during circuit’s

operation[27] and are extensively used for detection and localization of bugs during

the pre-silicon phase, known as assertion-based verification[52, 53, 54]. For instance,

it has been reported that during pre-silicon verification of an industrial project, 85%

of bugs were discovered using assertions [27]. In chapter 2, we will discuss assertion-

based verification in more detail and provide an overview of how hardware assertions

can be used in post-silicon validation. The latter provides the core information for

the contributions of this thesis.

14

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

1.6 Contribution and Organization of the Thesis

Although using assertions in hardware enables the real-time checking for any circuit

block, as it is the case during the pre-silicon phase, crafting these hardware assertions

based on design functionality, rather than its structure, makes it difficult to assess

how many of the potential bit-flips are monitored during a validation session. In this

thesis, we propose several methods with the objective of identifying assertions that

are most suitable for post-silicon validation.

Chapter 2, provides a more detailed discussion on background information and

prior works in post-silicon validation with special focus on reviewing techniques for

improving the error detection latency in post-silicon validation.

Chapter 3 introduces our proposed systematic methodology that automatically

selects a subset of assertions for the purpose of detecting bit-flips in flip-flops during

post-silicon validation. As part of our methodology, we have designed algorithms

to rank assertions based on their potential to detect bit-flips. We have introduced

two quantitative metrics: 1) the bit-flip coverage estimate and and 2) the flip-flop

coverage estimates which can be used to assess the quality of the selected assertions.

As at the time of writing this thesis, there is no well-defined and universally accepted

coverage metric in post-silicon validation as opposed to pre-silcion verification (e.g.,

code-coverage) and manufacturing tests (e.g., stuck-at-fault coverage), introduction

of these two metrics is a step forward towards establishing a unified metric. The

contributions from this chapter appear in [55] and [56].

One of the shortcomings of the methodology that is introduced in chapter 3 is the

fact that the evaluation of the potential of assertions is carried out in a simulation-

based environment. Since post-silicon validation runs at silicon speed, closing the gap

15

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

between the slow simulation speed and the fast silicon speed is of crucial importance.

One common way to do this is to use Field Programmable Gate Arrays (FPGAs)

as the intermediate platform [57, 58, 59]. Hence, in chapter 4, we will introduce a

fully automated methodology that generates emulation-ready architectures that can

automatically be integrated in the tool flow that is presented in chapter 3 to improve

the accuracy of selection and assessment of hardware assertions. We will show that

by incorporating emulation in our flow, the flip-flop coverage estimate (introduced in

chapter 3) is improved on average from 38% (5 error injection) to 49% (5000 error

injection). This improvement is largely due to using emulation that facilitates the

discovery of more accurate relationships between assertions and flip-flops that can be

covered by them. The contributions from this chapter appear in [60] and [61].

Finally, it is worth noting that, one of the main challenges that was faced during

this work was the quality of the assertions in terms of detecting bit-flips in multiple

flip-flops. As it will be elaborated in detail in chapters 3 and 4, GoldMine [62, 3,

63] was used as the assertion generation tool in the first two contributions of this

work. The machine learning approach in GoldMine which is based on the simulation

traces is not intended on generating assertions that specifically target post-silicon

validation. Since post-silicon validation is done after the design is taped-out and the

netlist is ready, the automatic assertion generation tool should ideally be based on

the structure of the netlist without relying on the simulation traces. In addition, we

realized that the internal mechanism of Boolean Satisfiability Solvers (SAT) which

will be discussed in detail later on, can be leveraged to extract relevant information

from which hardware assertions can be implied. Hence in chapter 5, we present a

fully automated SAT-based methodology for fast generation of assertions by using

16

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

the built-in pruning mechanisms within SAT solvers, namely learned clauses. These

assertions are evaluated for their potential to detect bit-flips using a new incremental

SAT-based approach. In addition to speeding-up the simulation-based approaches

for assertion generation and evaluation, when compared to the known art, our results

show improvements in both the number of flip-flops that can be covered for bit-flip

detection, as well as for the on-chip area for the bit-flip detection unit.

Finally in chapter 6, we summarize the technical contributions of this thesis and

provide possible directions for future research.

17

Chapter 2

Background and Related Work

Unlike pre-silicon verification and manufacturing test that have benefited from many

improvements in the tool flow and algorithmic methods which has gradually resulted

in development of mature automated methodologies, post-silicon validation is still

relying on ad-hoc methods with a few automated methodologies that are available

only for specific application domains such as validation of microprocessor designs

[5, 49, 50]. However in modern designs, there are many complex digital blocks which

are not fully controllable/observable by microprocessors, yet there are no systematic

methods to validate them. Hence, the contributions from this thesis aim to address

this issue.

As seen in Figure 2.1, post-silicon validation can be divided into sub-areas. In

this chapter we provide relevant background information regarding stimuli-generation

which is focused on the controllability, root-cause analysis which belongs to the error

localization, and finally error detection, which tackles the limited observability and

is the main focus of the contributions from this thesis.

18

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Post-Si Validation

Error Detection
Stimuli

Generation
Error Localization

Controllability Observability Root-causing

Figure 2.1: Different sub-areas in post-silicon validation.

2.1 Controllability

The term controllability which is frequently used in digital verification is conceptually

derived from the same term used in control theory [64]. It is essentially concerned

with applying a set of controlled input vectors that push the circuit into a desired

state. Therefore, before discussing the methods used for stimuli generation in post-

silicon validation, a quick review of the same practice in pre-silicon validation would

be provided.

2.1.1 Stimuli generation in pre-silicon verification

As discussed in section 1.3, functional simulators are used during pre-silicon verifi-

cation stage. In order to verify the functionality of the design-under-test (DUT), a

large set of input vectors are applied to the design and the design’s response is checked

against the expected results based on the specification from which the implementation

19

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

is based on. Depending on the functionality of the DUT, the stimuli can be an exe-

cutable program for microprocessors, protocol-specific data packets or digital sample

models for digital signal processing blocks. The stimuli can be manually prepared to

check a specific feature of the design by guiding the circuit to a very specific state and

check certain features, a method that is commonly referred as directed tests[65, 66]

or could be automatically generated based on some constraints to produce valid and

functionally compliant inputs to help uncover unforeseen problems (constrained ran-

dom tests) [65, 67, 68]. The randomization is based on the constraints written in

hardware description languages that are supported by most commercial simulators.

The quality of the stimuli generated from either of these two methods is assessed using

coverage metrics such as code coverage (statement coverage, branch coverage, etc.,)

[24, 69, 70, 71, 72] which can provide useful feedback to the quality of the applied

input vectors.

2.1.2 Stimuli generation in post-silicon validation

Similar to the pre-silicon verification, using directed tests to validate the functionality

of the circuit under validation (CUV) requires the test cases to be tightly coupled with

the design functionality which results in poor re-usability from one design iteration to

another. To address this inflexibility, one can use randomly generated inputs that are

constrained to be functionally compliant. During post-silicon validation, a large num-

ber of these constrained random sequences are applied to the design in order to detect

design errors that have escaped pre-silicon verification and appear in silicon proto-

types [73, 44, 74, 75]. Since due to bandwidth limitations, it is impractical to transfer

20

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

the generated random input sequences in software to the hardware prototype, dedi-

cated architectures must be developed for on-chip generation of constrained-random

input stimuli for post-silicon validation. Several methods have been provided for

microprocessor-based designs such as using instruction-level templates to guide the

sequence generation [76, 74] or generating executable machine code that stresses the

block under validation [50, 49]. In addition some recent research works have focused

on addressing the issue of random generation of constrained inputs for generic digital

blocks (e.g., video codecs, power management units etc.) [77, 78, 79]. The specific

details of the above-mentioned methods are beyond the scope of the work from this

thesis, which is focused on improving error detection. The interested reader can refer

to the several references that were provided in this section.

2.2 Observability

Similar to the controllability discussed in the previous section, observability is also

derived from concepts in control theory [64]. It is concerned with ensuring that the

response of the circuit is consistent with the expected results that are based on the

specification. Since some of the methods that are used in pre-silicon verification can

also be adopted for post-silicon validation, some known methods that are used in

pre-silicon for improving observability are discussed in section 2.2.1. Afterwards, a

discussion on the prior works in this area for post-silicon validation is provided, which

helps position the contributions from this thesis.

21

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

2.2.1 Observability in pre-silicon verification

Traditionally, the response from a reference model, known as Golden response was

used to compare the observed output while applying the input sequences. However,

even in cases where the observed response (typically at primary output) is identical

to the golden response, it is not guaranteed that the internal signals of the design

would hold the correct value [80]. This is because some errors could be masked before

reaching the primary outputs. While it is possible to refine the reference model to

account for internal signals, this would make the process slower to the point where it

becomes practically infeasible to compute the golden response [80].

Another technique that has been commonly adopted over the past decade is to use

assertions during pre-silicon verification which is known as assertion-based verification

(ABV) [81, 82, 27]. As it will be discussed in detail in section 2.3, assertions are

properties that need to be hold true indefinitely [27]. These properties are derived

based on the specification and are independent from the specific implementations.

This means that an exhaustive set of assertions that cover different requirements of the

specification can be used when a large number of constrained-random input sequences

are applied to the circuit during which the assertions should not violate. Should an

assertion be violated, it represents an underlying problem in the implementation or

an ambiguity in the specification which needs to be corrected. Information from a

violated assertion further improves the internal observability in pre-silicon verification.

2.2.2 Observability in post-silicon validation

Unlike pre-silicon verification that offers the inherent ability to probe all the internal

signals using functional simulators, observability is known to be one of the difficult

22

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

challenges in post-silicon validation due to the limited access to the internal signals

of the manufactured hardware prototypes. Physical probing of the internal signals

has been introduced as a method to address this issue by probing the internal signals

and post-processing the acquired data to find out the root-cause of the problem

[83, 84, 85, 86]. However, due to the complexity of the modern ICs, a localization step

needs to preceded the failure analysis. This localization step will determine the subset

of the internal nodes that need to be physically probed to enable root-case analysis

by correlating the simulation data with the observed data on silicon (I/O ports,

internal nets) [87]. This is achieved by adding Design-for-Debug (DFD) structures

to capture the internal states of the circuit under validation (CUV). In section 2.4,

a detailed discussion of the some of the well-known DFD structures that are used

to facilitate internal state dumps will be provided. Nevertheless, all these methods

start to dump the internal data when a malfunction has been observed e.g., a system

crash. Therefore, these DFD structures become unsuitable for providing relevant

information for pin-pointing the subset of the design where the error has initiated

from if the errors manifest after a long period of operation [88]. Hence, the latency

from the time the error has been sensitized to the time the state is dumped, namely

error detection latency must be minimized. Facilitating automated methodologies to

design DFD blocks that detect errors as soon as they occur is the main motivation of

the contributions of this thesis. Hence, in section 2.5, some of the recent efforts that

are available in public domain which address the problem of reducing error detection

latency are discussed and the preliminary background regarding the idea of using

hardware assertions for reducing error detection latency in post-silicon validation is

provided.

23

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

2.2.3 Root-cause analysis

Across both the pre-silicon verification and post-silicon validation stages, once an

erroneous behavior is identified, the quest for finding its root-case begins [89]. Fol-

lowing to the detection of an error, the sequence of stimuli that has been applied to

the CUV as well as the traces that have been collected from the internal nodes are

analyzed to diagnose the errors. This can involve the iterative process of reproducing

the suspicious events and analyzing the CUV’s response until the error is isolated. At

this stage, some pre-silicon verification techniques can be reused to aid the diagnosis.

For instance, pre-silicon simulation tools can be fed with captured traces to replay

the erroneous behavior [90]. In addition, formal methods can be used to identify the

root-case of the error [91]. As stated earlier, root-cause analysis is an important step

that is the key to identifying the culprit of errors that have been detected. However,

the detailed discussion of the state-of-the-art methods and techniques in this area are

out of the scope of this work and the interested reader can refer to [89, 90, 91, 92, 93].

2.3 Assertion-based verification

As it was mentioned in section 2.2.1, assertion-based verification (ABV) is used as

one of the key methods to improve observability during pre-silicon verification stage.

An assertion (also known as an invariant) is a behavioral statement that can be

used in any of the following scenarios [94]:

• A specification that outlines the required behavior.

• A statement that determines the assumptions about the system inputs.

• A formal statement that can be checked using formal verification tools.

24

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

• An active element that can check for design errors during simulation.

• A series of statements that determine the interface specifications for Intellectual

Property (IP) reuse.

• An item for determining coverage in pre-silicon verification.

• An item in the verification plan.

Therefore, an assertion is a description of the design property which needs to

hold true indefinitely. A good comprehensive set of assertions can be considered

as comments on the partial expected behavior of the design which can serve as a

potential documentation of the target designs [95].

There are two commonly used languages for describing assertions: Property Spec-

ification Language (PSL) and System Verilog Assertions (SVA). Figure 2.2 shows an

example of a SVA and a PSL property that assert the the following property: when

the active low reset signal (reset_n) is 1 and the request signal (req) is also 1, the

acknowledge signal (ack) should become 1 in the next rising clock edge.

assert always (req ->next ack) @(posedge clk) abort !reset_n;

PSL

assert property @(posedge clk) disable iff (!reset_n) req |=> ack;

SVA

Figure 2.2: An example of a PSL and a SVA assertion describing an identical behavior.

It is important to note that an assertion does not contribute to the circuit that

is being designed but rather is a mechanism to ensure that the final design meets

its intended behavior. When an assertion fires, it provides useful information about

25

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

when and where the property is violated and what has been the sequence of events

that pushed the circuit to the point where a property was violated. Since the as-

sertions normally contain internal signals as well as primary inputs and outputs, the

observability in case of an error is improved. ABV’s effectiveness in detecting errors,

specially those that are triggered in subtle corner-case conditions have lead to its

adoption in practice. For instance, statistical results from an industrial project shows

that up to 85% of bugs were detected using assertions [27].

Traditionally assertions have been developed by design and/or verification engi-

neers which clearly imposes significant burden to write comprehensive assertions that

cover all different angles of the functional behavior of the design. This effort be-

comes a daunting task when there is a change in the specification or implementation

that requires all the pre-developed assertions to be revisited. Therefore, similar to

the different phases of the design flow, having automated methodologies for gener-

ating assertions would be very beneficial. There has been a number of studies for

automatic generation of RTL assertions that are pervasive and independent from

designer’s knowledge of the design. Authors in [2] introduce an automatic tool for

Implementation of Dynamic Invariant Extraction, hence the name IODINE, to infer

likely invariants based on the design’s simulation traces. The IODINE framework

is shown in Figure 2.3. The design is initially simulated using extensive random or

direct tests and the simulation data is extracted in a format such as Value Change

Dump (VCD) that is independent from the HDL language used for implementation.

It is assumed that the simulation traces are extracted from a test which is known

to pass to ensure that the invariants are inferred over the correct functionality of

the design. The analyzer considers the simulation dumps and uses a process that

26

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Simulation
Dumps

Analyzer

Invariants

Database

ComparatorDatabase
Input

GUI

Model checkers

Figure 2.3: IODINE Framework [2].

determines some common signal relations such as OneHot analyzer for finding a set

of signals that are one-hot (only one signal is 1) or one-cold (only one signal is 0),

Mutex analyzer which finds signals that are mutually exclusive and State analyzers

which record state transitions based on visited states and conditions for transitions.

The set of approved invariants are added to the database input and the newly found

invariants can be compared against the older ones using the provided GUI interface.

Although this method provides automatic extraction of properties, it’s limitation in

terms of covered behaviors in the analyzer as well as the dependency on tests that

need to be checked for correctness make it un-scalable for designs that are constantly

changing.

In a different study, authors in [96] provide a methodology that uses the already

verified invariants to produce more complex set of invariants. Similar to IODINE,

the properties are generated based on a snapshot of simulation traces. The process

of generating the properties has multiple phases. At the first phase, a set of basic

properties are searched and added to the database. In the following phases, these

27

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

properties are used for developing more complex properties that cover more functional

space of the design. The process continues until no further property is found. Yet the

limitation of this methodology is also on the limited operators that are supported.

Based on [96], the supported checkers are from Open Verification Library (OVL)

standards and are limited to OVL Increment, OVL OneHot, OVL Handshake and

Req-N-Grant.

The work in [95] introduces an interesting approach in using Quantitative Boolean

Formula (QBF) solvers [97] based on analyzing formulations from Look Up Tables

(LUTs) inserted in circuits that are solved using incremental Boolean satisfiability

solvers [98]. Signals from different parts of the design are selected and passed to

LUTs of different size to see if a logical relationship can be inferred in between these

signals. As mentioned in [95], this synthesis problem can be formulated as QBF

which is essentially the same problem as logical debugging introduced in [99]. As

authors have also mentioned, although this work provides a promising direction for

using Boolean satisfiability solvers for automatic generation of hardware assertions,

the set of inferred assertions are found between a set of pre-given signals. In order to

avoid random selection of these signals, heuristic algorithms needs to be developed

to carefully choose a subset of signals for which the inferred assertions would target

a specific goal.

A more recent work on automatic hardware assertion generation is GoldMine

[3, 62] and its framework is shown in Figure 2.4. GoldMine uses data mining and

machine learning algorithms to produce likely invariants that can be verified using a

formal verifier that dismiss the wrong invariants. As shown in Figure 2.4, the design

(RTL or gate-level format) is fed to the static analyzer and the data generator blocks.

28

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

The static analyzer extracts information from design that can aid the mining engine

to reduce the chance of false positives. The static analyzer tool used in GoldMine is

a cone of influence technique to select a set of feature variables for a given target

variable. Since data mining relies on statistical methods to infer relationships, one

variable can be associated with another variable even though the second variable

cannot affect its value. By using the static analyzer, this problem is eliminated.

The data generator box simulates the design using random inputs with some con-

figurations such as the number of clock cycles for which the design is simulated. In

case the simulation traces has been pre-computed based on a specific functional sce-

nario, the data generator step can be bypassed and the simulation traces in the VCD

format is provided to the mining engine. The mining engine searches the simulation

traces to infer relationships between the feature variables and target variables. It has

different mining algorithms such as Decision Tree, Decision Forest, Prism and Cover-

age Miner. Details about the specific details of the algorithms are out of the scope of

this thesis and one can refer to [3] for more information. Finally, the formal verifier

will use a commercial formal verifier (Cadence Incisive formal verifier [100]) tool to

ensure the correctness of the likely invariants. In addition, for false invariants, the

counter examples can be fed back to the miner to refine the simulation traces. The

Data Generator

Static Analysis

Mining Engine Formal Verifier
Simulation

Traces

Likely
Invariants

True
Invariants

Feasible static
execution tracesDesign

Config

Counter
Examples

Figure 2.4: GoldMine Framework based on [3].

29

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

invariants that are confirmed by the formal verifier can then be used for pre-silicon

verification purposes or as it will be shown in the first two contributions of this thesis,

for post-silicon validation purposes. While GoldMine provides useful invariants that

can be used for regression and provide feedback on the quality of the input stimuli

based on analyzing the number of times each assertion is exercised, its dependency on

simulation traces makes it susceptible to finding trivial assertions in case the simula-

tion traces do not cover a wide range of functional aspects of the design. As it will be

discussed later in chapter 5, this is a significant drawback for post-silicon validation

and is one of the motivating factors for our proposed methodology for automatic gen-

eration of hardware invariants that are tuned for post-silicon validation. In addition,

using a two-step methodology which relies on using a formal verifier at the second

phase further aggravates the limitations of the tool.

In this section, we reviewed some of the state-of-the-art automatic assertion gen-

eration tools and discussed their limitations. In the following sections, we will show

some of the common methods to improve observability in post-silicon validation

within which the idea of porting assertions to post-silicon validation to improve the

internal observability is introduced.

2.4 DFD structures to improve observability

As it was discussed in the earlier sections, unlike pre-silicon verification which benefits

from significant flexibility in observing internal signals via probing internal signals or

by using assertions, internal observability is one of the most difficult challenges in

post-silicon validation. Hence in this section, we review the existing methods to

address this problem.

30

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

2.4.1 Scan chain-based technique

The main idea in scan chain-based techniques is to reuse the internal scan chains

that are available as the most widely used structures to increase observability during

manufacturing test [101, 102]. Though, the scan structure must be modified to allow

the scan infrastructure to support three basic features: scan for access, breakpoints

and clock control. As explained in section 1.4, scan flip-flops (SFFs) are connected

together to form a shift-register structure called a scan chains. During test mode,

the data vectors are shifted into the scan chains through the scan input pin and the

circuit response is shifted out through the scan output pin for pass/fail analysis as

shown in Figure 2.5. On the other hand, during post-silicon validation, functional

data must be supplied to the circuit under validation (CUV). Therefore, the access

mechanism of the scan infrastructure must be modified as shown in Figure 2.5. As it

can be seen, the scan chains are connected together to form a single long scan chain

and the access to the chain is done through low bandwidth dedicated pins such as the

test data input (TDI) port of the JTAG interface [103]. It is important to note that

this approach is commonly used when low cost debug equipments are employed. In

case of using more advanced debug equipments with the ability to control multiple

scan-chains, the choice to tie all scan chains together can be avoided.

Due to the fact that it will take multiples of clock cycles to offload the data from

SFFs, by using the scan chain structure, the data should only be inserted into the

scan chain when a particular event of interest has occurred. The consecutive data ac-

quisition can start after the current data in scan chain has been completely offloaded.

One additional hardware structure that can be inserted in the CUD to indicate a

single event from which the acquisition should start is called the breakpoint control

31

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Scan chain 1

Scan chain 2

Scan chain n

1
0

1
0

1
0

Contact = 0

Input 1

Input 2

Input n

TDI
Output 1

Output 2

Output n

Scan access during manufacturing test

TDO

Scan chain 1

Scan chain 2

Scan chain n

1
0

1
0

1
0

Contact = 1

Input 1

Input 2

Input n

TDI
Output 1

Output 2

Output n

Scan access during post-silicon validation

TDO

Figure 2.5: Differences in scan architecture in manufacturing test and post-silicon
validation [4].

unit. It is usually built with comparators that monitor a set of trigger signals e.g.,

program counters or internal instruction/data buses [104]. When the value of the

signals coming from the CUD matches with the breakpoints conditions, the break-

point flag is raised. During post-silicon validation, the breakpoint controller can be

configured using a serial interface such as JTAG [103] such that different scenarios

are covered.

When the breakpoint flag is raised, the circuit operation must be stopped to pre-

serve the current state of operation. This can be facilitated by creating a gated clock

unit which provides different clock signals depending on the mode of the operation

as shown in Figure 2.6. In the halt mode, the breakpoint condition has been reached

and the on-chip clock is stopped. In the scan mode, the debug clock is passed to

the gated clock output for loading the scan chains shown in Figure 2.6. Likewise,

in single step mode, a single clock pulse is generated at a time to step through the

normal execution of the chip. Clearly, during the functional mode, the output of the

32

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Mode Functional Halt Scan single Step

Functional clk

Trace/Debug clk

Reference clk

Halt

Scan

Single step

Gated clock

a

c

e

b d f

Page 1 of 1

04.01.2017file:///C:/Users/ptaatiza/AppData/Local/Temp/wavedrom.svg

Figure 2.6: Clock control timing diagram for different operation modes.

gated clock must be the same as the on-chip clock.

Despite of some proposals for improving scan chain-based methods for improving

observability, the main drawback of using this technique is the fact that during post-

silicon validation, the circuit has to be stopped when offloading the data from the

scan chains which means that it is not feasible to acquire data in real-time. As stated

before, some logic bugs manifest after thousands of clock cycles [105] which makes

those methods which do not halt the circuit operation more favorable. Although this

can be done by double buffering the scan elements, the resulting area overhead might

be unacceptable in practice [106]. Even in the case where this penalty is acceptable,

data sampling in two consecutive clock cycles would not be possible because multiple

clock cycles are needed to scan out the acquired data in the shadowed buffers. The

ability for continuous data acquisition is an important requirement for isolating errors

that manifest over a large number of clock cycles.

33

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

2.4.2 Trace-based technique

The motivation for using trace buffers stems from the fact that the circuit execution

does not have to be interrupted which enables real-time data acquisition [107]. The

idea has been successfully used in microprocessors and embedded systems to enable

software debug [108, 109, 110]. An interesting point to mention is that the bug

hunting during post-silicon validation which is essentially hardware debug, follows

a similar approach in that the debug process involves analyzing data that has been

acquired after a specific event has occurred. Therefore, logic analysis has emerged as

a practical method for the debug of microprocessors [111, 112], FPGAs [113, 114, 115]

and complex SoCs [38, 116, 117].

By using logic analyzers, the acquired data can be extracted through the circuit

pins by using external logic analyzers. However, with the constant increase in de-

sign complexity, logic-to-pin ratios would also rise which suggests the functionality

provided by the external logic analyzers should be embedded into the design.

Figure 2.7, represents an example of en embedded logic analyzer (ELA) architec-

ture. The ELA can be categorized into 4 different units: control unit, sample unit,

offload unit and the trigger unit. The latter is of particular importance to the work in

this thesis as the contributions provided are placed into this trigger unit. The control

unit is composed of a finite-state machine (FSM) with a programmable register bank

that can be modified through a serial interface. The control unit is responsible for

facilitating different trace acquisition sessions, choosing the events and initiating the

data offload. The sample unit is controlled by the control unit and stores traces from

a set of trace signals into embedded memories that are clocked similar to the host

clock. The serializer unit reformats the data in such way that they can be transferred

34

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

via low-bandwidth device pins. Finally, the trigger unit is responsible for monitoring

the trigger signals through one or multiple event-detectors and communicate with

the control unit when an event of interest occurs after which the control unit would

organize the offload sequence of traced data through the serializer in offload unit. The

design of the ELA unit is done at the chip design phase at which time the decisions

about the type of the event-detectors, signals that are connected to the trigger unit

and the sample unit etc., are made. Once the chip is brought up during validation,

the ELA will work at the same time as the host during which it offers real-time mon-

itoring of the behavior. Should an abnormality happen, the traced data in embedded

memory buffers will be offloaded and analyzed at the root-case analysis phase. The

detailed discussion of the different components of the ELA unit is out of the scope

of this work and the interested reader is referred to [107, 4, 118]. Since the contri-

butions of this thesis are placed within the scope of the trigger unit which enables

C
o

n
tr

o
lle

r

Event register

Trigger Unit

Event detectors/sequencer
Trigger Signals

Sample Unit Offload Unit

Trace
Buffers

Serializer

Serial Interface

Low-bandwidth
device pinsTrace Signals

Figure 2.7: Example of an embedded logic analyzer unit introduced in [4].

35

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

event-detection, a brief review of some of the known works in this area with their

pros and cons are explained in the next section.

2.5 Event detection

Event-detection as the core of the trigger units is an important part of the ELAs. An

efficient event-detector will detect errors as soon as they occur so that the content of

the trace-buffers are most relevant to the sequence of events that led to the error, hence

increase the chance of error localization at the root-cause analysis steps. There are

two fundamentally different approaches to accomplish error detection; a) by modifying

the validation tests and b) by adding on-chip hardware circuitry inside the ELA. The

former is detailed in section 2.5.1 and the latter in sections 2.5.2 and 2.5.3.

2.5.1 Quick error detection tests

A fairly recent work which offers error detection with little to none modification in

hardware is to modify the validation test cases in such way that the failures are

detected through the built-in fine-graded checking mechanism of the modified tests

[5, 119, 120, 121, 122]. The idea has been inspired from the concurrent error detection

in fault-tolerant computing [123, 124, 125] bearing in mind the distinct differences

between fault-tolerant computing and post-silicon validation which are 1) Unlike fault-

tolerant computing, there is no need for recovery from a fault in post-silicon validation

and 2) Performance penalties in the sense of execution time are acceptable so long

as it reduces the debug time which is the most time-consuming task in post-silicon

validation.

36

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

The existing validation tests can be modified to Quick Error Detection (QED)

tests in two ways as fully explained in [5, 121]. The first approach is to use Dupli-

cated instructions for validation as shown in Figure 2.8. As seen, this method works

Block 0

Block 1

Block n

Bug

Block 0

Block 0 duplicate
check

Block 1

Block 1 duplicate
check

Error observed

Lo
n

g
e

rr
o

r

d
et

e
ct

io
n

 la
te

n
cy

Bug

Sh
o

rt
 e

rr
o

r

d
e

te
ct

io
n

 la
te

n
cy

Original Code QED Code

Error
observed

Figure 2.8: Using duplicated instructions to shorten error detection latency which is
introduced in [5]

by duplicating each block of instructions and comparing their results immediately.

Instead of waiting until the error reaches an observable point (e.g., program crash),

the error detection latency in this case is defined as the sum of the time elapsed

between the start and end of a single block of instructions and the time it takes to

perform the check. The intrusiveness of the test, which is defined as the amount

of deviation in the execution behavior of a QED test from the original test can be

configured based on some parameters that can be used to modify when and where a

QED test is inserted. By using this method, half of the memory space and general

purpose registers are reserved for the original instructions and the other half for the

37

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

QED tests. Some special considerations for specific scenarios such as loops, condi-

tional statements etc., must be placed and the reader can refer to [5, 121, 120] for

more specific details.

Another approach for modifying validation tests to QED tests, as shown in Figure

2.9, is to use the Redundant multi-threading for validation transformation which is also

inspired from fault tolerant computing [126, 127]. Instead of executing the original

and duplicated instructions on the same thread, this approach executes the original

instructions on one thread and uses another thread for the duplicated instructions

as well as the check mechanism. Since the original block of instructions can be

independently executed on a separate core, using this approach will offer reduced

intrusiveness compared to the previous one. The error detection latency in this case

is bounded by the time for the main thread to execute a block of instructions plus

the delay it takes for the main thread to store the results and for the for the check

thread to perform the comparison. By introducing a FIFO to store the intermediate

results of the main thread, this approach can be modified to be a software-hardware

modification.

Nevertheless all QED-based approaches target designs that execute on machine

code and provide unclear support for peripheral units. Therefore, by using the ap-

proaches described in this section, one can significantly reduce the error detection

latency in microprocessor-based design where instruction code is heavily used. How-

ever, since today’s design contain many blocks that are generic digital blocks (video

decoder, power-management IC, accelerators, etc.,), the need for formulating a differ-

ent strategy for the validation of these blocks is justified. As it has been mentioned in

several places in this thesis, the contributions of this work target designing automated

38

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Original Code

A ← 0
B ← 1

Init:

Body:

K ← A op B
L ← A op C
store L

Main Thread

A ← 0
B ← 1

Init:

Body:

K ← A op B
L ← A op C
store L

ENQUEUE K
ENQUEUE L

Check Thread

A ← 0
B ← 1

Init:

Body:

K ← A op B
L ← A op C
store L

DEQUEUE K
CHECK K == K‘
DEQUEUE L
CHECK L== L‘

L K

Bug

OK

Error

Figure 2.9: Redundant Multi Threading QED Transformation introduced in [5]

methodologies that aim at reducing error detection latency for these generic blocks.

We will consider prior works in this area in the next two sections before discussing

the main contributions of this thesis.

2.5.2 Programmable trigger-units

One of the directions in using hardware-based trigger-unit architectures is to have pro-

grammable trigger units. Though, the platform on which the design is implemented

affects the way the trigger unit is designed. In FPGAs, the FSM and the glue logic

around it can be modified with respect to the trigger conditions [114] which enables

any trigger condition to be programmed. This gives the user the highest flexibility in

terms of programing different trigger conditions during post-silicon validation. There-

fore, so long as the recompilation time is reasonable, highest extent of flexibility can

be achieved. Quite on the contrary, since in application-specific integrated circuits

(ASICs), the design is manufactured in silicon, one will not have the ability to modify

39

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

the design with a different trigger condition for a different debug session. Instead, the

post-silicon engineer has to re-program the register banks in the control unit as well

as the event-registers shown in Figure 2.7 for a different debug session. Nevertheless,

the extent of events that can be programmed are limited. Therefore, to address this

limitation, the idea of programmable trigger units (PTEs) have been introduced in

[38]. A small portion of the logic with limited ability to program is placed inside the

ASIC in such way that the inputs to the PTE is a multiplexer network that is con-

nected to different set of trigger signals. The limited programmability, as explained

in [38] comes from the fact that only one FSM of certain type can be programmed

using the PTEs. Nevertheless, through a group of counters, timers and comparators,

more complex trigger conditions can be programmed to the ASIC.

Automated methodologies for design of trigger units have been introduced in order

to reduce the manual effort during post-silicon validation [38, 128]. For instance in

[128], the trigger conditions are formulated in concise descriptions. The automated

solutions can then analyze the triggers and map them to the available counters,

comparators etc., in the PTE unit.

2.5.3 Assertion-based trigger units

As explained in section 2.3, there is a rising trend in popularity of assertion-based

verification (ABV) in pre-silicon verification [27, 129, 130, 131]. During design veri-

fication, an assertion will fire if its corresponding property is violated. Yet the same

idea can be brought-in to post-silicon validation to ensure those properties hold dur-

ing at-speed circuit execution when a significantly larger volume of input stimuli is

40

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

applied. But, pre-silicon assertions in their original PSL or SVA format are not syn-

thesizable. Therefore, in recent years, a number of studies and projects have addressed

the problem of generating the hardware equivalent circuit of the pre-silicon assertions

[132, 133, 54, 134, 135]. This motivates the idea of embedding the hardware unit of

these assertions on-chip as on-chip assertion checkers.

For instance, in [136, 137] the synthesized assertion module is coupled with a so

called-assertion processor. They focus on how the circuit interacts with the assertion

processor but provide no detail on how the processor is embedded in the overall

chip architecture and how the external access to the assertion processor is enabled

[7]. In [138], a mechanism is explained on routing internal signals to the outside of

the chip to be monitored by an FPGA-based assertion checker, though this method

will be inefficient for state-of-the-art high-speed processors and SoCs. In a different

study[6], assertions were embedded on-chip in a reconfigurable block with a trivial

area overhead in order to facilitate the organization of different post-silicon debug

sessions in a time multiplexed manner as shown in Figure 2.10. Their results in a

case study on hardware implementation of a H.264 decoder show that by using their

proposed method, the error detection latency is reduced by 87 times. Needless to say,

this approach is only applicable when a reconfigurable block is available on-chip.

Authors in [7] introduce several architectures for integration of hardware assertion

checkers in SoCs that provide post-silicon debug support for both the scan-chain based

techniques and trace-based techniques. Their proposed architecture supports enabling

and disabling assertion checker units because when a SoC is shipped with embedded

assertions, it is not desirable for all the assertions to be enabled. The common user

of the SoC should might not be interested to be warned about different assertion

41

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Embedded
FPGA

DFD logic

D
eb

u
g

in
fo

SoC Design

Assertion violation

C
h

e
ck

e
rs

In

te
rf

ac
e

C
h

e
ck

e
rs

In

te
rf

ac
e

C
h

e
cke

rs
In

te
rface

C

h
e

cke
rs

In
te

rface

Figure 2.10: Using hardware assertion checkers with a centralized embedded FPGA
introduced in [6].

violations. In addition, in power-sensitive designs, the power dissipation associated

with the assertion unit is of great importance. However, when the SoC is sent back

to the manufacturer because of a defect, the debug engineers will try to reproduce

the problem by enabling the assertions. This control for hardware assertion checkers

using debug registers is shown in Figure 2.11. The debug registers form a chain that

is accessible via the Test Access Port (TAP) controller. Clearly, it would be more

efficient to group related hardware assertions together and control them with a single

debug register.

As mentioned before, the synthesized digital block of the assertions can be used

inside the trigger unit of an ELA to facilitate error detection. When an assertion is

42

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

TAP Controller

TAP Port

Assertion
checkers

Assertion
checkers

Assertion
checkers

Assertion
checkers

EN

EN

EN

EN

Figure 2.11: Debug control registers for enabling and disabling hardware assertion
checkers [7].

n to m converter (n >>m)

Debug
Trace

Module

Assr. 1 Assr. 2 Assr. n

Violationassr_data [m-1:0]

Other traced signals

To trace memory

Figure 2.12: Capturing violated assertions using debug trace [7].

43

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

violated, the recorded data on trace-buffers can be offloaded for root-cause analysis.

For instance, authors in [139] introduce a tool which generates hierarchical triggers

which also provides compact trace information for root-case analysis. However, as

stated in [7], one problem in most of the ELA based debug structures is the limited

amount of available trace memory as well as the width of the trace channel in com-

parison with the total number of assertions in design (hundred or even thousands).

Hence, assuming that there are n available assertions, it must be converted to a

assr data[m-1:0] signal that is compliant with the width of the embedded memory.

The n − to − m converter also provides a 1-bit violation signal that informs the

debug module that there is a violation in the assertions to start trace acquisition.

In all the above mentioned works, the assertions are normally generated manually.

This means that there is no automated methodology that systematically generates,

evaluates and selects hardware assertions checkers that can be embedded in the ELA

to enable error-detection. Therefore, through contributions of this thesis, we aim to

address this limitation.

2.6 Summary

In this chapter, an overview of the existing post-silicon validation techniques with the

main emphasis on real-time observability was provided. It was discussed that embed-

ded logic analyzers (ELAs) are one of the most widely studied DFD techniques to

improve observability and provide support for root-case analysis. As it was explained,

improving the trigger-unit in the ELA is of high importance. This is because of the

following two factors:

1. An efficient trigger unit must be able to detect as many errors as possible.

44

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

2. To aid root-cause analysis, the error detection latency must be kept short in

order to record relevant data to the error occured in the embedded trace mem-

ories.

It was shown that assertion-based debug has become a popular method for design

of DFD blocks. In particular, hardware assertions can be used as on-chip monitors in

the event-detection unit of the ELAs. Though, little information is available in the

public domain regarding the automatic extraction of these assertions from the netlist.

Since post-silicon validation is performed after the netlist of the design is ready, de-

signing automated methodologies that can identify hardware assertions based on the

structure of the circuit would be very beneficial. Hence, in the remaining chapters

of this thesis, the three contributions will focus on crafting automated methodologies

for designing embedded architectures that rely on hardware assertions, that are au-

tomatically generated based on the design netlist, for detecting errors in post-silicon

validation. In section 3.1.1, we will discuss in detail the motivation behind using

hardware assertions for detecting errors that commonly occur in post-silicon valida-

tion.

45

Chapter 3

Automated Design of Embedded

Bit-flip Detectors

As mentioned in chapter 2, to increase the relevance of the recorded data in the trace

memories of embedded logic analyzers with the errors, the error detection latency

must be minimized. In this chapter of the thesis, we will first introduce our proposed

systematic methodology in section 3.1 that is used for automatic selection of hardware

assertions that can be used to improve observability as well as reducing error detection

latency. We will then define two quantitative metrics in section 3.1.6 that can be used

to assess the quality of the selected assertions in detecting bit-flips in flip-flops. A

heuristic algorithm is the integral part of the methodology which is fully detailed for

both coverage metrics in section 3.2. We will then provide experimental results that

discuss our findings regarding the introduced coverage metrics as well as the resulting

area overhead in section 3.3. Finally, the chapter is closed by providing concluding

remarks in section 3.4.

46

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

3.1 Proposed Methodology

Before elaborating on the main steps in our methodology, we first motivate the idea

of using assertions for bit-flip detection.

3.1.1 Potentials of Assertions

There exist two error scenarios [140]: silent errors and masked errors. A silent error

occurs when an error propagates to an observable point but is missed due to insuffi-

cient checking. On the other hand, a masked error is an error that is produced but

masked out before reaching an observable point. Due to the inherent lack of real-

time observability in circuit blocks that are deeply embedded into the design under

validation, depending on the workload, most bit-flips will not manifest themselves

at an observable output, despite the fact that their presence proves an underlying

problem with the design. For example, some of our exploratory simulation experi-

ments have shown that for the s38417 circuit (from the ISCAS89 benchmark set [8])

on average, only one out of the ten injected errors were observed at the primary out-

puts. Moreover, even if these intermittent errors do propagate to primary outputs,

checking them against a pre-computed “golden response” (complete and comprehen-

sive response of the circuit to all enumerations of the input space) is infeasible in

post-silicon validation. This is because of the huge volume of clock cycles that are

applied to silicon prototypes, which makes pre-computation of “golden response” im-

practical in simulation environments. Another concern that arises when bit-flips are

not detected soon after they occur is because failing experiments, which are caused

by bit-flips, are not easily reproducible due to the electrical phenomena that cause

them (e.g., unique temperature and power supply noise). Hence, one must ensure

47

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

that the trace signals that are collected on embedded trace buffers (which are also

constrained in size)[141, 142] are most relevant to the error that has occurred. This

recorded information is critical during root-causing [143] and, to ensure that mean-

ingful information is analyzed, the error detection latency must not exceed the depth

of the trace buffers. Therefore, considering the goal of low error detection latency, em-

ploying assertions during post-silicon validation has been motivated by the following

points:

• Assertions can perform property checking without requiring a “golden response”;

• Techniques, such as [134], have been proposed for mapping assertions to hard-

ware, thus making them suitable candidates for post-silicon validation;

• Traditionally, assertions have been carefully crafted by verification engineers

before being deployed. The drawback of this approach was the omission of non-

obvious assertions that were beyond the understanding of verification engineers.

However, recent research works, have explored automatic assertion generation

using different methods ranging from static or dynamic analysis as in [144, 145,

2] or by employing data mining as in [3] and [146].

Although the original goal of automated assertion generation is to aid pre-silicon

verification, e.g., when the design implementation changes iteratively or design blocks

are reused in different environments, we recognize the potential of these discovered

assertions for post-silicon validation. Therefore we build our methodology (illustrated

in Figure 3.1) by leveraging the recent advancements in both assertion discovery

[3] and their hardware mapping [134]. A key observation is that bit-flips, unlike

functional errors, are related to the design netlist, which facilitates both a concise

48

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

definition of the error space to be covered, as well as the development of a method

that does not rely on design functionality but rather on its structure. This, in turn,

facilitates automation in a manner that resembles common tasks in the electronic

design flow, such as, for example, logic synthesis, place and route, or automatic

test pattern generation. Nonetheless, to make the methodology practically feasible,

one has to account for unique hardware constraints. Therefore, the huge number

of assertions that are discovered during the pre-silicon phase need to be consciously

selected before being mapped to hardware, which is an important novel aspect of our

work.

3.1.2 Automatic Assertion Generation

As illustrated in Figure 3.1, the first step in our methodology is to discover asser-

tions for a given design. Although one can develop assertions manually, in order to

enable an automated methodology, it is necessary to rely on tools that can generate

non-obvious assertions that cut across time cycles automatically which are also inter-

modular. In other words, assertions must be automatically extracted from the given

design (either netlist or RTL code) irrespective of the circuit’s functionality. It is im-

portant to note that the assertions we use in this work are implementation dependent

which means that we check the circuit’s implementation against its silicon prototype.

Hence, we are not concerned about assertions that are based on, for example, the

high-level specifications of the circuit.

As discussed in chapter 2 section 2.3, there are two commonly used languages for

writing assertions: Property Specification Language (PSL) and System Verilog As-

sertion (SVA). An example of an SVA assertion is shown below:

49

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

assr1: ((x == 1) && (y == 0) |=> ##2 (a == 0))

where a is the destination signal and x and y can be flip-flops, primary inputs or in-

ternal nets. The ## indicates that the logic value of a needs to be evaluated on the

second evaluation point (clock edge etc.) after the enabling condition of the assertion

(antecedent side) has been satisfied.

Most of the available tools for automatic assertion generation are customizable [3,

2], thus meaning that the user can choose the destination flip-flops. Since the objec-

tive is to detect bit-flips that occur in flip-flops, assertions that target flip-flops as

destination signals are deemed to be the superior ones to be added to the discovered

assertion pool. For instance, in the assertion statement above, if a is a flip-flop and

a bit-flip occurs in the circuit changing its value from 0 to 1, and all other conditions

hold, then this assertion would be violated. If the status of the assertions is monitored

during circuit’s operations, then this bit-flip can be detected as soon as the assertion

is fired. We call a flip-flop as a potentially covered flip-flop if at least one assertion

fires for at least one bit-flip that affects it. We will come back to the topic of coverage

in section 3.1.6.

Source.v

VCD file

Assertion
Generation

Config file
Preparation
Experiments

Assertion
Mapper

Assertion
Ranker

Confirmation
Experiments

Area Report

Violation Matrix

Wire Count Report

Selected
Assertions

Constraints

Coverage
Estimate

Assertions

Assertion
Mapper

To Hardware

Figure 3.1: Tool flow for selecting the most suitable assertions to embed on-chip under
wire constraints

50

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

3.1.3 Preparation Experiments

Our exploratory experiments (on the ISCAS89 circuits [8]) indicate that for a design

block with one to two thousand flip-flops an assertion discovery tool can produce

more than twenty thousand assertions. Mapping all these assertions to hardware

is obviously impractical due to both area and wiring constraints. Consequently,

assertions need to be weighted and a subset of them must be shortlisted as selected

assertions for hardware mapping.

Since our objective is to improve the number of flip-flops that are potentially cov-

ered when bit-flips occur, assertions that are more likely to violate within a predefined

time window in response to bit-flips are preferred over the other ones. For example,

if, during a bit-flip injection experiment, assr i detects 12 different bit-flips and assr j

detects 5 different bit-flips, but 4 of these bit-flips that are detected by assr j are also

detected by assr i, then it would be logical to select assr i as the selected assertion

and dismiss assr j. There are many other factors, other than the violation count, that

need to be taken into account and they will be all elaborated in section 3.2.

Since the potential of each assertion to detect specific bit-flips needs to be worked

out such that ranking will be done based on this potential, following to assertions

discovery, preparation experiments are carried out in order to determine the violation

count for each assertion when bit-flips are randomly, but uniformly, injected in all the

flip-flops. As shown in Figure 3.2, the following steps are carried out to perform the

preparation experiments:

1. Initially, each flip-flop is instrumented with a 2-to-1 mux and an inverter to

facilitate error injections (bit-flips). The select signal of the mux determines

51

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

when and where the bit-flip should occur. In addition to instrumenting flip-

flops, all the discovered assertions are added to the design. Note that functional

simulators do support high-level assertions in PSL and SVA format. Hence,

there is no need to synthesize assertions to their hardware equivalent in this

step.

2. For each simulation, we load the circuit in a random state. We wait for a user-

defined time (e.g., 10 clock cycles), during which we monitor assertions to make

sure no violation happens. In case there is an assertion violation, it suggests

that the initial state is illegal in which case the simulation is dismissed and a

new initial state is tried.

3. If there is no violation after that user-defined period, we will target one flip-flop

at a time, inject bit-flips and simulate the design using random input stimuli.

In each simulation, bit-flips are injected at k random times and the circuit is

simulated for a user-defined time (e.g., 256 clock cycles) after error injection;

during which assertions are monitored and their violation is recorded, as illus-

trated in Figure 3.2. As a result, if the circuit has m flip-flops, the total number

of simulations that have to be performed will be m× k.

4. Finally, by combining the violation reports for each simulation, a m×n matrix

is created where m is the total number of flip-flops and n is the total number

of assertions. Each entry in this Violation Matrix represents the total violation

count of an assertion for a specific flip-flop in all simulations. For instance,

entry (1,2) in Figure 3.2 means that assr1 has been violated 12 times for all

the errors injected in flip-flop 1.

52

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

It is important to note that the violation matrix captures the error space of bit-

flips that can be detected by the assertions that were assessed during the preparation

experiments. Due to the randomness in preparation experiments, which is needed to

account for the random occurrence of bit-flips on silicon prototypes, an assertion that

fired for one bit-flip injection might not be violated for another bit-flip injection in

the same flip-flop; this can happen due to multiple reasons. For instance, it is likely

that the circuit is in a different state for which the signals that imply the assertion

have different value. Also, it is extremely probable that the effect of the bit-flip might

not propagate to the assertion checker due to a different input sequence. This is the

reason for referring to the flip-flops from the violation matrix, for which at least one

assertion has fired during the preparation experiments, as potentially covered. It is

module design(x,y,z)
input x;
input y;
output z;
always@(…)
….
….

assr1Cnt = 3
assr2Cnt = 12
assr3Cnt = 0

assrCntM = 2

violation= 184

i. Choose x random times to inject errors
ii. Inject errors in each single flip-flop
iii. Run simulation and monitor assertions

fl
ip

-f
lo

p
 1

fl
ip

-f
lo

p
 2

fl
ip

-f
lo

p
 m

3
0

1
2

12
1

0
23

0
0

14
0

2
0

4
5

as
sr

1

as
sr

2

as
sr

3

as
sr

n

flip-flop 1

flip-flop 2

flip-flop m-1

flip-flop m

// assertion
always@(…)
assr1: assert property ((G0 == 1) |=> (G23 == 0));
assr2 : assert property ….
….

endmodule

Figure 3.2: Preparation Experiments illustrating steps towards creation of the Viola-
tion Matrix. Each entry in this violation matrix shows the total number of violations
of the assertion (from the corresponding column) when the bit-flip was injected in
the respective flip-flop (identified by the row).

53

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

up to the user of the methodology to exclude or include flip-flops of interest for the

bit-flip injection experiments. Hence, the number of rows in the violation matrix is

upper-bounded by the number of flip-flops in the design and the number of columns,

i.e., the number of assertions to be considered by the preparation experiments, can

be bounded based on, for example, the available computational resources. It should

also be noted that the quality of the violation matrix is central to the accuracy of the

assertion ranking algorithm. The more simulations we run during the preparation

experiments, the more revealing is the information in the violation matrix.

3.1.4 Mapping Assertions to Hardware

Traditionally, assertions have been developed for verification and are composed of

logical and temporal operators and regular expressions. These statements can be

added to the source code in pre-silicon verification to monitor errors using functional

simulators. However, for using them in post-silicon validation, they must be mapped

into hardware in order to do on-line property checking. Both PSL and SVA assertions

are not synthesizable by default. However, as mentioned before, there are tools such

as [134] that can accomplish assertion synthesis. Once assertions are discovered,

assertion mapping can be done simultaneously with the preparation experiments.

This will provide accurate area estimates for each assertion, which are needed by the

ranking algorithm, as it can be seen in Figure 3.1.

3.1.5 Assertion Ranking

Due to the imposed area and wiring constraints, implementing all assertions on-chip

is impractical. As an example, our exploratory experiments on s35932 circuit [8] has

54

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

shown that if all the discovered assertions are added to the circuit, the area associated

with them can easily exceed 20 times that of the area of the circuit itself. Therefore,

the large pool of available assertions must be assessed and subsequently, only a subset

of them are chosen and marked as selected assertions to be embedded into hardware.

In this work, by having established a relationship between assertions and bit-flips that

they might detect in section 3.1.3, we tune the assertion ranker to target two different

objectives. At first, as it will be described in section 3.2.1, we focus on maximizing

bit-flip detection. Toward this goal, we elaborate an algorithm that focuses on select-

ing a subset of assertions that will maximize the number of bit-flips that are detected

through violation of at least one of the embedded assertions. Afterwards, we propose

another algorithm that focuses on maximizing the number of flip-flops that are po-

tentially covered (as defined earlier), under user-provided constraints. The ranking

algorithms, which will be detailed in section 3.2, use the violation matrix, area es-

timates, the wire count report and user-specified constraints. The required steps to

prepare the violation matrix were thoroughly explained in section 3.1.3; likewise, area

estimates for assertions are obtained as explained in section 3.1.4. The wire count

report can be directly extracted from the assertions pool by counting the distinct

number of wires that comprise each assertion statement. Finally, the constraints are

provided by the user. In our current implementation, we provide the wire count as

the constraint.

3.1.6 Confirmation Experiments

The last step in our methodology is to run confirmation experiments. During con-

firmation experiments, the circuit is instrumented by the assertions that have been

55

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

selected by the specific algorithm in assertion ranker. The circuit is then simulated

using random input stimuli during which one error is injected at a time (injections

will be uniformly distributed across all the flip-flops throughout the entire duration of

the confirmation experiments) and the assertions violations are recorded. In the ideal

case, whenever a bit-flip is injected into an arbitrary flip-flop, a violation will be de-

tected if at least one of the selected assertions that are embedded into the design fires

in response to the bit-flip. However, considering the random occurrence of bit-flips, it

can happen that some bit-flip injections will not cause a violation despite the fact that

based on the violation matrix, more than one of the selected assertions were expected

to fire. Furthermore, though it is less likely, it might also happen that some of the

selected assertions, that were not identified during the preparation experiments to be

related to a particular flip-flop, will fire during the confirmation experiments when a

bit-flip is injected in the respective flip-flop. In any case, if at least one bit-flip in a

flip-flop causes a violation in at least one of the embedded assertions, that flip-flop is

potentially covered by that assertion. At this point, we define two different metrics

to evaluate the effectiveness of our algorithm, which can also be used as an internal

feedback to the entire methodology; bit-flip coverage estimate and flip-flop coverage

estimate.

Definition 1. Bit-flip coverage estimate is defined as the ratio between the total

number of bit-flips that are detected by the selected embedded assertions and the

total number of bit-flips that are injected during the confirmation experiments.

Definition 2. Flip-flop coverage estimate is defined as the ratio between the total

number of flip-flops for which there exists at least one assertion that has detected at

least one of the bit-flips that have been injected in that flip-flop over the total number

56

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

of flip-flops.

As an example, in the hypothetical circuit of Figure 3.3 with three flip-flops, 4 bit-

flips are injected in each flip-flop. Consequently, according to the definitions above,

the bit-flip coverage estimate is 42% whereas the flip-flop coverage estimate is 67%.

The distinction between these two metrics stems from the fact that due to the

reasons that were elaborated in section 3.1.3, it does happen that an injection in

a flip-flop causes all the associated assertions for that flip-flop (or other assertions

if the error propagates to other flip-flops) to fire while another error in the same

flip-flop might end up undetected. Since post-silicon validation sessions commonly

run for extensively long durations, it is our position that flip-flop coverage estimate

is of higher importance. This is because if even a single bit-flip is detected in a

flip-flop over a long validation experiment (hours of real-time execution), this will

highlight the presence of a subtle electrically-induced error within the close proximity

of the detection point that needs to be corrected before committing to high-volume

manufacturing.

D Q

clk

D Q

clk

D Q

clk

detected bit-flip

Missed bit-flip

Figure 3.3: Hypothetical example for representing the difference between bit-flip and
flip-flop coverage estimates.

57

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

It is important to note why both coverage metrics are labeled as estimates. Bit-

flips, unlike hard defects (modeled as, for example, stuck-at faults in the logic domain)

occur only in some unanticipated clock cycles, dependent on the logic state of the

circuit, the workload and the electrical state (e.g., voltage supply and/or droop).

One cannot guarantee a bit-flip to be easily reproducible, nonetheless, so long as

the validation sequences are long (as it is the case for post-silicon validation) it is

expected that the underlying electrical problem will manifest itself as a bit-flip in

the logic domain. It is needless to say that our confirmation experiments are limited

in duration (when compared to post-silicon validation experiments), nonetheless if

an injected bit-flip is detected during the confirmation experiments by the subset of

selected assertions, we estimate that a post-silicon validation experiment would also

detect it because of the huge volume of additional clock cycles that are applied in

post-silicon validation (approximately six orders of magnitude more than simulation).

Finally, both these metrics can reveal important characteristics and features about

the effectiveness of the embedded DFD logic and can also provide important feedback

to different steps of the proposed methodology. For example, the original pool of as-

sertions might need to be expanded if the confirmation experiments indicate that, for

some flip-flops, no bit-flips were detected; it is also possible that an insufficient number

of preparation experiments have been carried out, in which case the confirmation ex-

periments will indicate that the quality of the violation matrix needs to be improved.

Moreover, these coverage estimates can also serve as proofs of due diligence when the

subset of the selected assertions that were used on the silicon prototype exhibit no

failure after extensively long post-silicon validation experiments; in which case, the

confidence to commit to high-volume of manufacturing is substantiated by the values

58

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

captured by the coverage estimates. As a final note, we would like to point out that

the coverage metrics we have introduced are based on the violation of assertions in

hardware that have been discovered based on the design implementation and are of

a different concern than researches based on high-level specifications [147, 148].

3.2 Ranking Algorithm

As emphasized in the previous section, mapping all the discovered assertions from the

assertion generation step to hardware for the purpose of low-latency bit-flip detection

is impractical due to area and wire usage overheads. Hence, in this section, we provide

algorithms that are geared towards maximizing the two coverage metrics that were

introduced in section 3.1.6; bit-flip coverage estimate and flip-flop coverage estimate.

3.2.1 Bit-flip coverage estimate maximization

As summarized in section 3.1.5, we present a novel heuristic algorithm to select a

subset of assertions by accounting for a wire usage constraint and with the objective

of maximizing the number of bit-flips that are detected. In other words, based on the

definition given in section 3.1.6, the proposed algorithm will work on maximizing the

bit-flip coverage estimate. A bit-flip is considered as detected if, after its occurrence,

at least one of the assertions that are embedded in the design exhibits a violation, in

which case the bit-flip is detected. Note that, according to this definition, there is no

benefit on having multiple assertions violating for a single bit-flip. Figure 3.4 shows

the flow for the proposed algorithm.

• In order to prioritize one assertion over another, a metric is defined for the

59

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Compute assertions
detection potential (DP)

Choose assertion with
Maximum DP

Wire budget
reached?

DONE

YES

(1)

(2)

Remove used wires
from assertionsNO(3)

(4)

(5)

Re-Compute assertions
detection potential (DP)

(6)

Cover flip-flops with
VC > ¾ Maximum VC

Figure 3.4: Flow for the heuristic algorithm that is geared towards maximizing bit-flip
coverage estimate. Note that in step 4, VC represents the assertions violation count
for a particular flip-flop in the violation matrix.

purpose of one-to-one comparison (step 1). We define the detection potential

(DP) of each assertion as:

Assr(i)DP =
TotalV iolation

WireCnt

where TotalViolation is cumulative sum of violation counts for assr(i) in

all experiments during preparation experiments and WireCnt is the number of

distinct wires used in assr(i). Intuitively, assertions with a high violation count

and low wire count are prioritized.

• Once the detection potential is computed for all the assertions, the next step

60

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

would be to select the one with highest DP (step 2).

• After each selection, it is mandatory to check if we have reached the available

wire budget (step 3). If the wire budget is reached, the algorithm should stop.

Otherwise, we move onto the next step.

• If we are still within the wire budget, then the next step is to find all the

flip-flops whose violation count are greater than or equal to three quarters of

the maximum violation count for that flip-flop. This is because, in bit-flip

coverage, all effort must be made to make sure that as many bit-flips as possible

are detected. Hence, once an assertion is chosen, by considering its violation

count for all the flip-flops, one can conclude that the likelihood of that assertion

detecting bit-flips for a flip-flop whose current violation count is three quarters

of the maximum violation count in the relative row of the violation matrix for

that flip-flop is sufficiently high to consider bit-flips in that particular flip-flop

as covered (step 4). Note that the threshold of three quarters of the maximum

violation count is based on our empirical observations in the use-cases that we

will discuss in section 3.3 and can be adjusted by the user of the methodology.

• At this point, it is sensible to remove wires that have already been used by

the selected assertions from the remaining assertions, so that the remaining

assertions only contain wires that are distinct from the set of wires for all the

assertions that were selected so far. For example, assume assertion i has five

wires and that two of those wires also belong to assertion j; after selecting

assertion j, the cost of selecting assertion i will be three wires instead of five

(step 5).

61

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

• Finally, the detection potential is recomputed based on the new wire counts

for each assertion (step 6) and the next assertion with the largest detection

potential is chosen.

3.2.2 Flip-flop coverage estimate maximization

Bit-flip coverage estimate is an important measure on evaluating the effectiveness of

assertions that have been selected by the ranking algorithm. However, as stated be-

fore, since post-silicon validation sessions run for extensively long durations, flip-flop

coverage estimate (definition given in section 3.1.6) is of a higher importance during

post-silicon validation. This is due to the fact that, if there is at least one failing

experiment among several debug sessions, it suggests a subtle underlying problem in

the design that must be diagnosed and repaired before committing to high-volume

manufacturing. In other words, if the root cause of the electrical problem produces

several bit-flips over a long validation experiment (hours of real-time execution), if

at least one of these errors can be detected by the embedded assertions, it would

be beneficial to point out an existing problem in the specific flip-flop or its vicinity.

Hence, in this section, we propose a novel algorithm that, unlike the algorithm in

section 3.2.1, works on selecting a set of assertions to maximize flip-flop coverage es-

timate by taking into account the wire usage constraint. The objective is to maximize

the potential coverage for each flip-flop, while at the same time the area should be

contained.

1. Algorithm

The pseudo-code for this algorithm is given in Algorithm 1. Before we elaborate

on the main steps of the algorithm, as in the case of bit-flip coverage estimate

62

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

algorithm, we should define a metric that is used in order to weight assertions

for the purpose of one-to-one comparisons. The Detection Potential (DP) that

was introduced in section 3.2.1 is further extended to take into account the

parameters that also contribute to the decision being made by the algorithm on

selecting the most appropriate assertion. Hence:

Assr(i)DP =
(α× FCov + TotalV iolation)

(β ×WireCnt) + Area
(3.1)

The terms in the detection potential and also the different steps in the algorithm

are described as follows:

• Initialization: At the beginning, the backbone data structure that is the

basis of violation matrix is constructed by reading the associated data from

experimental results and wire and area report files (step 1).

• TotalViolation: After creation of the violation matrix, the sum of violation

counts of each assertion for each flip-flop is calculated (column sum). The

violation count of each assertion for a specific flip-flop is the total number

of times that a specific assertion has been violated when a bit-flip has been

injected in that flip-flop (step 2).

• FlopCov: This stands for the flip-flop coverage of an assertion, that is, the

total number of flip-flops for which the associated violation count entry in

the violation matrix is greater than zero (step 3).

• In order to bring Area and TotalViolation to the same scale, the respec-

tive values for these two attributes are scaled linearly in such way that

in each iteration, the minimum and maximum values of these attributes

63

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

input : Violation Matrix, Wire and Area reports
output: Candidate Assertions

initialization; // step 1

while Used Wires ≤ wire Budget do
foreach assertion in assertion list do

find TotalViolation; // step 2

find FCov ; // step 3

scale Area and TotalViolation; // step 4

find α, β; // step 5

find DP ; // step 6

end
Possible Candidates = Assertions with DP within 1% of Max DP; // step

7

foreach assertioni in Possible Candidates do
find σi; // step 8

DPi = DPi

σi

end
select selectedAssr ; // step 9

usedWire += selectedAssrwire; // step 10

usedArea += selectedAssrarea; // step 11

foreach FFj in FlipFlops do
if selectedAssrvc of FFj > 0 then

cover FFj; // step 12

end

end
foreach assertioni in assertion list do

update assertioni wires ; // step 13

end
if AllFlopsCovered then Break // step 14;

end

Algorithm 1: Ranking Algorithm for maximizing flip-flop coverage estimate.

64

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

are measured and the associated area and total violation count of each

assertion is scaled accordingly in a linear manner (step 4).

• α, β: These coefficients are used to bring different terms in the nominator

and denominator of the detection potential formula to the same scale, so

that one term is not accidentally given more importance than necessary.

However, if the user wants to deliberately adjust the importance of one

specific term (e.g. FlopCov) in the detection potential equation, it can be

done by multiplying that term further with another coefficient. For the

sake of clarity, we have omitted that extra coefficient. The α and β scale

factors are defined as:

α =
Tavg
Favg

β =
Aavg
Wavg

where Tavg is the average of the total violation counts for all assertions,

Favg is the average of the total flip-flop coverage for all assertions and

Aavg and Wavg stand for the area and wire count average of all assertions

respectively. As it will be clarified later, all these coefficients are calculated

based on the remaining assertions and their updated wire counts in each

iteration of the algorithm (step 5).

• Once all the prior steps are done, the detection potential for each assertion

can be calculated according the Eq. 3.1 (step 6). Note that the wire count

of each assertion has been determined in step 1.

• At this point, all assertions for which their associated DP is within 1%

to the maximum DP are marked as Possible Candidates and are taken

for future evaluations (step 7). The selected assertion should not have a

65

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

significant discrepancy in violation counts for different flip-flops, since it

will likely have a higher potential to detect bit-flips for all the flip-flops

that it is related to. Therefore, for all assertions in the Possible Candidate

list, the violation count standard deviation (σ) of those assertions must be

calculated and their respective DP is divided by this standard deviation

(step 8). The lower the standard deviation is, the larger the DP will be.

• As soon as the detection potential (DP) values of all assertions are avail-

able, the assertion with the highest DP is selected as the selected assertion

(step 9), and the wires that are part of this assertion statement are added

to the used wire list (step 10). Equally, the associated area of the assertion

is also added to the total area usage (step 11).

• Following to selection of the selected assertion, all the flip-flops that are

potentially covered by it are marked and taken out of further consideration.

A flip-flop is potentially covered by an assertion if the corresponding entry

of the violation matrix for that flip-flop has a non-zero violation count

(step 12).

• The algorithm continues by carrying out an important task that is to

update the wire count for each assertion. This is crucial because, in the

following iterations when the DP of each assertion is to be determined, the

wires that have already been used should not be taken into consideration.

For example, during evaluation of assertions DP, an assertion that initially

had five wires but three of its wires are already in the used wire list will

be treated as an assertion with only two wires (step 13).

• Finally, before moving to the next iteration, though unlikely, it is sensible

66

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

to check if all the flip-flops have been potentially covered by the already

selected assertions so that there is no need to select more assertions (step

14).

In the following section, all steps of the algorithm are reviewed by the aid of an

example.

2. Example The example in Figure 3.5 will illustrate the process of assertion

selection in each iteration in the proposed algorithm. Initially, the detection

potential of each assertion is to be calculated according to formula in Eq. 3.1.

Hence:

assr(1)DP =
(19.5× 3) + 100

(26.04× 2) + 100
= 1.04

assr(2)DP =
(19.5× 3) + 100

(26.04× 2) + 100
= 1.04

assr(3)DP =
(19.5× 3) + 33

(26.04× 3) + 59.4
= 0.66

assr(4)DP =
(19.5× 3) + 1

(26.04× 3) + 1
= 0.75

Note that α and β have been calculated based on the scaled values of TotalVi-

olation and Area. As it can be seen, the maximum detection potential is 1.04

and is associated with both assertion 1 and assertion 2. This is because both

assertions have similar TotalViolation, FCov, WireCnt and Area. Referring

to the ranking algorithm (Algorithm 1), the standard deviations for both asser-

tions have to be calculated and their detection potential must be divided by the

respective standard deviation. After the division, the assertion with highest DP

is picked as the selected assertion and the other one is dismissed from further

67

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

✓ ✗

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

✓ ✗

✓

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

✓ ✗ ✓ ✗

(a)

(c)

(b)

(d)

✓

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 5

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 5

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 5

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 5

assr 1: W0, W1
assr 2: W0, W2
assr 3: W0, W1, W2
assr 4: W1, W2, W3

assr 1: 29
assr 2: 29
assr 3: 27
assr 4: 24

Wires Area

Figure 3.5: An example showing the different steps on choosing a sub-optimal set of
assertions to maximize flip-flop coverage estimate.

68

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

evaluation. For our example, the DP values become:

assr(1)DP ′ =
1.04

2.867
= 0.362

assr(2)DP ′ =
1.04

5.185
= 0.200

Hence, assertion 1 which has a higher DP is selected as the first selected asser-

tion. Taking standard deviation into consideration ensures avoiding an assertion

that covers a dominant flip-flop (that contributes most to its violation count)

and potentially misses the other flip-flops. Subsequent to selecting assertion 1,

its wires then have to be added to the used wire list. Moreover, all flip-flops

that are potentially covered by this assertion are also marked and taken out

from further consideration (Fig. 3.5, part b). Assuming that the wire budget

is 6, and also the fact that not all the flip-flops have been potentially covered,

the algorithm goes to the second iteration. During the second iteration, all the

values in the DP formula must be updated in such way that attributes (Wires,

FCov, etc.) for flip-flops that have been covered already should not be counted.

Therefore, the detection potentials for the second iteration will be:

assr(3)DP =
(25.25× 2) + 100

(33.67× 1) + 1
= 4.34

assr(4)DP =
(25.25× 2) + 1

(33.67× 2) + 100
= 0.307

Since the detection potential of assertion 4 is not within 1% of the maximum

detection potential (assertion 3), there is no need to calculate the standard

deviation. Hence, assertion 3 is selected as the second selected assertion, its

wires are added to the used wire list and also the flip-flops that are covered by

69

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

it are marked as potentially covered. As it can be seen in Figure 3.5, part (d),

by selecting assertion 3, all the remaining flip-flops in the design are potentially

covered, hence the algorithms stops.

3.3 Experimental Results

In this section, we provide and discuss the experimental results. Our methodol-

ogy, together with both ranking algorithms, have been implemented on an Intel

Core i7 machine with 32GB of RAM using GCC 4.8.2. For assertion discovery,

we have used GoldMine, an automatic assertion generation tool that uses data

mining and formal verification. GoldMine first generates likely invariants based

on the simulation trace of the given circuit. These likely invariants are then

passed to Cadence Incisive formal verifier which only selects those invariants

that are true assertions (i.e. properties that hold indefinitely). GoldMine offers

several modes of operation and the detailed discussion on its different modes

and configurations are out of the scope of this work; the interested reader is

referred to [3]. Results from a combination of mining engines available in Gold-

Mine have been used for gathering assertions in our test cases; though we should

note that decision forest and coverage mode engines have been used more often

than the other engines. With regard to the input stimuli for assertion discovery,

we have used both random inputs (default of GoldMine) and deterministically

generated value change dump (VCD) files obtained through Validation Vector

Generator tool from Virginia Tech [149, 150]. As for the input stimuli for ex-

periments, both in preparation experiments and confirmation experiments, we

70

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

have used random inputs throughout our experiments to reflect the random

occurrence of bit-flips in post-silicon environments. In pursuance of obtain-

ing the hardware equivalent circuit of the assertions (to estimate their area),

all high-level SVA assertions have been added to the original source code and

passed to MBAC[134] to obtain their Verilog code. Once the synthesizable Ver-

ilog model for all the assertions is produced, their respective area estimate is

determined using Synopsys Design Compiler (based on generic implementation

libraries). After creating the violation matrix (the output of preparation exper-

iments explained in section 3.1.3) and extracting area estimates and wire counts

of assertions, the ranking algorithm of choice will select a subset of assertions

depending on whether the objective is to maximize bit-flip coverage estimate

or flip-flop coverage estimate. Although users can choose constraints specific to

their hardware environment, in our current implementation we have used the

number of used wires by assertion propositions as the constraint. As for the

test cases, we have reported results on the three largest ISCAS89 benchmark

circuits[8], the quantizer block (y quantizer) of the hardware implementation of

the JPEG encoder and also the hardware implementation of the Reed Solomon

decoder (without embedded RAMs). The latter two open-source benchmark

circuits are available on OpenCores.org. Since the ranking algorithm is con-

strained with the number of used wires that is varied with respect to the total

number of flip-flops in the design, the number of flip-flops in the respective

benchmark circuits is given in Table 3.1.

Before the results of coverage metrics are discussed, as motivated in section

71

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Circuit No. of flip-flops
ISCAS s35932 1728
ISCAS s38417 1636
ISCAS s38584 1452

JPEG y quantizer 2823
Reed Solomon (R.S.) decoder 2885

Table 3.1: Number of flip-flops in the benchmark circuits used in the experiments.

earlier, the key reason to use assertion checking for bit-flip detection is to mini-

mize the error detection latency. Table 3.2 shows the number of errors that fall

into different error detection latency windows. As it can be seen in this table,

the vast majority of the bit-flips are detected in less than 10 clock cycles after

their occurrence. An interesting topic to explore in future work is how one can

trade-off the error detection latency, which is acceptable to be in the range of

tens to hundreds of clock cycles in practice, for a lower area and wire usage

investments for the bit-flip assertion checkers.

Circuit <5 clock cycles <10 clock cycles >10 clock cycles
s35932 98.1% 99.4% 0.6%
s38417 96.3% 99.1% 0.9%
s38584 98.4% 99.4% 0.5%

Table 3.2: Evaluation of the error detection latency for the detected errors.

In the following sub-sections, we discuss the results for the algorithms intro-

duced for the bit-flip coverage estimate and the flip-flop coverage estimate.

72

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

3.3.1 Bit-flip Coverage Estimate

In this section, we review the results for the case when the ranker is configured to

maximize the bit-flip coverage estimate. The violation matrix, which is central

to the ranker, has been created by injecting 50 bit-flips uniformly in each flip-flop

in the design. Once the violation matrix is prepared, the detection potential

(DP) of each assertion can be worked out based on the sum of the violation

counts of that assertion for each flop divided by the unique number of wires

that constitute that assertion, as explained in section3.2.1. The results are

0

5

10

15

20

25

30

35

40

45

5 15 25 35 45

B
it

-f
lip

 C
o

ve
ra

ge
 (

%
)

Wire (%)

s35932 s38417 s38584

Figure 3.6: Bit-flip coverage estimate for the three largest ISCAS89 circuits [8].

73

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

shown in Figure 3.6. As it can be seen, by keeping the wire budget around

40% of the total number of flip-flops, the resulting bit-flip coverage estimate

will also reside in the range of 35%. This is in part due to the fact that, some

assertions detect multiple bit-flips and an assertion with 3 wires might actually

detect 4 different bit-flips. In addition to this, in some subsequent increase in

wire count budget in the ranker, the slope of the change in bit-flip coverage

estimate is more than that of the previous step. This is because, as the wire

budget increases, the number of wires that are shared between assertions also

increases, which causes the ratio between the number of selected assertions and

the number of wires used by these assertions to grow. This larger number of

assertions per wire causes the bit-flip coverage to increase.

3.3.2 Flip-flop Coverage Estimate

Although bit-flip coverage estimate is an important metric that can be used as

an internal metric to assess the effectiveness and refine our methodology (e.g.

initial pool of assertions), we believe that its practicality during post-silicon

validation is limited. This is because post-silicon validation sessions run for long

periods of time (days/months) with the main focus of detecting and localizing

errors. In fact, a recent industrial study has shown that the time to detect

an error is the dominant time during post-silicon validation [151]. If during a

long validation experiment (on the order of days) at least one bit-flip (out of

the potentially many that can affect a flip-flop) is detected by an embedded

assertion, this information will unveil potential problems in the circuit and

74

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

provide the critical info needed to root-cause the problem during the post-

processing phase. It should be noted that the on-chip assertion which fires

during a bit-flip can also be used as a trigger event to record data in a trace buffer

[38, 141, 142], thus acquiring even more debug data for root-cause analysis. The

flip-flop coverage estimate is a more appropriate metric to assess the benefit of

the selected assertions for post-silicon validation because it reflects whether

there exists at least one assertion that detects at least one of the bit-flips that

occur in a flip-flop.

Figure 3.7a illustrates how flip-flop coverage estimate is changed as the number

of wires that is provided to the ranker increases. For these experiments, the

preparation experiments have been carried out using 50 of error injections per

flip-flop and the confirmation experiments using 20 error injections. Since there

exists an overlap between the nets that are used by different assertions, and

also the fact that some assertions which have been used for this work detect

multiple bit-flips, we can notice that, in general, the resulting flip-flop coverage

estimate is greater than the number of wires that are used. In addition, in some

occasions, when the wire count is increased, the slop of the change in flip-flop

coverage increases (from 20% wire count onwards in s38584 and s35932) which

is again the result of wire sharing between the assertions. It is worth mention-

ing that for circuit s38417 the coverage is lower. This is mainly due to the

fact that the assertion pool used by the preparation experiments does not cover

many flip-flops. This motivates future investigations into generating assertions

that are focused exclusively toward bit-flip detection, which is expected to im-

prove the quality of the violation matrix and indirectly the flip-flop coverage.

75

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Figure 3.7b illustrates the area overhead of using embedded assertions when

flip-flop coverage is to be targeted by the assertion ranking algorithm. The

internal structure of the synthesized assertions is in such way that the logic

blocks that are associated with each assertion are not shared between them.

As a result, when the ranking algorithm constraint is relaxed to use a larger

wire budget, the number of assertions that are selected grows, which directly

increases the associated area overhead.

In the meantime, it is worth mentioning that all the results so far are based on

the assumption that the likelihood of bit-flip occurrence is equal for all the flip-

flops in the design and the ranking algorithm is configured to maximize flip-flop

coverage of all the existing flip-flops. However, based on the study done in [152],

the electrical bugs do not randomly affect all the flip-flops. It is claimed that

the bit-flips in post-silicon validation are the result of excessive propagation

delays that causes a delayed stabilization of the data at the inputs of flip-flops.

The flip-flops that are mostly affected are timing-critical flip-flops and a bug is

activated when the inputs of these flip-flops go through a transition. Motivated

by these observations, we have adjusted our methodology and ranking algorithm

to take into account only flip-flops that are timing-critical for the three largest

ISCAS circuits [8].

As shown in Table 3.3, the flip-flop coverage estimate of the flip-flops on the

critical path in s38584 has been measured when 50, 100 and 150 timing-critical

flip-flops are taken into consideration. There is a saturation point in flip-flop

coverage estimate for the cases when 50 and 100 flip-flops are targeted. This

stems from the fact that for the remaining timing-critical flip-flops that have not

76

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

0

10

20

30

40

50

60

5 15 25 35 45

Fl
ip

-fl
op

 C
ov

er
ag

e
(%

)

Wire (%)
s35932 s38417 s38584 Quantizer R.S decoder

(a) Flip-flop coverage estimate when varying the wire count

0

10

20

30

40

50

60

5 15 25 35 45

Ar
ea

 (%
)

Wire (%)
s35932 s38417 s38584 Quantizer R.S decoder

(b) Area evaluation when varying the wire count

Figure 3.7: Analysis of flip-flop coverage estimate and the area overhead based on
varying the number of wires, running the assertion ranker and carrying out the con-
firmation experiments. Wire count is the total percentage of wires used based on the
number of flip-flops in the ISCAS89 benchmark circuit.

77

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

No. of Wire Count Area Flip-flop Coverage
Critical FFs (%) (%) Estimate (%)

50

2 2 40%
4 4 76%
6 5 86%
8 5 86%
10 5 86%
15 5 86%

100

2 2 23%
4 3 38%
6 5 55%
8 8 73%
10 10 91%
15 10 91%

150

2 2 15%
4 3 26%
6 4 37%
8 6 48%
10 8 57%
15 14 88%

Table 3.3: Evaluation of flip-flop coverage estimate for flip-flops on critical path in
ISCAS s38584 [8].

been detected, either there is no assertion in the original pool of assertions that

can potentially cover these flip-flops (zero violation count for the row of those

flip-flops in the violation matrix) or, though unlikely, the inputs that have been

applied during bit-flip injections have not sensitized these assertions. Overall,

it can be observed that the percentage of the critical flip-flops that are covered

can be in the 90% range with wire counts of 15% or less of the total flip-flop

count. We confirm that a similar trend exists for ISCAS s35932 when only

the timing-critical flip-flops are taken into consideration. For ISCAS s38417

though, the flip-flop coverage of timing-critical flip-flops is poor due to the lack

78

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

of availability of sufficient assertions for those flip-flops in the original pool of

assertions. As mentioned earlier in this section, improving the original pool

of assertions with assertions that are specifically focused on bit-flip detection,

especially for flip-flops that are considered to be more susceptible to bit-flips, is

a priority for future investigations.

3.3.3 Running Times

Finally, it is noteworthy to report the running times of the different steps in our

flow. Results provided below in Table 3.4 are for the s38589 benchmark circuit.

A similar trend has been empirically observed in all the use-cases that we have

used to evaluate the proposed methodology.

Task Configuration
Time
(hour)

Assertion
Generation

Miner (Single Core), Formal
Verifier (Multi Core)

228

Preparation
Experiments

Multi-core (4 instances) 63

Assertion
Mapper

(Synthesis)
Multi-core (4 instances) 1.8

Assertion
Mapper (Area

estimate)
Multi-core (4 instances) 9.7

Assertion
Ranker

Single Core 0.32

Confirmation
Experiments

Multi-core (4 instances) 11.5

Table 3.4: Evaluation of the running-time of different steps of the tool flow in Fig-
ure 3.1.

79

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

For assertion generation, a combination of results from the coverage miner en-

gine and the decision forest miner engine of GoldMine [3] has been used with up

to 25,000 input vectors with 6 to 10 counter examples fed back to the miner for

input vector refinements. Mentor Graphics Questasim has been used for RTL

simulation and MBAC [134] and Synopsys Design Compiler have been used for

assertion synthesis and assertion area estimates respectively. For preparation

experiments, a total of 28,365 assertions were assessed. Results given for the

confirmation experiments refer to the worst case scenario where the ranker is

configured with 40% wire count constraint, which results in 328 assertions be-

ing selected to be embedded in the design. Also, the results are for the case

where 20 errors are randomly injected in each flip-flop of the design in both the

preparation and confirmation experiments. As a final note, while considering

the scalability of our proposed methodology, the author would like to add that

it is a common practice in industry to validate designs on a block-by-block basis

[153, 154]. The author believes that the size and complexity of the benchmark

circuits that have been evaluated in this work are on par with the size of the

sub-blocks in large industrial designs. Moreover, it is worth noting that both the

preparation experiments and the confirmation experiments can be accelerated

using FPGA-based emulation platforms as will be discussed in chapter 4.

3.4 Summary

In this chapter we have investigated the use of assertions in hardware for de-

tecting electrically-induced errors that are manifested as bit-flips in flip-flops

80

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

during post-silicon validation. As part of our methodology, we have designed

algorithms to rank assertions based on their potential to detect bit-flips. We

have introduced two quantitative metrics, the bit-flip and flip-flop coverage es-

timates, which can be used to assess the quality of the selected assertions.

As shown by our experimental results, a flip-flop coverage estimate of approx

50% is attainable when using a number of wires equal to 40% of the number

of flip-flops in the design. If the total number of assertions is too large for

practical applications, one can benefit from running multiple debug sessions

during which assertions for a subset of flip-flops are mapped into an embedded

programmable event-detector in a time-multiplexed fashion [6]. An alternative

to time-multiplexing assertions, we have shown that the overhead is manageable

if we monitor only the timing critical flip-flops.

To improve our methodology, the contributions in chapter 4 are concerned with

improving the accuracy of the proposed methodology through hardware emula-

tion. In addition, in chapter 5, we will present our own method for building a

pool of assertions algorithmically, that are specifically focused on bit-flip detec-

tion and can be used as an input to the methodology presented in this chapter.

81

Chapter 4

Emulation Infrastructures for the

Evaluation of Hardware Assertions

Chapter 3 detailed our methodology for automatic generation and selection of hard-

ware assertions to facilitate bit-flip detection. As part of our methodology, we intro-

duced bit-flip coverage estimate and flip-flop coverage estimate as two quantitative

metrics for the assessment of the selected assertions to be embedded on-chip. Nonethe-

less, the main limitation of this methodology lies in its reliance on simulation-based

experiments that capture a short snapshot of the design’s behavior for assessing asser-

tions potential for detecting bit-flips. This limits the number of error injections that

can be performed, which indirectly affects the accuracy of selecting the embedded

assertions checkers that will be committed to silicon for bit-flip detection. Since field-

programmable gate-arrays (FPGA) emulators are capable of verifying logic designs

at clock speeds of at least three orders of magnitude faster than a software simulator,

they have been widely used to narrow the large gap between simulation and silicon

82

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

speed [155, 156]. Moreover, FPGA-based emulation platforms have recently been em-

ployed for various post-silicon validation purposes. For instance, the idea presented

in [157] is to use emulation to evaluate the critical-path timing coverage of a valida-

tion plan. Likewise, the authors in [158] use emulation for selection of coverage points

with small overhead in order to assess the quality of test vectors by measuring metrics

such as code coverage. However in this work and in particular in this chapter, we are

not concerned about the quality of the test vectors nor we assess functional or code

coverage. Hence first in section 4.2, we introduce our in-house assertion synthesis tool

that is tuned towards the category of the assertions that are used in this work hence

removing the need for using third-party tools. Afterwards, in section 4.3, we present

an automated methodology to design emulation-ready hardware architectures that

can be merged into the methodology that was introduced in chapter 3 to improve the

accuracy of selecting assertions that are going to be instrumented as on-chip monitors.

Following to this, we discuss our experimental observations in terms of enhancements

to both the run-time and coverage metrics in section 4.4. Finally we close the chapter

in section 4.5 by discussing the concluding remarks.

4.1 Background

The objective of the work presented in this chapter is to improve the accuracy of the

selection and assessment of hardware assertion checkers for bit-flip detection using

FPGA-based emulation architectures. Since the systematic methodology presented

in chapter 3 provides the basis of this work, we quickly summarize different steps

involved in the proposed methodology by only highlighting the key points. The

methodology is shown in Figure 4.1.

83

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Source.v

VCD file

Assertion
Generation

Config file
Preparation
Experiments

Assertion
Mapper

Assertion
Ranker

Confirmation
Experiments

Area Report

Violation Matrix

Wire Count Report

Selected
Assertions

Constraints

Coverage
Estimate

Assertions

Assertion
Mapper

To Hardware

Figure 4.1: Tool flow for selecting the most suitable assertions to embed on-chip under
wire constraints

1. Assertion Generation: Assertions are statements about the design’s intended

behavior that have to hold true indefinitely [27]. Traditionally, register-transfer

level (RTL) assertions have been prepared manually by designers to improve

observability and reduce debug time. Though, in recent years, techniques have

been introduced for automatic assertion generation [96, 3, 2] with the goal of

discovering non-obvious assertions in an automated way. This, for example,

minimizes the amount of work for re-verifying a sub-block of the design after

a revision. Since post-silicon validation is carried out after tape-out (netlist

is ready), it is logical to configure the assertions generation tool to generate

assertions that are based on the netlist rather than the behavioral model of the

design.

2. Preparation Experiments: The very purpose of using high-level assertions

in post-silicon validation is to convert them to their equivalent hardware circuit

(as discussed later), for detecting bit-flips during post-silicon validation. Since

assertions are properties that have to hold indefinitely, bit-flips that change the

logic relationship between signals that construct an assertion will likely cause

84

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

the respective assertion to fire. Since it is impractical to map all the discovered

assertions to hardware due to limited area and wiring budgets, only a subset

of these assertions should be selected through a ranking process. However,

before one can grade assertions, their potential in detecting bit-flips must be

determined. During preparation experiments, the RTL model of the design is

instrumented with all the assertions that have been discovered in the previous

step. Afterwards, K (configured by the user) number of bit-flips are uniformly

injected at random times in all the flip-flops of the design. The design is then

simulated using random stimuli during which the status of all the embedded

assertions are monitored. Once all the errors are injected, the relationship

between assertions and flip-flops are formulated in an M ×N matrix, where M

is the total number of flip-flops and N is the total number of assertions. This

matrix is called the Violation Matrix. For example, for a hypothetical circuit,

in Figure 4.2, the second element in the first row reflects that, for all injections

in flip-flop 1, assertion 2 has been violated twice whereas there is no violation

in other assertions. This means that assertion 2 has the potential for detecting

bit-flips in flip-flop 1. The accuracy of the violation matrix depends on the

number of errors that are injected; the more error injections, the higher the

chance for all the assertions to be exercised. However, since the run-time of this

step depends on the number of flip-flops and the number of assertions, as the

number of error injections increases, the run-time would increase too. By relying

only on functional simulators, the run-time can quickly become impractical. For

example, our experiments on ISCAS s38584 benchmark circuit [8] with around

18,000 assertions, show that for only 5 error injections per flip-flop, the total

85

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

run-time of preparation experiments exceeds 50 hours. Trying to address this

limitation is the key motivation for the work presented in this chapter.

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 5

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

a
ss

r
5

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

a
ss

r
5

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

Figure 4.2: Violation Matrix for a circuit with 4 flip-flops and 5 assertions.

3. Assertion Mapper: Assertions used for pre-silicon verification are not nor-

mally part of the synthesizable portion of the design. RTL assertions are writ-

ten in high-level formats, such as property specification language (PSL) [159]

or System Verilog Assertions (SVA) [160]. These formats are not directly syn-

thesizable to hardware. However, recent research [134, 161] has shown methods

to synthesize assertions to their equivalent hardware that can be embedded to

the design for on-line property checking. The outcome of the assertion mapper

is also the area overhead estimate for each assertion that is subsequently used

by the assertion ranker.

4. Assertion Ranker: The potential of all the assertions in detecting bit-flips

in flip-flops is captured by the violation matrix. Since it is impractical to add

all the discovered assertions to the design, the ranker will select a subset of

these assertions under a wire budget constraint. The ranker can be configured

to meet two different goals; bit-flip coverage estimate maximization or flip-flop

coverage estimate maximization. The mentioned coverage metrics are explained

86

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

in section 3.1.6 of chapter 3. The detailed discussion of the different ranking

algorithms is out of the scope of this chapter and details can be found in section

3.1.5 .

5. Confirmation Experiments : Confirmation experiments assess how often the

injected bit-flips are caught by the subset of the assertions that are selected by

the ranking algorithm. There are two objectives in running confirmation exper-

iments; firstly, it is a way of assessing the effectiveness of the ranking algorithm

and assuring that the selected assertions meet their intended expectations in de-

tecting bit-flips. Secondly, unlike pre-silicon verification and manufacturing test

that benefit from well-defined and universally-adopted coverage metrics, there

is no such metric to assess the effectiveness and completeness of post-silicon

validation. It is not clear how to answer questions such as: ”how comprehen-

sive the validation sessions are?” or ”are we done yet?”. In quest of filling this

gap, we introduced bit-flip coverage estimate and flip-flop coverage estimate in

section 3.1.6. These metrics are related to the post-silicon validation’s error

space (bit-flips in flip-flops). Bit-flip coverage estimate, is defined as the ratio

between the number of bit-flips detected by the selected assertions and the total

number of bit-flips injected during the confirmation experiments. For example,

for the circuit in Figure 4.3 with three flip-flops, if 4 errors are injected in each

flip-flop (12 injections in total), the bit-flip coverage estimate would be 5/12

= 42%. Bit-flip coverage estimate is a useful metric that can provide internal

feedback to different steps in the entire methodology (e.g. ranker in Figure 4.1).

Nonetheless, since post-silicon validation sessions run for extensively long dura-

tions, if at least one bit-flip of all the bit-flips that occur in a flip-flop is caught

87

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

by an embedded assertion, this still represents critical information concerning

subtle design problems. Therefore, flip-flop coverage estimate is defined as the

ratio between the number of flip-flops for which at least one of the injected

bit-flips in them has been detected (at least one assertion violation) over the

total number of flip-flops. For instance, referring again to Figure 4.3, it can be

seen that there is no bit-flip detection for the second flip-flop. So, the flip-flop

coverage estimate is calculated as 2/3 = 66%. Note, since the purpose of post-

silicon validation is not to contain or recover from every bit-flip but rather to

find out if bit-flips occur and, if they occur, to collect critical information for

root-cause analysis, we consider flip-flop coverage estimate as a more suitable

metric than bit-flip coverage estimate. As a final note, the reason we use the

word “estimate” in both coverage metrics is because of the fact that unlike

stuck-at faults in manufacturing test, bit-flips are single-cycle transient errors

and if a bit-flip in a flip-flop is detected by an assertion at a particular time,

there is no guarantee that another bit-flip in the same flip-flop is detected by

D Q

clk

D Q

clk

D Q

clk

detected bit-flip

Missed bit-flip

Figure 4.3: Hypothetical example for representing the difference between bit-flip and
flip-flop coverage estimates.

88

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

that particular assertion. As it will be discussed later, this is due to the fact

that an assertion can only detect a bit-flip if all the antecedent signals of the

assertion are satisfied.

This section reviewed various steps that are carried out to select a subset of

assertions, namely Candidate Assertions in Figure 4.1. The reader is referred to

chapter 3 for the a more detailed discussion of our proposed methodology. In the

following sections, we will elaborate on the new features that can be integrated to the

different boxes in Figure 4.1 and lead to more accurate results in terms of coverage

estimate, while also reducing the amount of on-chip area needed to accommodate the

embedded hardware assertions.

4.2 Assertion Synthesis

As stated in section 4.1, RTL assertions are written in either PSL or SVA formats

which cannot be directly synthesized to hardware. Although these high-level asser-

tions monitor design’s behavior and provide useful feedback in pre-silicon verification,

in order to perform on-chip property checking during post-silicon validation and de-

bug, their equivalent hardware must be generated and integrated to the circuit under

validation (CUV). In this section, a simple assertion synthesis method which is tuned

towards the assertions used in our work is introduced. It is important to note that

our synthesis tool only supports a subset of assertions and by no means it should be

regarded as a complete assertion synthesis tool. As it will be elaborated, in addition

to generating the hardware equivalent of the assertions, we use our method for fast

estimation of the area overhead of each individual assertion.

89

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

The problem of automating the generation of equivalent hardware units of pre-

silicon assertions has recently been well studied (e.g., [134], [162], [163] and [135]).

Most of these tools support sophisticated features such as sequences, repetitions, first

occurrence matching, assertion covers and etc. However, since the assertions that are

employed for bit-flip detection have a simplified structure (an antecedent condition

implies a consequence), in this section we propose our own custom SVA assertion

synthesis algorithm. It is important to note that the resulting circuit incorporates

only those operators and constructs that are required by the assertions used for bit-

flip detection and therefore additional features that serve purposes other than what

is needed in this work are not taken into consideration. One objective of removing

the unnecessary features is to reduce the area overhead. In addition to this, the

other motivating factor for using an in-house assertion synthesis algorithm is that,

we can estimate each assertion’s area overhead because we know the exact number

of flip-flops, inverters and the size of the AND gate that constructs the assertion.

Since the ranking algorithm does relative area comparisons in between the assertions,

it is sufficient to work out the estimated area overhead as long as the method is

consistent for all the assertions. This will eliminate the need to pass the equivalent

hardware unit of the assertions through commercial synthesis tools to achieve their

area estimates (needed by the ranking algorithm), which, as was shown in section

3.3.3, is a time-consuming process specially with the large number of assertions in

preparation experiments.

The focus of this section is on assertion synthesis and therefore, for the sake of

completeness, we quickly review the structure of SVA assertions. This provides the

necessary foundation for understanding the different steps in our assertion synthesis

90

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

flow. Figure 4.4 represents a type of an SVA assertion that we typically encounter

for bit-flip detection. In SVA, the ## construct is called the cycle-delay construct

[27] and the number followed by ## represents the cycle in which the right-hand side

Boolean event must occur with respect to the left-hand Boolean event. In addition,

as shown in Figure 4.4, the signals are grouped based on whether they are at the

left side of the implication operator (antecedent signals) or at the right side of it

(consequent signals). SVA provides two implication operators |−> and |=>. The

former is called the overlapped implication operator which means that if the left

hand side prerequisite sequence holds, then the right hand side sequence must hold.

The latter is called the non-overlapped implication operator which is similar to the

overlapped operator except for the fact that the right-hand side sequence is evaluated

in the next clock cycle. Hence a => b and (a |−> ##1 b) are equivalent.

assert property ((a==1) && (b==0) ##1 (c==1) |=> (d== 0)));

Antecedent Signals Consequent Signals

a

c

b

a b c assr

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Illegal combination

Figure 4.4: Example of an System Verilog Assertion (SVA assertion).

Now let us assume for the sake of simplicity that we want to generate the hardware

circuit for an assertion with all its signals in the same clock cycle (temporal depth of

zero), assert property ((a == 1) && (b == 0) |−>(c == 1)) . This assertion is read as:

if signal a is 1 and signal b is 0, signal c is implied to be 1. Now since we know that

so long as a is 1 and b is 0, signal c is 1, a hardware circuit that evaluates to logic 1

when the assertion is violated can be constructed using a 3-input AND gate as shown

in Figure 4.5. The output of the assertion should go to 1 when at the same clock

cycle, signals a and b are 1 and 0 respectively but signal c is 0 instead of 1. Hence,

91

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

in order to trigger that the assertion is violated, the complement of signal c must be

connected to the AND gate. The output of the hardware circuit associated with the

assertion will always be 0 as long as a, b and c contain legal values. As shown in

Figure 4.5, only one entry in the associated truth table of the circuit evaluates the

output to 1 and that entry is known as the illegal signal combination.

assert property ((a==1) && (b==0) ##1 (c==1) |=> (d== 0)));

Antecedent Signals consequent Signals

a

c

b

a b c assr

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Illegal combination

Figure 4.5: Example showing the equivalent hardware circuit for the SVA assertion
“assert property ((a == 1) && (b == 0) |−> (c == 1)). ”

For all the assertions that are to be synthesized, one has to find whether a signal is

at the antecedent side or the consequent side, its polarity which determines whether

it must be inverted or not when it is connected to the AND gate and lastly its time-

frame. For instance, for the assertion that was just discussed, the required synthesis

information can be encoded in an statement as (a0,−b0,−c0). The sign before a signal

determines if the signal must be inverted or not when connected to the final AND gate.

Likewise, the subscript represents the signal’s time-frame. For assertions with non-

zero temporal depth (assertions that span across multiple clock-cycles), signals with

the highest time-frame are directly connected to the AND gate whereas other signals

are buffered accordingly. Figure 4.6 provides three examples for generating hardware

circuits for assertions with and without temporal depth of 0. As it can be seen, for

each signal, the time-frame and the polarity is found and is subsequently connected

92

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

assert property (@ (posedge clock) ((a==1) |-> (b==0)));

Signals polarity and time-frame

a

b

assert property (@ (posedge clock) ((a==0) |=> (b==1)));

Signals polarity and time-frame

𝑎0, 𝑏0

−𝑎0, −𝑏1

Signals polarity and time-frame 𝑎0, −𝑏2, −𝑐2

assert property (@ (posedge clock) ((a==1) ##2 (b==0) |-> (c== 1)));

a

b

D Qa

b

QQ DDa

b
c

Figure 4.6: Example showing the equivalent hardware circuit for assertions used in
this work.

to the AND gate. The algorithm for finding the required synthesis information for

an assertion has several steps which are elaborated below.

1. For each signal si in the assertion statement (both antecedent and consequent

sides), find it’s time-frame and prepare a time-frame list TS = {ts1 , ts2 , . . . , tsn}

in such way that the time-frame for the leftmost signal is 0. While moving from

the first antecedent signal to the last consequent signal, each time a cycle-delay

construct is seen, the time-frame is increased by the value that follows the cycle-

delay construct. Note that |=> is equivalent to ##1 |−>. For example, in the

93

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

third example of Figure 4.6, the time-frame of a is 0 while the time-frame of b

is 2. The time-frame of the consequent signal c is also 2.

2. Prepare the list of signals in the consequent side C = {c1, c2, . . . , cn} and an-

tecedent side A= {a1, a2, . . . , cn}.

3. For each signal si whose time-frame is smaller than the maximum time-frame,

create a shift register with the size equals to (max(TS)− tsi). Signals with the

maximum time-frame are connected directly to the AND gate with the correct

polarity which is found in the next two steps.

4. Find polarity of signals in the consequent side PC = {pci | ∀ci ∈ C if (ci ==

1), pci ← false, else pci ← true}. If polarity is false, the signal must be

complemented and if it is true, it is connected as is. For instance, for the

third assertion in Figure 4.6, the consequent signal c must be a 1, therefore its

polarity is negative thus, its complement is connected to the AND gate.

5. Find polarity of signals in the antecedent side PA = {pai | ∀ai ∈ A if (ai ==

1), pai ← true, else pai ← false}. For instance, for the third assertion in

Figure 4.6, the antecedent signal b must be a 0, therefore its complement is

connected to the AND gate. Note, whenever the output of the AND gate goes

to 1, it means that the assertion has been violated.

The area estimate for each assertion is estimated based on:

Assr(i)area = (α× F) + (β × In) + (γ × Inv) (4.1)

where F represents the total number of flip-flops, Inv is the total number of

94

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

inverters and In represents the number of inputs to the AND gate. α, β and γ

are technology dependent coefficients that reflect the relative differences in the area

of flip-flops, inputs to an AND gate and inverters. These three coefficients can be

customized by the user based on the specific standard cell library that is employed.

Finally, it is important to note that the very purpose of finding the area estimates

is to provide necessary information for the cost function of the heuristic ranking

algorithm detailed in section 3.1.5. It by no means provides the exact area overhead

of the assertions, nonetheless rapid computation of estimates still captures the size of

assertions relative to each other and therefore it avoids the need to use third party

commercial synthesis tools to compute the exact area.

4.3 Architecture

In this section we present our proposed emulation-based methodology. At first, we

highlight the benefits of emulation and subsequently detail the hardware architecture

and the associated tool flow.

4.3.1 Benefits of Emulation for Assertion Assessment

Not only the functional simulators are slow for logic simulation, by adding a consider-

able number of assertions with the resulting overhead caused by concurrent property

checking, the computational speed degrades significantly to the point that running

experiments with more than 10 error injections per flip-flop, especially in prepara-

tion experiments (due to having a large number of assertions), becomes impractical.

Unlike assertions in pre-silicon verification that are high-level behavioral property

95

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

checking statements, the assertion checkers in hardware are logic blocks themselves.

For instance, the digital circuit in Figure 4.7 represents a generic comparator that

takes two unsigned n-bit registers as the input and depending on their value, provides

a 3-bit output which is registered in one of the flip-flops marked as X,Y and Z. At

any time, these flip-flops will store a one-hot code, as shown at the right side of the

figure. One possible assertion for these outputs is to detect the all-zero state, which

can be done in hardware with a 3-input AND gate with inverted inputs. In case there

is a bit-flip in any of the flip-flops that is supposed to hold a 1, the output of this

AND gate will be asserted. A critical benefit of assessing assertions in an emulation

environment is that all the blocks run concurrently, hence there is no overhead in

terms of the clock cycle count. Also, so long as the critical paths are in the circuit-

under-validation (CUV) and not in the assertion blocks, there will be no penalty in

terms of the clock frequency.

n-bit

G
e

n
e

ri
c

C
o

m
p

ar
at

o
r

D Q
X

D Q
Y

D Q
Z

A
ss

e
rt

io
n

 U
n

it

1 = Violation

A

A < B

A = B

A > B

X Y Z

A<B 1 0 0

A=B 0 1 0

A>B 0 0 1

Legal Outputs

n-bitB

Figure 4.7: Example of instrumenting CUV with hardware assertions. In case there
is a bit-flip in any of the X,Y or Z registers, the output of the assertion unit will
evaluate to 1 which indicates a property violation.

96

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Another benefit of emulation is to improve the density of the violation matrix, as

illustrated in Figure 4.8. We have observed that the small number of error injections,

which is limited in simulation-based experiments by their slow speed, affects the

accuracy of the violation matrix. By increasing the number of error injections, the

non-zero elements in the violation matrix will increase which clearly provide a more

meaningful input to the assertion ranker. For instance, Figure 4.8 represents an

emulation-based violation matrix, similar to the matrix in Figure 4.2, but with some

elements having a larger value because of the increased number of injections that can

be performed in emulation. Since even one error detection in a flip-flop is sufficient

for considering that flip-flop as covered, the flip-flop coverage estimate will increase if

the number of all-zero rows in this matrix decreases. Since the ranker select a subset

of assertions for maximizing both the bit-flip coverage estimate and flip-flop coverage

estimate, its accuracy is central the accuracy of the selected assertions.

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 5

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

a
ss

r
5

a
ss

r
1

a
ss

r
2

a
ss

r
3

a
ss

r
4

a
ss

r
5

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

flip-flop 1

flip-flop 2

flip-flop 3

flip-flop 4

Figure 4.8: An example of a violation matrix prepared by emulation-based experi-
ments. The red elements are different from the elements in the same position in the
matrix from Figure 4.2.

97

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

4.3.2 Hardware Architecture and Tool Flow

The direct benefit of running emulation-based preparation and confirmation experi-

ments is the ability to inject a large number of errors in a considerably shorter time

when compared to simulation-based experiments. This increases the likelihood of

the circuit being pushed to the states that could not be reached in simulation due

to limited number of applied vectors. Emulation has been extensively used in test

for fault grading, e.g., [164], and fault-tolerant computing for assessing the impact of

single-event upsets, e.g., [165]. Nonetheless, as articulated in the previous sections

and chapters, post-silicon validation is a different problem and our proposed archi-

tectures and tool flow have been designed toward a better assessment and selection of

hardware assertion checkers for bit-flip detection. Figure 4.9 overviews the architec-

ture and the details for each block are elaborated below. As shown later, the internals

of the sub-blocks in Figure 4.9 are different for preparation experiments where the

focus is on grading all the assertions and confirmation experiments where the focus is

on measuring the coverage metrics. In addition, the confirmation experiments them-

selves have different architectures for bit-flip coverage estimate and flip-flop coverage

estimate.

Phase Locked Loop

For reasons that will be clarified in section 4.3.2, one of the proposed architectures

operates using two clock domains. We have decided to use phase-locked loops (PLLs)

mainly because of the following reasons: first, using divide-by-n clock division is

prone to timing closure problems and secondly, the logic resources that are required

to implement divide-by-n clock division can be saved by utilizing embedded PLLs that

98

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

LFSR
Generator

Memory
Generator

Controller
Generator

source

Sy
n

th
e

si
ze

d
 a

ss
er

ti
o

n
s

Config.

Config.

Config.

LFSR

A
ss

e
rt

io
n

 u
n

it

CUV
assr_1_cnt

assr_n_cnt

CUV inputs

clock

reset

Controller

B
u

gE
n

Em
b

ed
d

ed
 M

e
m

o
ry

V
io

la
ti

o
n

 c
o

u
n

ts
C

o
n

tr
o

l s
ig

n
al

s

M
e

m
o

ry
 C

o
n

te
n

ts

PLL Clock_Fast Clock_Slow

synreset

To
p

-l
ev

e
l C

re
at

o
r

FPGA

LFSR

Injection
time

Figure 4.9: Tool flow for automatic generation of emulation-ready hardware architec-
ture to accelerate error injection experiments in post-silicon validation.

are pre-fabricated on most FPGAs. Our current implementation will instantiate a

PLL that generates a fast and a slow clock signal. The ratio between the fast and slow

clocks are configurable by the user (dependent on the specific FPGA device that is

used). Note that the side-effects of using PLLs such as increased energy consumption

and routing difficulties for very large designs are out of the scope of this work.

Input Stimuli Generation

Since the input stimuli used in both preparation experiments and confirmation ex-

periments are random, a PI-bit linear feedback shift register (LFSR) is created by

our tool where PI is the total number of primary inputs in the design. The charac-

teristic polynomials for LFSRs are primitive and irreducible in order to support the

maximal-length sequences.

99

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Circuit-Under-Validation and Assertion Unit

Prior to connecting the CUV to the assertion unit, each flip-flop in the design is

instrumented with a 2-to-1 MUX to facilitate error injections. The inputs of the

MUX are connected to Q and Q̄ outputs of the flip-flop. The select signal of MUX,

which is asserted through the controller (detailed below) based on the logic values of

BugEn, injection time and synreset signals, determines when a bit-flip should occur.

Note that all bit-flips that are injected are single-clock-cycle bit-flips. In addition, the

assertion unit which is the synthesized hardware of the SVA assertions is connected

to the CUV as shown in Figure 4.9.

Controller

The objective of the controller is to determine when and where a bit-flip should occur,

monitor the status of assertions after bit-flip injections and initiate a burst of writes to

the memory. The injection time is determined by a 20-bit LFSR, inside the controller

whose initial state is configured randomly by our proposed tool prior to compilation.

Once the entire platform starts running, the controller will inject E number of errors

in the first flip-flop at different times which have been determined by the LFSR within

the control unit. E is selected by the user and it is passed as an option to the proposed

toolflow. After each error injection (a single cycle bit-flip), the circuit continues to

run for a predefined number of clock cycles (given by the user) during which the

controller activates the assertion unit to monitor if there are any violations. Due to

the evident differences in the objectives of preparation experiments and confirmation

experiments, the sequence of writes to the memory are done through two different

architectures.

100

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

(a) Preparation Experiments architecture: For each assertion there is a counter

which determines the number of times the respective assertion has been violated.

Once all the errors are injected in a flip-flop, the controller stops the circuit’s

operation. At this time, the controller will check the violation count register of

each assertion and organizes memory writes in case a non-zero value is observed.

The controller’s interface to the memory can be configured in two different ways.

The first configuration utilizes two clock-domains in such way that the sequence

of checks for each assertion is done through a second finite-state machine (FSM)

which works based on a slower clock as shown in Figure 4.11. The main reason

for using a slower clock for this part of the design can be explained as follows.

For the sake of argument, assume that we inject E number of bit-flips in one of

the flip-flops in a design and that the design has M number of assertions. After

all the injections have been done in a flip-flop, the controller will have to check

the violation counter of every single assertion. Since a fairly large number of

assertions are instrumented to the CUV, which need to be checked one by one,

and also the fact that there is a single embedded memory that can accommo-

date one write at a time, the multiplexer that determines the words that are

to be written to the memory can become reasonably large as shown in Figure

4.10(a). This can result in a timing closure problem due to long propagation

delay in this multiplexer. One has to note that the number of clock cycles spent

on checking the status of each assertion counter is bounded by the number of

assertions (in this case M), which is significantly less than the number of clock

cycles needed for error injections (E× number of clock cycles between error in-

jections). Therefore it is sensible to keep the clock frequency of error injection

101

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

block (CUV and assertion checker unit) as high as possible and adjust the clock

frequency of the assertion checking FSM as shown in Figure 4.11.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

To memory

n
-t

o
-1

 M
U

X

FSMFSM

assr_1_cnt

assr_2_cnt

assr_n_cnt

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

assr_1_cnt

assr_2_cnt

assr_n_cnt

Sh
if

t
R

e
gi

st
e

r

FSMFSM

To memory

(a) (b)

Figure 4.10: Memory interface for two-clock domain (a) and single-clock domain (b)
architectures in preparation experiments. Note that flop ID and assertion ID are
concatenated to the output of the MUX which then will be written to the memory.

The following example shows that using a slow clock to write the assertion

counts to memory will have a negligible impact on the overall emulation time.

Assume that we want to run emulation experiments for a circuit with 1000

flip-flops (F) and 400 assertions (A) and that 1024 error injections (E) are

scheduled to be injected in each flip-flop. The insertion time is generated by a

102

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

20-bit LFSR. Let us assume that on average, 210 clock cycles (CC) are elapsed

for each error injection. Hence the total time spent for error injections based

on a 50 MHz clock (F50) is:

T = F×E×CC× 1

F50

= 103×210×210×20ns = 20.9 s

Now the number of clock cycles that are spent for checking assertions after error

injections in a single flip-flop is based on the total number of assertions. Hence,

the amount of time spent in this step for error injection in all flip-flops (F) for

a 50 MHz and a 1 MHz clocks are:

T Assr
clock50 =F×A× 1

f50
= 1000×400× 1

50× 106
= 8ms

T Assr
clock10 =F×A× 1

f1
= 1000×400× 1

01× 106
= 400ms

Based on the observations in the example above, it can be concluded that

the performance penalty of using a slower clock for memory writes (in this

case 1 MHz clock) is only 1.8%. On the other hand, if the clock frequency is

slowed down to accommodate the slow paths in the memory writing FSM, the

performance penalty will scale linearly with the increase in the clock period.

For a circuit of a size like the one in this example, we have observed that the

clock period can become three times longer.

It is worth mentioning that so long as the ratio between the two clocks is a nat-

ural number, synchronizers will not be needed between the two clock domains.

103

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

This is because the handshaking signals (dotted arrows in Figure 4.11) that fa-

cilitate the communication between the faster clock FSM and the slower clock

FSM are not acknowledged until they are captured by the slower clock FSM

and the other way round. One might argue that the slower clock can be avoided

by pipelining this large multiplexer in such way that one write is performed in

each clock cycle. Although this will lead to faster memory updates, using this

approach will result in significant on-chip area usage associated with pipelining

registers and logic (recall that the number of inputs to the multiplexer is in

the range of hundreds). Therefore we choose to operate this FSM at a lower

frequency (thus avoiding the registers needed for pipelining).

For applications where only one clock domain is available, the architecture can

be configured in such way that, once all the errors are injected in a flip-flop,

the contents of each assertion’s violation counter is stored in a shift-register

structure as shown in Figure4.10(b). Afterwards, contents of this shift-register

are offloaded to the memory one-by-one at every clock cycle. The small boost to

the run-time is significantly outweighed by the resulting resource usage overhead

imposed by the size of shift-register that has to account for the worst-case

scenario (many violations per error injections). Therefore, the author prefers the

fast/slow clock method, especially because the performance penalty is negligible.

Finally, please note that, as mentioned earlier, the violation matrix that is

created in preparation experiments provides the necessary information for the

assertion ranker to select a subset of assertions that are used in confirmation

experiments to measure the bit-flip coverage estimate and the flip-flop coverage

estimate.

104

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

START

Generate Error Insertion Time

Inject Bitflip in Flipflop

Run for K No. of Clock Cycles

Read Assertions

Check Assertion

Assr.Violation?

All Assr. Checked?

Apply Synchronous Reset

All Flipflops Processed?

DONE

Memory Write

Move to Next
Asserition

YESNO

NO

YES

Increment Flipflop ID

NO

All Injections Done?

NO

YES

YES

Fast Clock FSM Slow Clock FSM

Figure 4.11: Controller FSM showing two different state machines for fast and slow
clocks. Note that k is user defined and represents the number of clock cycles for which
the circuit runs after each bit-flip injection.

105

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

(b) Confirmation Experiments architecture: As explained in section 5 and in

detail in section 3.1.6 of chapter 3, the focus of the confirmation experiments

is on the assessment of the assertions that have been selected by the ranking

algorithm. The metrics bit-flip coverage estimate and flip-flop coverage estimate

will determine whether the selected assertions fulfill the required expectations or

not (these metrics were introduced in section 3.1.6 of chapter 3). For computing

the flip-flop coverage estimate the number of times these assertions have been

violated is of no importance, unlike preparation experiments where for the sake

of grading, the number of times an assertion has fired will increase its bit-flip

detection potential and hence is important. As a result, the violation counters

of the assertions are removed and the assertion outputs are connected to a flag

register that becomes 1 (and stays 1) if at least one out of all the bit-flips in

the target flip-flop violates that assertion. A memory write is organized if the

output of the OR gate in Figure 4.12(b) is 1. The contents of the registers are

reset when all the bit-flips are injected in a flip-flop, the longest sequential depth

of all the assertions has passed and the memory write has been performed. For

bit-flip coverage estimate, on the other hand, the status of assertions must be

checked every time a bit-flip occurs in a flip-flop. Hence, after each bit-flip, a

memory write is organized if the output of the OR gate in Figure 4.12(a) is

1. The contents of the registers are reset every time a bit-flip is injected and

the longest sequential depth of all the assertions has passed. Note, eliminating

violation counters will be particularly useful for minimizing the on-chip memory

usage overhead as well as compilation time for generating the FPGA bitstream.

106

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

N-input
OR Gate

D Q

D Q

D Q

𝑎𝑠𝑠𝑟1

𝑎𝑠𝑠𝑟2

𝑎𝑠𝑠𝑟𝑛

N-input
OR Gate

D Q

D Q

𝑎𝑠𝑠𝑟1

𝑎𝑠𝑠𝑟𝑛

0

1

0

1

1

1

(a) (b)

M
em

o
ry

 W
E

M
em

o
ry

 W
E

Figure 4.12: Memory interface for (a) bit-flip coverage estimate and (b) flip-flop
coverage estimate. When write enable is granted, a single-bit 1 is written to the
memory.

Memory Unit

During both the preparation and the confirmation experiments, the information re-

lated to the bit-flips that have been detected by assertions are stored in the embedded

memory. The largest amount of information that needs to be stored is in preparation

experiments. This is because, in order to assess the quality of assertions, one has to

know the flip-flops they can potentially cover (detect bit-flips in that flip-flop) and

the number of times they can do it when multiple errors occur in the same flip-flop.

Hence, as shown in Figure 4.13(a), each word in the memory contains information

about the flip-flop, the assertion ID that has caught the bit-flips in that flip-flop and

the number of times that assertion has been violated. The width of Flop ID and Assr.

ID are configured based on the total number of flip-flops in the design and the total

number of assertions that are embedded in hardware. The width of Violation Cnt.

107

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

segment is determined by our tool based on the maximum number of error injections.

In order to determine the memory depth, we used our findings from simulation-based

experiments. Based on those observations, the expected number of assertions that

would fire for each bit-flip injection is set to 10. Therefore, we used this coefficient for

accommodating enough space in the available physical memory. Though, for debug

sessions that have a large number of assertions and using 10 as the coefficient would

result in the memory not fitting on the target FPGA device, smaller coefficients in

the range of 1 to 10 is used. The tool flow has an automatic mechanism such that if

memory overflow occurs before all the flip-flops are evaluated, the session is divided

into multiple sessions, with less assertions in each session. Clearly, this coefficient

and the number of assertions that can be mapped to the device in a single session

depends on the capacity of the target device.

During confirmation experiments, only the information needed to determine bit-

flip coverage estimate and the flip-flop coverage estimate are stored. For bit-flip

coverage estimate, every time a bit-flip is injected in a flip-flop and the largest se-

quential depth of all assertions is passed, the output of the OR gate in figure 4.12(a)

is evaluated such that if it is 1, it implies that the bit-flip has been detected and a

single-bit 1 is written to the memory in a sequential manner. In an ideal case where

all bit-flips are detected, the maximum required memory depth equals the total num-

ber of flip-flops multiplied by the number of errors that are injected in each flip-flop.

For instance, for a design with 20 flip-flops, if 5 bit-flips are set to be injected, the

required memory size would be 100 bits.

On the other hand, for flip-flop coverage estimate, after all the bit-flips are injected

in a flip-flop, if the output of the OR gate in Figure 4.12(b) is 1, then that flip-flop is

108

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Word Length
M

e
m

o
ry

 D
e

p
th

=
1
~
1
0

×
fl
o
p
N
o
.

Fl
o

p
 ID

.

A
ss

r
ID

.

V
io

la
ti

o
n

 C
n

t.

M
e

m
o

ry
 D

e
p

th
=
fl
o
p
N
o
.×

In
je
ct
io
n
N
o
.

M
e

m
o

ry
 D

e
p

th
=
fl
o
p
N
o
.

1-bit 1-bit

(a) (b) (c)

Figure 4.13: Memory layout for (a) preparation experiments, (b) bit-flip coverage es-
timate in confirmation experiments and (c) flip-flop coverage estimate in confirmation
experiments.

marked as potentially covered. Since we want to determine how many flip-flops are

potentially covered, it would be sufficient to store a single-bit 1 every time a flip-flop

is marked as covered. Therefore, the maximum required memory depth is the total

number of flip-flops. Clearly, the memory address at which a 1 is written corresponds

to the ID of the covered flip-flop. Memory layouts for confirmation experiments are

shown in Figures 4.13(b) and 4.13(c).

4.4 Results and Discussion

The proposed tool flow has been implemented on an Intel core i7 machine with 32GB

of RAM using GCC 4.8.4 for compiling C++ source codes and Tcl 8.5 and Python

2.7.6 for scripting. For assertion discovery, we have used GoldMine [3], an automatic

109

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

assertion generation tool which has multiple built-in data mining engines for finding

the likely design invariants. These likely invariants are passed through a formal veri-

fication tool that filters out the incorrect invariants leaving true invariants as design’s

final assertions. Since GoldMine operates based on simulation traces, results from

both the random input (Goldmine’s default) stimuli and the deterministic vectors

produced by Validation Vector Generator tool from Virginia Tech [150] have been

provided to GoldMine’s mining engine. Assertions from these two methods have

been merged as are the assertions from different mining engines of GoldMine. Details

about the specifics of GoldMine are out of the scope of this work and the interested

reader is refered to [3] and [62].

In order to generate the equivalent hardware circuits of the high-level SystemVer-

ilog [166] Assertions (SVA assertions), we have implemented the algorithm that was

detailed in section 4.2 in such way that, initially, all the assertions that have been

found using GoldMine are added to the source code and passed to our tool to pro-

duce their equivalent hardware description language (HDL) description and their area

estimate (required by the ranking algorithm). Once a subset of these assertions are

selected through the ranking algorithm, namely candidate assertions in Figure 4.1, we

will instrument them to the original design and pass them through Synopsys Design

Compiler to find the accurate area overhead, which takes into account the logic shar-

ing in between the assertions. This is a more realistic measure of the area overhead

(due to logic sharing between assertions) than the trivial method of summing up the

area overheads of the individual assertions.

To support the random occurrence of bit-flips in post-silicon validation, we have

110

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

used random input stimuli throughout both the preparation and confirmation exper-

iments. As explained in section 4.3.2, the LFSR unit is designed to produce random

vectors whose bit-width is equal to the number of CUV inputs.

We have deployed our architecture on an Altera DE2 Cyclone IV device [167] with

a 50 MHz reference clock. All memory dumps have been done using the in-system

memory content editor feature of Quartus that operates through the JTAG port.

Finally, the faster clock in our controller in preparation experiments is a 50 MHz

clock and the slower one is a 1 MHz clock (both coming from a PLL unit), and the

confirmation experiments operate on a single 50 Mhz clock.

The most important outcome of emulation (and the key motivation for its usage) is

the ability to create a more accurate violation matrix after preparation experiments.

This, in turn, results in an improvement in the selection of assertions that are to

be mapped to hardware, which eventually leads to more precise coverage estimates.

Therefore, we have integrated our proposed tool flow and architecture to the method-

ology shown in Figure 4.1 and ran preparation experiments with 256 error injections

(discussed later) per flip-flop. Afterwards, we have passed the resulting violation ma-

trix to the assertion ranker, which selects a different number of assertions by varying

the wire count constraint. Following to this, we ran confirmation experiments on each

set of these selected assertions and varied the number of error injections from 5 to

5000, something that is infeasible to do in simulation-based experiments. Table 4.1

provides the total number of assertions in preparation and confirmation experiments

for the three largest ISCAS circuits. Please note that the number of assertions for

preparation experiments is not bounded by the wire usage and is dependent on the

111

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

assertion discovery engine whereas for confirmation experiments, the number of se-

lected assertions is dependent on the ranker which takes into account the wire usage

and the target coverage metric. In the following subsections, we will provide and

discuss our experimental findings.

Wire Circuit
Preparation Confirmation
Experiments Experiments

usage No. of assertions for No. of assertions for
bit-flip coverage flip-flop coverage

estimate estimate

10%
s35932 8192 158 156
s38417 4488 107 103
s38584 28365 210 174

20%
s35932 8192 245 240
s38417 4488 269 214
s38584 28365 503 335

30%
s35932 8192 331 329
s38417 4488 397 333
s38584 28365 817 478

40%
s35932 8192 418 415
s38417 4488 510 456
s38584 28365 1114 633

Table 4.1: Number of assertions in preparation experiments and confirmation exper-
iments for different wire usage.

4.4.1 Preparation experiments

Due to the limited capacity of FPGAs, it is not feasible to instrument all the as-

sertions discovered by GoldMine and map them to the FPGA for the preparation

experiments (see Figure 4.1 from Section 4.1). Hence, assuming that only one FPGA

board is available, depending on the number of assertions and the FPGA capacity,

the preparation experiments are divided into multiple emulation sessions as seen in

112

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Emulation Session 1

Memory
Dumps

0
0
1
0

3
5
0
0

2
0
0
1

1
0
4
3

as
sr

1

as
sr

2

as
sr

3

as
sr

4

flop 1

flop 2

flop 3

flop 4

0
0
1
1

as
sr

5

Accurate Violation Matrix

Emulation Session 2 Emulation Session 𝒏

Figure 4.14: Running preparation experiments in multiple emulation sessions.

Figure 4.14. It is worth noting that, although one can have a single emulation session

by using a high-capacity FPGA that can accommodate all the assertions that are

mined, it is more practical to employ multiple FPGA boards (with devices of lower

capacity) and run experiments in parallel because there is no dependency in between

the different emulation sessions. Though in this work, we have used a single FPGA

board and all our comparisons are based on measuring the total time spent in all the

emulation sessions.

Table 4.2 shows the comparison between the total amount of time spent in sim-

ulation and emulation for running preparation experiments for the ISCAS89 s38584

benchmark circuit. The reason behind choosing this circuit for comparison is that it

has the highest number of assertions compared to the other two ISCAS circuits that

have more than 1000 flip-flops. Therefore, it will have the worst run-times both in

emulation-based (larger number of emulation sessions) and simulation-based (larger

number of assertions) experiments. Note that a similar trend also holds for s38417

113

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Preparation Experiments
No. of error Run-time Flip-flop

injections Simulation Emulation coverage
(hours) (hours) estimate

2 26.3 45× 0.001 = 0.045 79.6%
8 105 45× 0.12 = 5.4 86.15%
64 - 45× 0.89 = 40.05 88.56%
256 - 45× 1.64 = 73.8 88.94%

Table 4.2: Comparison of run-time and accuracy improvements for ISCAS s38584
circuit. The emulation (total) represents the total time spent on creating the top-
level design, preparing the bitstream, compilation and on-board execution together
with memory dumps.

and s35932 circuits from the ISCAS89 benchmark set [8].

As stated earlier, for the same number of error injections, the simulator run-times

are longer for preparation experiments in comparison with the confirmation experi-

ments. This is because of the fact that in preparation experiments, a large number

of SVA assertions are added to the the design and the associated overhead caused

by the concurrent property checking makes the simulators run much slower when a

large number of assertions are added to the design. This is however not an issue in

emulation because the assertions are synthesized to their hardware equivalent circuit

and all the units (CUV and assertion units) are working concurrently at the same

clock speed. Nevertheless, as shown in Figure 4.14, due to the limited FPGA device

capacity and the large number of assertions that need to be evaluated in prepara-

tion experiments, the experiments are done in multiple sessions. For ISCAS s38584,

the entire experiment was divided into 45 sessions. The reported run-time is the

sum of time spent in each session. Due to long run-times, authors did not carry out

simulation-based experiments beyond 20 error injections per flip-flop for preparation

114

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

experiments. It is worth to note that even in cases with small number of error injec-

tions at which the FPGA compilation overhead might exceed the overall simulation

time, if there exists a very large number of assertions, the simulator becomes too

slow to the point that it will still be faster to run emulation experiments with the

compilation overhead

In addition to the significant run-time improvements, it can be seen that the flip-

flop coverage estimate also increases by 9%. This means that the ranker will benefit

from a more accurate relation between flip-flops, assertions and their error space (Vi-

olation Matrix) which results in the selection of more accurate candidate assertions.

Table 4.3 represents the maximum observed flip-flop coverage with 256 number of er-

ror injections in preparation experiments which indicates the experimental maximum

possible flip-flop coverage in case all of the assertions are instrumented to the design.

As it can be seen, ISCAS s38417 has the lowest maximum flip-flop coverage which is

explained by the lower than usual (compared to other benchmark circuits) number

of assertions that could be mined for this circuit.
Circuit Flip-flop Coverage (%)
s35932 98.6%
s38417 54.7%
s38584 88.9%

Table 4.3: Maximum observed flip-flop coverage in preparation experiments for three
largest ISCAS benchmark circuits.

4.4.2 Confirmation Experiments

During confirmation experiments, only the selected assertions from the ranker (candi-

date assertions in Figure 4.1) are instrumented to the design. Using our current setup

115

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

No. of Wire Count Bit-flip Coverage
Injections (%) Estimate (%)

s35932 s38417 s38584

1

10 8.7% 2.2% 9.9%
20 13.3% 8.4% 16.5%
30 34.6% 13.2% 22.8%
40 23.8% 23.1% 33.4%

2

10 13.4% 3.7% 9.7%
20 20.4% 12.6% 20.3%
30 26.1% 22.4% 25.1%
40 33.8% 29.8% 31.4%

8

10 12.5% 3.5% 9.6%
20 18.4% 12.4% 19.8%
30 23.9% 20.8% 24.7%
40 31.6% 28.7% 32.4%

256

10 13.1% 3.4% 8.4%
20 19.8% 12.1% 19.1%
30 25.3% 20.6% 23.4%
40 30.2% 27.9% 30.9%

Table 4.4: Evaluation of bit-flip coverage estimate for different number of injections
with different wire budget constraints for three largest ISCAS benchmark circuit.

and the selected FPGA device, there is no need to have multiple debug sessions as the

entire architecture can be fit in a single debug session. Note that, as shown in Figure

4.13, the memory unit of confirmation experiments and its associated FSM are much

simpler than those of preparation experiments. During confirmation experiments, the

quality of the selected assertions are assessed using the two coverage metrics, bit-flip

coverage estimate and flip-flop coverage estimate that were introduced in chapter 3

and discussed in summarized in section 4.1. First we evaluate bit-flip coverage esti-

mate. The ranking algorithm in assertion ranker of Figure 4.1 is configured to select

a subset of assertions aiming at maximizing the bit-flip coverage estimate. Results

are shown in Table 4.4. The bit-flip coverage estimate is measured for 4 different

116

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

wire budgets from 10% of total number of flip-flops to 40% when the number of error

injections is increased from 1 bit-flip to 256 bit-flips per flip-flop. As it can be seen,

in general, as the number of error injection increases, the bit-flip coverage decreases.

This is because for a bit-flip to be detected, all the signals in the antecedent side of

an assertion must hold their intended value. If at that particular time when a bit-flip

is injected, the antecedent signals do not hold their supposed values, then the conse-

quent signal is not evaluated, the assertion is not exercised and hence, the bit-flip will

be missed. The associated area overhead for bit-flip coverage estimate for different

wire budgets is shown in Figure 4.15.

10 15 20 25 30 35 40

wire (%)

5

10

15

20

25

30

35

40

45

50

a
re

a
 (

%
)

s35932

s38417

s38584

Figure 4.15: Evaluation of area overhead with respect to different wire budgets for
the largest ISCAS circuits when the ranker is set to maximize bit-flip coverage.

117

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

As explained in section 5, although bit-flip coverage estimate is an important

metric that can be used to refine different steps in the entire methodology in Figure

4.1, flip-flop coverage estimate is a more relevant practical metric for the purpose of

post-silicon validation. To justify this, one needs to review the key difference between

the preparation experiments and the confirmation experiments. In confirmation ex-

periments, if, out of the many errors that occur in a flip-flop, even one is detected by

the embedded assertions, that flip-flop is considered as a potentially covered flip-flop.

This is however not the case in bit-flip coverage estimate because the focus is on

determining how many of the bit-flips are detected (covered) rather than flip-flops.

Since post-silicon validation sessions run for extensively long durations (weeks or even

months), even if one of the bit-flips in a flip-flop is detected by the assertions with

a reasonably short detection latency, the embedded trace buffers will start recording

relevant data that can later on be used for root-cause analysis [38, 142]. It is im-

portant to re-emphasize that the key objectives during post-silicon validation are to

detect errors with low latency and record data for root-causing, which is significantly

different from providing fault tolerant tolerant features, where correction of every

bit-flip is important. Therefore, even if a small number of bit-flips are detected in

a flip-flop over long validation sessions, the key objectives of post-silicon validation

have been met.

Figure 4.16 shows the flip-flop coverage estimate for different wire budgets when

the number of injections is increased from 5 error injections to 5000 error injections.

As it can be seen, with small number of injections, there is a possibility that some

assertions are never sensitized which leads to the inability to cover the flip-flops that

are monitored by those assertions. There is a steep increase when changing the

118

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

number of injections from 5 to 20, however the slope of the curves decreases as the

number of error injections increases further. This is because for the majority of the

flip-flops a bit-flip is detected in one of its first 20 occurrences in the respective flip-

flops. Nonetheless, because bit-flip detection is dependent on the state of the circuit

when the bit-flip occurs, for some flip-flops it might take a larger longer time until one

of those corner states is reached that will cause the assertions to detect the bit-flip.

Note, while the generation of long validation sequences for post-silicon validation is

an important problem, it is beyond the scope of this study. We rely on extensive

randomized validation sequences for our experiments and it is a normal expectation

that focused sequences (that push the circuit in its corner states faster) will detect

bit-flips even sooner.

Finally, the area overhead for assertions that maximize flip-flop coverage estimate

is shown in Figure 4.16d. It is worth noting that by using our custom synthesis tool

instead of a generic tool such as MBAC [134], as used in chapter 3, the area overhead

is improved on average by 4.2%. As explained in section 4.2, the main motivating

factors for designing our custom synthesis tool are 1) to abandon the need to pass

all the discovered assertions through a commercial synthesis tool to achieve their

area estimate and 2) to eliminate unnecessary features that are not needed in this

work from the synthesized model (e.g. violation counter for assertions in confirmation

experiments). The slight improvement in the area overhead is a by-product of the

latter point. The Author would like to emphasize that the focus of this work is not

on assertion synthesis and generic assertion synthesis, tools such as MBAC, support

most features in SVA and PSL, that we do not use and therefore our tool does not

support.

119

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

100 101 102 103 104

Injecition No.

10

20

30

40

50

60

Fl
ip

-f
lo

p
 C

o
v
e
ra

g
e
 E

st
im

a
te

(%
)

Wire Budget
10%

15%

20%

30%

40%

(a) Flip-flop coverage for ISCAS s35932

100 101 102 103 104

Injecition No.

10

20

30

40

50

60

Fl
ip

-f
lo

p
 C

o
v
e
ra

g
e
 E

st
im

a
te

(%
)

Wire Budget
10%

15%

20%

30%

40%

(b) Flip-flop coverage for ISCAS s38417

120

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

100 101 102 103 104

Injecition No.

10

20

30

40

50

60

Fl
ip

-f
lo

p
 C

o
v
e
ra

g
e
 E

st
im

a
te

(%
)

Wire Budget
10%

15%

20%

30%

40%

(c) Flip-flop coverage for ISCAS s38584

10 15 20 25 30 35 40

wire (%)

5

10

15

20

25

30

35

40

45

50

a
re

a
 (

%
)

s35932

s38417

s38584

(d) Area overhead with respect to different wire budgets. The ranker is set to maximize
flip-flop coverage

Figure 4.16: Evaluation of the flip-flop coverage and the resulting area overhead in
confirmation experiments for different wire counts.

121

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

4.4.3 Run-times for different steps of our methodology

Finally, we will provide the run-times of each box of the methodology in Figure 4.1.

Results provided in Table 4.5 are for the case where ranker has been constraint with

40% wire usage for ISCAS s38584 where the total time spent for finding assertions

as well as the total number of assertions is the largest (worst-case scenario). As for

assertion generation, GoldMine has been configured to generate assertions both by

coverage miner engine and decision forest miner engine. A combination of random

sxtimuli as well as deterministic stimuli produced by [150] has been used and the

formal verifier has been set to provide 6 to 10 counter examples which are fed back

to the miner for refining the original trace. For preparation experiments and confir-

mation experiments, a total of 28365 and 633 assertions were assessed respectively.

As for assertion mapper, the reported run-times are the sum of the run-time for as-

Task Configuration Time (hour)

Assertion Generation
Miner (Single Core),

Formal Verifier (Multi
Core)

228

Preparation
Experiments

FPGA (45 sessions), 256
injections

74

Assertion Mapper Single Core 0.17
Assertion Ranker Single Core 0.04

Confirmation
Experiments

FPGA (1 session), 5000
injections

16.2

Table 4.5: Evaluation of the running-time of different steps of the tool flow in Figure
1 for ISCAS s38584.

sertion synthesis using our proposed algorithm in section 4.2 as well as the run-time

for Synopsys Design Compiler for measuring the area overhead for the final selected

assertions.

122

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

4.5 Concluding remarks

In this chapter, we have presented a fully automated methodology that generates

emulation-ready architectures that can be used to aid the selection and assessment of

hardware assertions for bit-flip detection in post-silicon validation. We have shown

that, by increasing the number of error injections, the flip-flop coverage estimate

is improved up to 10% with shorter run-times compared to that of simulation-based

experiments (under the same constraints for wire count). This improvement is largely

due to emulation facilitating the discovery of more accurate relationships between

assertions and flip-flops that can be covered by them.

The coverage estimates that we obtain are under the assumption that all the

flip-flops are equally likely to be affected by bit-flips. Therefore, with a wire count

constraint of 40% (and an area overhead in the similar range) we are able to cover up

to approx 50% of the flip-flops. If the number of flip-flops that need to be monitored

is lower (e.g., the destination flip-flops on critical paths) then with similar area and

wire count constraint, a significantly improved coverage of the concerned flip-flops

will be achieved using our methodology.

123

Chapter 5

SAT-based Methodology for

Designing Bit-flip Detectors

In chapters 3 and 4 we introduced automated methodologies for design of embedded

bit-flip detectors. Chapter 3 introduced a complete tool flow and its speed and accu-

racy limitations were addressed in chapter 4 through the introduction of an emulation

architecture. In this chapter, we aim to address another limitation of the methodol-

ogy in chapter 3 by improving the quality of the initial pool of the generated hardware

invariants by introducing our proposed SAT-based invariant generation tool. In addi-

tion, we will leverage the potential of the incremental SAT for fast assessment of the

generated invariants for bit-flip detection, hence replacing the experimental evaluation

of invariants with an accurate formal approach.

Our proposed method is shown in Figure 5.1. The rest of the chapter is organized

as follows. Section 5.1 reviews the Boolean Satisfiability Problem (SAT) and provides

a brief overview of the internals of the modern SAT-solvers. Section 5.2 discusses

our proposed method for generation of hardware invariants that are based on the

124

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

structural representation of the design (netlist). Afterwards in section 5.4, we will

introduce our fully formal approach towards the assessment of the generated invariants

based on their potential towards detecting bit-flip. Our method eliminates the need

for any form of simulation or emulation experiments. Section 5.5 quickly discusses

the ranking algorithm used in this chapter by highlighting the slight modifications

from the one used in previous chapters. Finally in section 5.6, we will provide results

that indicate clear improvements in flip-flop coverage and the resulting area overhead

of the subset of assertions that are selected based on the same constraint as before,

yet generated through our own invariant generation engine.

Invariant
Generation

Invariant
Evaluation

Invariant
Selection

Netlist

Hardware
invariants

Figure 5.1: Three steps of the proposed SAT-based methodology.

5.1 SAT Fundamentals

Before elaborating on the main steps of our SAT-based methodology that produces

hardware invariants suitable for bit-flip detection (illustrated in Figure 5.1), we first

provide a brief overview of the Boolean SAT problem.

Although the Boolean SAT problem is known to be a fundamental NP-complete

problem [168], there have been significant improvements in recent decades in the de-

velopment of efficient SAT solvers that enable solving practical instances in electronic

design automation (EDA) [169, 170]. The Boolean SAT problem can be summarized

as follows.

A conjunctive normal form (CNF) formula ϕ of n variables x0, ..., xn−1 is the

125

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

a

b b

c cc c

0 1

0 1

0 1 0 1 0 1

0 1

10

𝝋 = ഥ𝒂 + 𝒃 . (𝒂 + ഥ𝒃 + 𝒄)

a b c 1st clause
satisfied

2nd clause
satisfied

Result

0 0 0 Yes Yes SAT

0 0 1 Yes Yes SAT

0 1 0 Yes No UNSAT

0 1 1 Yes Yes SAT

1 0 0 No Yes UNSAT

1 0 1 No No UNSAT

1 1 0 Yes Yes SAT

1 1 1 Yes Yes SAT

Clause

Literal

Figure 5.2: Example of all possible assignments to a SAT instance.

conjunction of clauses ω0, ..., ωm−1 where each clause is the disjunction of one or more

literals, where each literal is a Boolean variable xi or its complement xi. A clause is

satisfied if at least one of its literals evaluates to TRUE. A SAT solver searches for an

assignment to the variables such that the CNF formula (SAT instance) evaluates to

TRUE (SAT) or proves that such assignment does not exist (UNSAT). For a SAT instance

of n variables, there exist 2n possible true assignments that need be checked. For

instance, all possible assignments for the following SAT instance ϕ = (ā+b)(a+ b̄+c)

are shown in Figure 5.2. As it can be seen, for this SAT problem with 3 variables,

there are 8 possible assignments that need to be checked. As it can be seen, for three

of the 8 assignments, the assignment is UNSAT meaning there exists at least one clause

which is not satisfied. Please note that, conjunction and disjunction are represented

with ∧ and ∨ respectively [171]. However, for the sake of simplicity, we represent

conjunction (logical AND) using “.” and the disjunction (logical OR) using “+”.

SAT solvers have evolved significantly over the past few years and are currently

126

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

used as the core of many EDA tools in verification [172, 173], logic synthesis [174, 175,

176], manufacturing test [177, 178, 179] and so on. There are many algorithms for

solving SAT instances such as DPLL [180], using Boolean decision diagrams (BDDs)

to solve SAT [181], GSAT and WSAT [182], St̊almarcks algorithm [183] and GRASP

[169]. Discussing the algorithmic advances of each of these methods is beyond the

scope of this work. Nonetheless, it is worth summarizing the concept of learned

clauses in Conflict Driven Clause Learning (CDCL) [169, 170, 30] as it is widely used

in most of the state-of-the-art SAT solvers [184, 185] and is central to our invariant

generation methodology which will be detailed in section 5.2.

Whenever a partial assignment of Boolean variables xi, ..., xj leads to an unsat-

isfiable clause ωk, the search engine encounters a conflict and it needs to backtrack.

Since not all the assigned variables contribute to the conflict, in order to prune the

search space by avoiding the repetitive traversal of the space covered by the par-

tial assignment that lead to the conflict, the reason of the conflict is recorded as a

learned clause. For instance, the example shown in Figure 5.3 which is based on [9]

represents steps that are taken by a SAT solver that uses CDCL algorithm to solve

a SAT instance that is shown as a set of clauses at the left side of the figure. At

first step, x1 is set to 0 which implies x4 to be set to 1 in order to satisfy the first

clause as shown in Figure 5.3a. Note that implied assignments are differentiated by

yellow circles. Then x3 is set to 1 which together with the assignment to x1 imply

x8 to be 0 to satisfy the second clause. Implied assignment on x8 together with the

explicit assignment on x1 further implies x12 to be set to 1 as shown in Figure 5.3a.

Following to this, x2 is assigned to 0 which implies x11 to be 1 to satisfy the fourth

clause as shown in Figure 5.3b. Afterwards, x7 is set to 1 which point implies x9 to

127

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

𝑥1 + 𝑥4
𝑥1 + 𝑥3 + 𝑥8
𝑥1 + 𝑥8 + 𝑥12
𝑥2 + 𝑥11

𝑥7 + 𝑥3 + 𝑥9
𝑥7 + 𝑥8 + 𝑥9
𝑥7 + 𝑥8 + 𝑥10
𝑥7 + 𝑥10 + 𝑥12

𝑥1 = 0

𝑥4 = 1

𝒙𝟏

𝑥3 = 1

𝒙𝟑

𝑥8 = 0

𝑥12 = 1

(a)

𝑥1 + 𝑥4
𝑥1 + 𝑥3 + 𝑥8
𝑥1 + 𝑥8 + 𝑥12
𝑥2 + 𝑥11

𝑥7 + 𝑥3 + 𝑥9
𝑥7 + 𝑥8 + 𝑥9
𝑥7 + 𝑥8 + 𝑥10
𝑥7 + 𝑥10 + 𝑥12

𝑥1 = 0

𝑥4 = 1

𝒙𝟏

𝑥3 = 1

𝒙𝟑

𝑥8 = 0

𝑥12 = 1

𝒙𝟐

𝑥2 = 0

𝑥11 = 1

𝒙𝟕

𝑥7 = 1

𝑥9 = 1

𝑥9 = 0

𝒙𝟑 = 𝟏 𝒂𝒏𝒅 𝒙𝟕 = 𝟏 𝒂𝒏𝒅 𝒙𝟖 = 𝟎 → 𝒄𝒐𝒏𝒇𝒍𝒊𝒄𝒕

(b)

128

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

𝑥1 = 0

𝑥4 = 1

𝒙𝟏

𝑥3 = 1

𝒙𝟑

𝑥8 = 0

𝑥12 = 1

𝒙𝟐

𝑥2 = 0

𝑥11 = 1

𝒙𝟕

𝑥7 = 1

𝑥9 = 1

𝑥9 = 0

Add conflict clause
𝑥3 + 𝑥7 + 𝑥8

𝑥1 + 𝑥4
𝑥1 + 𝑥3 + 𝑥8
𝑥1 + 𝑥8 + 𝑥12

𝑥2 + 𝑥11
𝑥7 + 𝑥3 + 𝑥9
𝑥7 + 𝑥8 + 𝑥9
𝑥7 + 𝑥8 + 𝑥10
𝑥7 + 𝑥10 + 𝑥12

(c)

𝑥1 = 0

𝑥4 = 1

𝒙𝟏

𝑥3 = 1

𝒙𝟑

𝑥8 = 0

𝑥12 = 1 𝐛𝐚𝐜𝐤𝐭𝐫𝐚𝐜𝐤 𝐭𝐨 𝐝𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐥𝐞𝐯𝐞𝐥 𝐱𝟑 = 𝟏

New clause

𝑥7 = 0

𝑥1 + 𝑥4
𝑥1 + 𝑥3 + 𝑥8
𝑥1 + 𝑥8 + 𝑥12
𝑥2 + 𝑥11

𝑥7 + 𝑥3 + 𝑥9
𝑥7 + 𝑥8 + 𝑥9
𝑥7 + 𝑥8 + 𝑥10
𝑥7 + 𝑥10 + 𝑥12
𝑥3 + 𝑥7 + 𝑥8

(d)

Figure 5.3: An example showing steps of a CDCL algorithm reproduced from [9].
Implied assignments are shown with yellow circles.

129

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

be 1 to satisfy the fifth clause. At this point, a conflict is reached because the sixth

clause cannot be satisfied as shown in Figure 5.3b. The variables that contributed to

the conflict are evaluated to create a new clause which has been learned based on the

previous explicit and implied assignments as shown in Figure 5.3c. The learned clause

is added to the clause database and the solver backtracks to the first decision level on

the variables that contributed to the conflict which in the case of this example is x3

as shown in Figure 5.3d. The newly learned clause implies an assignment on x7 to be

0 hence avoiding the same conflict to be reached again as shown in Figure 5.3d. The

next steps for finding whether the problem is SAT or UNSAT is omitted as it is out of

the scope of this discussion. The important points to note are: 1) The learned clause

can be added to the set of original clauses and 2) it significantly prunes the search

space, avoids the generation of the same conflict and helps generating future learned

clauses.

Our key observation is that a subset of the learned clauses, which are produced

by a SAT solver for a SAT instance based on circuit netlist, are design invariants

that can be translated into hardware checkers that can monitor for bit-flips during

post-silicon validation. Therefore, the judicious generation, evaluation and selection

of these hardware invariants can contribute to the design of more effective bit-flip

detectors, as substantiated by our results.

5.2 Generation of Hardware Invariants

Before discussing our method for generating a large pool of invariants through a SAT

solver, let us discuss how the conversion of the circuit netlist structure to CNF formula

is done through Tseytin transformations. The CNF formula of a combinational circuit

130

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Gate Function CNF formula

n-input AND x = AND(w1, . . . , wn) [
∏n

i=1(wi + x̄)].[(
∑j

i=1 w̄i) + x]

n-input NAND x = NAND(w1, . . . , wn) [
∏n

i=1(wi + x)].[(
∑j

i=1 w̄i) + x̄)]

n-input OR x = OR(w1, . . . , wn) [
∏n

i=1(w̄i + x)].[(
∑j

i=1wi) + x̄)]

n-input NOR x = NOR(w1, . . . , wn) [
∏n

i=1(w̄i + x̄)].[(
∑j

i=1wi) + x)]

NOT x = NOT (w1) (x+ w1).(x̄+ w̄1)

BUFFER x = BUFFER(w1) (x̄+ w1).(x+ w̄1)

Table 5.1: Tseytin transformations for generating CNF formulas for combinational
gates [30].

is the conjunction of each individual gate which is shown in Table 5.1 [30].

Now let us consider an illustrative example. The circuit from the top-left corner

of Figure 5.4 can be translated into a CNF formula using Tseytin transformations

shown in Table 5.1. For instance, the two-input AND gate with a and b as inputs and

c as output is represented using three clauses (a+ c).(b+ c).(a+ b+ c). Flip-flops are

treated as buffers with its input and output in two consecutive clock-cycles (or time-

steps), namely (Dk+Qk+1).(Dk+Qk+1), where Dk and Qk+1 are Boolean variables for

the data input and data output terminals of the D flip-flop in time-steps k and k+ 1

respectively. For example, for the circuit from Figure 5.4, we have (c0 + e1).(c0 + e1).

The CNF formula for a single time-step is shown in the top-right corner of Figure

131

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

5.4. If the circuit is unrolled for multiple clock cycles, the same principle applies

by time-shifting, i.e., we add time-step k to the index of each Boolean variable from

Figure 5.4.

When a SAT solver prunes the search space through conflict-driven clause learning,

it can identify a learned clause like the one shown in the bottom-right corner of Figure

5.4. The clause (e1+f1) states that e and f cannot be 1 and 0 respectively in the same

clock cycle since this would lead to a conflict (note, through time-shifting (ek + fk)

would hold for any positive k). This learned clause is an invariant and it can be

implemented in hardware using an OR gate, as shown in the bottom-right corner.

An important observation is that if this OR gate is attached to the original circuit,

it is guaranteed to detect bit-flips from state 00 to 10 or from 11 to 10. Hence using

a single gate, one can ensure that bit-flips in either of the flip-flops are detectable.

As a side note, the logic implications captured by the above-discussed invariant

can be captured also using the following two SystemVerilog assertions [27]: (e ==

D Q

D Q

a
b

c

d

e

f

𝒂𝟎 + 𝒄𝟎 𝒃𝟎 + 𝒄𝟎 𝒂𝟎 + 𝒃𝟎 + 𝒄𝟎
𝒂𝟎 + 𝒅𝟎 𝒃𝟎 + 𝒅𝟎 𝒂𝟎 + 𝒃𝟎 + 𝒅𝟎

𝒄𝟎 + 𝒆𝟏 𝒄𝟎 + 𝐞𝟏
(𝒅𝟎 + 𝒇𝟏)(𝒅𝟎 + 𝒇𝟏)

(𝒆𝟏 + 𝒇𝟏)
𝒆𝒊
𝒇𝒊

2. Add to Miter and
generate learnt clause

4. Can be added
to the circuit

3. Hardware invariant

1. Convert to CNF

Figure 5.4: An example circuit used to illustrate the different sub-steps in hardware
invariant generation.

132

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

1) |−> (f == 1) and (f == 0) |−> (e == 0). If these two assertions are mapped to

hardware, the resulting circuit would be the same OR gate from Figure 5.4. Nonethe-

less, the point that is important to articulate is that a learned clause has an intuitive

and direct translation to hardware through an OR gate between its literals, where

each literal would map to a signal from the circuit. A slightly more complex example

is shown in Figure 5.6. For the clause (a0 + b1 + c2), the hardware invariant is shown

below the clause (note Figure 5.6 will be discussed in detail in section 5.4). If the

time-steps of the literals are different, shift-registers of depth equal to the time dif-

ference between the time-step of the corresponding literal and the highest time-step

are introduced at the input of the OR gate. Finally, it is also worth noting that the

example from Figure 5.4 is used only for the purpose of explaining the concept of

how a learned clause can produce a hardware-implementable design invariant that

can capture bit-flips; from the practical standpoint it is unlikely that a SAT solver

would need to generate a learned clause for a circuit of such complexity.

Having established that learned clauses produced by SAT solvers (for SAT in-

stances based on circuit netlists) can produce invariants that can be mapped to hard-

ware to monitor for bit-flips, the important question is: ”how to make a SAT solver

produce a large pool of learned clauses for a circuit?”. If a circuit is translated into

a CNF like in Figure 5.4, this SAT instance would be immediately satisfiable, thus

no significant learned clause discovery process will be undertaken. To address this

concern, we build a SAT instance using the miter concept commonly employed in

equivalence checking [186]. The upper-side in Figure 5.5 consists of the unrolled orig-

inal netlist. The lower-side contains another gate-level description that is functionally

equivalent but structurally different from the original netlist. While the SAT solver

133

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

searches for an answer to the SAT instance that constrains the output of the OR gate

to TRUE, it generates learned clauses that capture non-obvious logic implications, most

commonly across multiple clock cycles. Nevertheless, unless special considerations are

taken into account, even for miter-type SAT instances an efficient SAT solver would

return UNSAT rapidly. Hence, it is important to account for the following:

• The two netlists used in the miter must be structurally different, which implies

that the original netlist (for which we need to record the learned clauses in

order to produce hardware invariant candidates for bit-flip detection) should

be re-synthesized using a dissimilar target library or a different optimization

objective;

• The netlist should be unrolled for a sufficiently large number of time-steps.

This does not only make the SAT solver to reason for a longer time, hence

produce more learned clauses that capture non-obvious relationships between

𝑷𝑶𝒏−𝟏𝑷𝑶𝟏𝑷𝑶𝟎

𝑷𝑶𝒏−𝟏
′𝑷𝑶𝟏

′𝑷𝐎𝟎
′

Contribution 3 – Sequential Miter

22-Nov-16 Pouya Taatizadeh / McMaster University 4

𝑺𝟏

• Inputs to both sides are identical
• Initial state of both sides are identical

𝑺𝑵−𝟏

𝑺′𝑵−𝟏𝑺′𝟏

𝑺𝟎
𝑺𝑵

𝑺′𝑵𝑺𝑶

𝑷𝑰𝟎 𝑷𝑰𝟏 𝑷𝑰𝒏−𝟏

𝑷𝑰𝟎 𝑷𝑰𝟏 𝑷𝑰𝒏−𝟏

𝑺𝟏

𝑺′𝟏

𝑺𝒏

𝑷𝑶𝒏

𝑷𝑶′𝒏

𝑷𝑶𝟎

𝑷𝑶′𝟎

𝑺′𝒏

O
R

O
R

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

Figure 5.5: Sequential miter configuration used to constrain the SAT solver to produce
learned clauses for an extensive period of time.

134

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

the circuit’s signals, but it also helps discover invariants with a greater temporal

depth. As will be discussed in the section 5.4, such invariants can monitor more

flip-flops for bit-flips.

• Modern SAT solvers actively manage the learned clause database and frequently

discard the learned clauses that did not contribute recently for pruning the

search space [184, 185]. Our objective is rather different because we wish to

record all the learned clauses whose literals map to the original netlist that will

be implemented in hardware. Therefore, the learned clauses must be logged as

they are generated before the SAT solver discards a portion of them. Neverthe-

less, due to the miter-based SAT formulation, many learned clauses will capture

relationships between the upper and lower-side of the miter, as well as the XOR

network that forces the outputs and the intermediate states to be equivalent.

Our preliminary experiments have shown that for a circuit with 1,500 flip-flops

that is unrolled for 20 clock cycle, over 1 million learned clauses are generated

in one hour. Three quarters of the clauses contain literals that refer to signals

not in the original netlist and can therefore be discarded.

• Because of learned clause management that most SAT solvers use internally,

some clauses that were discarded might be re-discovered at a later point. Since

they relate to the same signal dependencies in the circuit, a rediscovered learned

clause does not need to be recorded as a hardware invariant candidate that

needs to be assessed for bit-flip detectability (see section 5.4 for specific de-

tails). Moreover, learned clauses that are time-shifted versions of each other

(see discussion for the circuit from Figure 5.4) are also marked as duplicates.

Our empirical observation indicates that about 57% of the learned clauses fall

135

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

into this category, especially those of small temporal depth.

• Another important empirical observation is that a significant amount of clause-

learning is done in the first few seconds of a SAT run. In addition, by letting

the SAT solver work until it returns UNSAT, there is a risk of having localized

learned clauses that do not explore signal dependencies in all the regions of

the netlist. Hence, instead of running a single long-duration SAT instance, a

large number of short-duration SAT instances (using a time-out feature) are run

with different initial seeds for random decisions. Furthermore, in order to avoid

localized learned clauses, we also prioritize random decision making rather than

activity-based decision heuristics, such as variable state independent decaying

sum [170]. While our decision might appear counter-intuitive, it is driven by

our objective to record a large pool of learned clauses spread across all regions

of the circuit, which is fairly different from the common usage of SAT solvers.

5.3 Converting Learned Clauses to SVA Assertions

As explained in the previous section, a learned clause has a direct hardware implica-

tion by introducing an OR gate in between the signals that comprise it as shown in

Figure 5.4 and ensuring that the signal’s time-steps have been updated by incorpo-

rating shift-register structures as shown in Figure 5.6. For post-silicon validation, this

direct hardware realization is of significant potential because as it will be discussed

later, a single learned clause can monitor multiple bit-flips. In addition, as it will also

be elaborated in this section, a single learned clause can be translated into multiple

assertions meaning that using learned clauses instead of assertions would result in

136

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

less area overhead. Nevertheless, our proposed method for invariant generation can

also be used in pre-silicon verification. For instance, the assertions that are generated

from the learned clauses can be used to assess the quality of the applied test vectors

during a regression suit. Hence, in this section, we will explain how a learned clause

can be translated to an assertion. Please note that SVA [20] will be the assertion

language that we will use. Nonetheless, the same principles can be applied for PSL

[187] as well.

As it has been explained in several places in this thesis, assertions ensure that

design properties are satisfied. There are two types of properties: safety properties

and liveness properties [27]. A safety property which is also known as an invariant

describes a behavior that must be hold true for all sample points of time. For instance,

the following SVA assertion, (a == 1) && (b == 0)|=> ##1 (c == 1) is a safety

property that says if a is 1 and b is 0, c needs to be 1 in two clock-cycles. On the other

hand, a liveness property specifies that something should eventually happen. For

instance, whenever req signal is asserted, the ack signal must be asserted sometimes

in the future. The learned clauses generated by our flow can be translated into safety

properties which are also known as invariants.

Now let us consider the learned clause in Figure 5.4, ē1 + f1. The subscripts

represent the time-step of the signal that is in the learned clause. Since as explained

in section 5.2, a learned clause can be added to the original set of clauses and needs

to evaluate to 1 at all times, for this learned clause at least one of the literals must

evaluate the learned clause to 1. This means that either f1 needs to be 1 or ē1 needs

to be 0. Hence, since both signals have equal time-steps, at all times if e is 1, then f

must be 1 and if f is 0, e must be 0. Thus, the SVA assertions for this learned clause

137

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

are shown below:

assert property ((@posedge clk) ((e == 1) |-> (f == 1)))

assert property ((@posedge clk) ((f == 0) |-> (e == 0)))

As it can be seen, the single learned clause of Figure 5.4 can be translated into

two different assertions. Now let us consider a case where signals are in different

time-steps. For the learned clause of Figure 5.6, which is (ā0 + b1 + c̄2) each single

signal is in a different time-step. Following the same principle that the learned clause

must always evaluate to 1, the associated assertion must ensure that whenever signal

a is 1 and signal b is 0 one clock cycle later, signal c must be 0 in two clock cycles

(time-step of signal a is the reference time-step). Knowing that delays are shown with

cycle delay constructs followed by the number of clock cycles or with non-overlapping

implication operators, as explained in section 4.2, the SVA assertion for this learned

clause will then be:

assert property ((@posedge clk) ((a == 1) ##1 (b == 0) |=> (c == 0)))

As it can be seen, there is only one assertion associated with this clause. Adding

another signal to the time-step, the associated SVA assertions for the learned clause

(ā0 + b1 + c̄2 + d2) will be:

assert property ((@posedge clk)((a==1) ##1 (b==0) ##1 (c==1) |-> (d==1)

assert property ((@posedge clk)((a==1) ##1 (b==0) ##1 (d==0) |-> (c==0)

The important observation is that for learned clauses that have k number of signals

in their last time-step, there will be k different assertions that can be derived from

138

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

the learned clause. That is why for the learned clause of Figure 5.4, two assertions

were derived whereas for that of Figure 5.6, one assertion was derived. The following

steps represent a generic way for converting learned clauses to SVA assertions.

1. Create a list L = {l1, l2, . . . , ln} of literals where li represents the i−th literal

with its polarity. Note that only literals whose time-step are less than the

maximum time-step (last time-step) are placed in this list. For instance, for the

learned clause of Figure 5.6, the list is C = {−a0, b1}.

2. Create a second list KmaxTF = {k1, k2, . . . , kn} of literals where ki represents the

k−th literal whose time-step is equal to the maximum time-step. For instance,

for the learned clause of Figure 5.6, the list is KmaxTF = {c2}.

3. Sweep through C and for each literal li, if it is negated write (li == 1) and

if it not negated, write (li == 0). The smallest time-step is considered as

the reference time-step and while sweeping through the list, if the time-step is

increased by N , cycle-delay construct with delay N , ##N is used.

4. For each literal in KmaxTF , pick one literal ki at a time and apply the same rule

explained in number 3 for the remaining literals. Afterwards, use overlapping

constructor and write (ki == 0) if the literal is negated or (ki == 1) if it is not.

In this section, we elaborated steps that are needed in order to generate SVA

assertions from learned clauses that can be used in pre-silicon verification. For the

rest of this chapter, we will exclusively focus on the hardware realization of the

learned clauses that can be used to aid detecting bit-flips in flip-flops during post-

silicon validation.

139

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

5.4 Evaluation of Hardware Invariants

Section 5.2 was focused on invariant generation and it has relied on an unusual usage

of SAT solvers, i.e., forcing an UNSAT instance to run for an extensive period of time

in order to record as many learned clauses as possible. Nonetheless, the approach

does leverage the reasoning power that modern SAT solvers have been engineered

with, namely the identification of non-obvious logic implications. This section is

focused on the evaluation of the resulting invariants, instead of assessing them in

a simulation or emulation environment as in chapters 3 and 4, for their suitability

to detect bit-flips in a hardware implementation. It relies on the typical usage of

SAT solvers, where many SAT queries are performed rapidly using the concept of

incremental SAT solving. Nevertheless, in order to process a very large number of

SAT queries, there is a need for an effective problem formulation with an algorithmic

front-end that should make it feasible to interface our approach to many existing (or

emerging) SAT solvers. The core idea is to create a single SAT instance and perform

many incremental SAT queries on it. A SAT query checks the outcome of a SAT

instance under a set of assumptions. The key point is that the learning process for

one query is leveraged for the subsequent queries. Thus the average time spent on

new queries decreases because of the powerful decision heuristics and the sharing of

the learned clauses across multiple queries during an incremental SAT run.

The pseudocode for the evaluation of invariants for bit-flip detectability is given

in Algorithm 2. The inputs to the algorithm are the netlist of the circuit with m

flip-flops, the number of n time-steps to unroll the circuit and a list of invariants L

that were generated using the method from section 5.2. It is worth noting that the

unroll parameter n must be at least equal to the maximum temporal depth for the

140

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

invariants from L. As a first step, we create a single SAT instance ϕ with activation

variables that will be assumed to be either TRUE or FALSE in different SAT queries.

The aim of the activation variables is to modify each pair of clauses for a flip-flop i

in time-step j (Di,j + Qi,j+1)(Di,j + Qi,j+1) into a pair clauses where a a bit-flip is

injected: (Di,j + Qi,j+1)(Di,j + Qi,j+1), where Di,j (Qi,j) are the Boolean variables

for the input (output) of flip-flop i in time-step j. We use two types of activation

variables: one type for flip-flops and one type for time-steps. The activation variable

for injection in flip-flop i is Fi. Following the same line of reasoning, the activation

variable for injection in time-step j is Tj . Based on the above, the pair of clauses for

a flip-flop i in time-step j is replaced by six clauses as follows:

(Fi +Di,j +Qi,j+1)(Fi +Di,j +Qi,j+1)

(Tj +Di,j +Qi,j+1)(Tj +Di,j +Qi,j+1)

(Fi + Tj +Di,j +Qi,j+1)(Fi + Tj +Di,j+1 +Qi,j+1)

The total number of activation variables is m + n. When no bit-flip is injected,

i.e., both Fi and Tj are FALSE, the last two clauses will be satisfied, and the first

two clauses and the middle two clauses are identical and they map onto the pair of

clauses for an error-free flip-flop. When Fi and Tj are both TRUE then the first four

clauses are satisfied and the last two clauses map onto the pair of clauses for a flip-flop

where a bit-flip was injected. Note that if Fi is TRUE and Tj is FALSE the first two

clauses and the last two clauses will be satisfied and the middle two clauses will map

to (Di,j+Qi,j+1)(Di,j+Qi,j+1), i.e., the error-free flip-flop. The same principle applies

when Fi is FALSE and Tj is TRUE.

After creating the SAT instance, where the pair of clauses for each flip-flop in

141

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

input : Circuit netlist with m flip-flops
The number of time-steps n for unrolling
List L of invariants based on learned clauses

output: For each invariant Hk from L there is a list Dk of flip-flops in which
bit-flips can be detected

- Create a SAT instance ϕ based on the netlist with activation variables Fi and
Tj for each flip-flop i with 0 ≤ i < m and each time-step j with 0 ≤ j < n

- An assumption set A is initialized with all of the activation variables Fi and
Tj set to FALSE

foreach invariant Hk from L do
- Add all the literals from Hk to A as FALSE

- List of flip-flops Dk covered by invariant Hk is void
- dk is the temporal depth of hardware invariant Hk

foreach time-step j with 0 ≤ j < dk do
- Activate Tj by making it TRUE in A
- Find the candidate flip-flops for injection Cj

foreach flip-flop i from Cj do
- Activate Fi by making it TRUE in A
- Solve ϕ with the current assumptions A
- if the result is SAT then invariant Hk can detect a bit-flip in
flip-flop i in time-step j; add flip-flop i to the set of flip-flops Dk

- Deactivate Fi by making it FALSE in A
end
- Deactivate Tj by making it FALSE in A

end
- Remove the literals from Hk from A

end

Algorithm 2: Pseudocode for evaluating invariants produced in section 5.2 for
their potential to detect bit-flips.

each time-step are replaced by six clauses (as explained above), the intuition behind

our approach from Algorithm 2 can be explained as follows. Many incremental SAT

queries can be performed on a SAT instance under different sets of assumptions. If we

try to force a learned clause associated with an invariant Hk to FALSE (by passing an

assumption where all the literals of Hk are FALSE) then the outcome of the SAT run on

the error-free circuit is guaranteed to yield UNSAT. This is because the learned clause

is an invariant that must hold indefinitely. However, if the assumption also forces a

142

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

bit-flip in flip-flop i in time-step j, by setting the activation variables Fi and Tj to

TRUE, then the SAT query will yield either UNSAT or SAT. If the outcome is UNSAT

then the bit-flip in flip-flop i in time-step j cannot affect the signal dependencies

that make Hk to be an invariant. However, if the outcome is SAT, not only does Hk

guarantee that a bit-flip in flip-flop i is covered, but also by parsing the assignment of

the Boolean variables we can obtain the initial state and the primary inputs sequence

that will trigger the invariant when mapped to hardware.

Algorithm 2 has three loop levels. Before the first level, in addition to creating

the SAT instance ϕ, we also initialize the set of assumptions A with all the activa-

tion variables Fi and Tj deactivated (i.e., set to FALSE). The outermost loop iterates

through all the invariants discovered by the method from section 5.2. For each in-

variant Hk we first expand the assumptions set A with its literals assigned to FALSE.

Unless we activate a pair of Fi and Tj variables, the current set of assumptions A is

guaranteed to yield UNSAT to the SAT query. Hence, for each time-step j, where j

is upper-bounded by the temporal depth of Hk (called dk in Algorithm 2), we first

activate Tj and then we compute the set of candidate flip-flops Cj where bit-flip in-

jections will be done (Cj will be explained intuitively with the example from Figure

5.6). Subsequently, in the innermost loop we activate Fi and we incrementally solve

ϕ under the updated set of assumptions A. If the outcome is SAT we can update the

set of flip-flops Dk that are covered by Hk. Note, by reducing the number of flip-flops

in which to perform bit-flip injections (by computing Cj) we reduce the number of

SAT queries from m×
∑|L|−1

k=0 dk to
∑|L|−1

k=0

∑dk−1
j=0 |Cj|, where any |Cj| is significantly

smaller than the flip-flop count m. Finally, it should be noted that the activation

143

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

22-Nov-16
Pouya Taatizadeh / McMaster University

11

𝒂𝟎 + 𝒃𝟏 + 𝒄𝟐

a

b
c

𝒂𝟎

𝒃𝟏

𝒄𝟐

x
x

x
x
x
x

Ti
m

e
-s

te
p

 0

Ti
m

e
-s

te
p

 1

Ti
m

e
-s

te
p

 2

D Q

D QD Q

D Q

a

b
c

D QD Q

D Q

D QD Q

D Q

The candidate flip-flops for

injection are marked with x.

They are at the intersection

of the transitive fan-in of the

signal c (from the last time-

step) with the transitive fan-

out of signals a and b (from

the previous two time-steps).

Figure 5.6: An example for showing how to reduce the number of incremental SAT
queries during the hardware invariant evaluation for bit-flip detection.

variables Fi and Tj are deactivated at the end of their corresponding loop. Also, be-

fore a new invariant is processed, the literals from the previous invariant are removed

from the assumptions set A. For each invariant Hk, the algorithm returns the list of

flip-flops Dk that can be covered by the invariant. This set of data can be stored in

a sparse matrix format and used by the invariant selection described in section 5.5.

Figure 5.6 shows the intuition behind computing the set of candidate flip-flops

Cj in time-step j. Consider the learned clause (a0 + b1 + c2) with a temporal depth

of 2. The equivalent hardware implementation of the invariant represented by this

learned clause is shown below it. The right-side of the figure illustrates how the set

of candidate flip-flops in time-steps 1 and 2 are generated. Through cone-of-influence

144

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

analysis, by originating from signal c in the last time-step, we compute its transitive

fan-in (TFI) [186] recursively until the first time-step is reached. The candidate

flip-flops in each time-step must reside in the corresponding TFI. Similarly, for the

signals a and b we compute the transitive fan-out (TFO) recursively until reaching

the last time-step. The candidate flip-flops in each time-step must reside within the

intersection between the TFI of c and the union of TFOs for a and b. It is worth

mentioning that the accurate computation of TFO needs to compute the TFI of the

respective signal and, thereafter, compute the TFO of the set of signals from this TFI.

When applied recursively, this might lead to an increase in runtime while producing a

set of candidate flip-flops similar to when computing only the TFI of the signals from

the last time-step. Therefore for the results in this work, we rely on the TFI-only

method.

5.5 Selection of Hardware Invariants

As fully explained in section 3.2, committing all the generated invariants to the bit-

flip detection unit is impractical due to the excessive area overhead. In this section,

we discuss how a subset of invariants discovered using the method from section 5.2

can be selected using the set of lists of covered flip-flops (one list for each invariant)

generated using the method from section 5.4.

Since the very purpose of finding hardware invariants for post-silicon validation

is to embed them to hardware to do on-line monitoring, the equivalent hardware

circuits of the discovered learned clauses must be generated. As shown in Figure 5.4,

the equivalent hardware of a learned clause whose signals are in the same time-step

is constructed by connecting the signals to an OR gate with a fan-in equal to the

145

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

number of literals in the learned clause. For a learned clause whose signals are in

different time-steps, a shift register of depth equal to the time difference between the

time-step of the respective literal and the highest time-step in the invariant are used.

Signals with the maximum time-step are connected directly to the OR gate either

as-is or through an inverter depending in their polarity as shown in Figure 5.6. The

estimated area of each invariant is calculated taking into account the number of flip-

flops, inverters, and the number of inputs to the OR gate. Each of these parameters

can be scaled based on technology dependent coefficients.

In order to select a subset of invariants from the initial pool, we have implemented

the ranking algorithm discussed in section 3.2.2. This ranking algorithm is essentially

a set covering problem that, based on user-defined constraints (e.g. wire usage),

selects a subset of invariants aiming at maximizing the flip-flop coverage. In our

implementation, the relationship between invariants and flip-flops is captured in the

lists of covered flip-flops determined by the method from section 5.4. Another notable

difference from the way the algorithm was used in section 3.2.2 is that instead of using

a third-party synthesis tool to find the hardware equivalent model of an assertion,

we have used area estimates based on the simple translation of learned clauses into

hardware circuits (explained above). Note, while it is sufficient to proceed with

estimates for ranking purposes, the area overhead of the selected invariants, reported

in the results section, is determined using a commercial synthesis tool.

5.6 Results

Our SAT-based method has been implemented and run on an Intel Core i7 and an

Intel Xeon E7 machine, and GCC 4.8.4 has been used as the C++ compiler with

146

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Circuit
1× 60 min run 240× 15 sec run

Wire < 10 No wire constraint Wire < 10 No wire constraint
s35932 112224 247204 90001 152192
s38417 74733 138813 116678 216398
s38584 96633 204613 110678 185295

Table 5.2: Total number of invariants generated for ISCAS circuits [8] after an hour
when only one long SAT run is executed versus when 240 SAT-runs of 15 seconds
each are executed.

Bash, Python 2.7 and Tcl 8.5 for scripting. We have used the Glucose 3.0 SAT solver

[185] that is based on MiniSAT [184]. The implementation of Glucose [185] has been

extended for logging learned clauses and for their assessment, as discussed in section

5.2. The benchmark circuits used in this section have all been unrolled for 20 clock

cycles (n in Figure 5.5 and Algorithm 2). In addition, the ABC sequential synthesis

tool [186] has been used to extract two different implementations of the same circuit

for the sequential miter from Figure 5.5.

We start by discussing the first part of our methodology, namely invariant gen-

eration from section 5.2. We have observed that the number of learned clauses that

are generated by a SAT solver is at a higher rate in the beginning of the reasoning

process. For instance, Table 5.2 represents the number of generated learned clauses

after running the SAT solver for an hour for the three largest ISCAS circuits unrolled

for 20 clock cycles, first with 1 single SAT run of 60 minutes and then with 240 SAT

runs of 15 seconds each. In addition, the number of invariants that have less than

10 number of distinct wires are shown too because as we will discuss later, invariants

that have more than 10 wires are discarded for further consideration due to their

imposed area overhead. As it can be seen, the number of generated invariants are

almost in par. However, there is another benefit in running multiple SAT instances.

147

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Circuit Duplicates (%)
s35932 69.1 (%)
s38417 49.8 (%)
s38584 51.3 (%)

Table 5.3: Percentage of duplicate learned clauses for for running the SAT solver
for one hour for each of the three largest ISCAS circuits unrolled for 16 clock cycles
without discarding any invariant according to wire constraints.

Re-starting SAT instances with different random seeds will also diversify the gener-

ation of invariants to include signals from different regions of the circuit. Hence, we

run multiple SAT instances with different random seeds for a predefined time, and

subsequently merge the discovered learned clauses ensuring that duplicate clauses are

removed. As explained in section 5.2, SAT solvers might find identical relationships

between the same signals that are in different time-frames. For instance, the hard-

ware realization of the following two learned clauses (a0, b̄4) and (a5, b̄9) are identical.

Therefore, the duplicate learned clauses must be removed. Table 5.3 represents the

percentage of duplicate learned clauses that were found for the three largest ISCAS

circuits [8] when 240 SAT-runs of 15 seconds each are run and no learned clause is

discarded according to wire constraints (same as last column in Table 5.2). As it

can be seen, on average 57% of the learned clauses are duplicates that need to be

removed.

In order to prepare a large pool of invariants for assessment, we ran 2,000 SAT

instances each for 15 seconds. Figure 5.7 shows the distribution of the total number of

distinct invariants after running the method from section 5.2 for a total of 8.3 hours.

To underline the value of SAT-based invariant discovery against simulation-based

approaches, we compare against results in chapter 3, which has used GoldMine [3]

as their invariant discovery engine. As explained in section 2.3, GoldMine uses data

148

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

mining on a given simulation snapshot of the circuit and finds the likely invariants

that need to pass through a second step (formal verification tool) to remove the false

invariants. Referring to table 3.4 in section 3.3.3, the invariant generation part for

s38584 [8] takes 228 hours, where 28,365 invariants are discovered with 98.4% of them

having a temporal depth below 5. In contrast, the method from this chapter relies

on Boolean learning on gate-level netlists, rather than machine learning based on the

simulation traces from a behavioral model. Using Boolean satisfiability solvers as

the core engine in our work, the need for using third-party formal verification tools

is eliminated, thus we have an one-step method. It is important to note that the

primary focus of [3] is not on finding invariants that are tuned towards post-silicon

validation. Nevertheless, since our method operates on netlists, the benefits of the

built-in mechanisms for Boolean learning from within modern SAT solvers are self-

evident. Not only that the number of invariants for s38584 is 40 times larger, all of

them have been discovered 25 times faster, which amounts to a speed-up of three

orders of magnitude per invariant. Furthermore, over 25% of the invariants have a

temporal depth greater than 5. Finally, it is worth mentioning that, although it is

beyond the scope of this work that is focused on invariants for bit-flip detection during

post-silicon validation, it did not escape our attention that the method from section

5.2 can be leveraged for the discovery of invariants that can be used at other steps

in the implementation flow, such as identifying hard-to-reach coverage holes during

pre-silicon verification.

When evaluating the suitability of each invariant for their potential to detect bit-

flips, we have bounded the maximum number of wires for each invariant to 10, in

order to limit the area of the bit-flip detection unit. Our experimental results on

149

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

0

100000

200000

300000

400000

500000

0 5 10 15 20

N
o

. o
f

In
va

ri
an

ts

Temporal Depth

s35932 s38417 s38584

Circuit Total
Invariants

s35932 1200816

s38417 2039067

s38584 1815199

Figure 5.7: Total number of discovered invariants as well as their distribution in terms
of their temporal depth for the three largest ISCAS circuits.

the three largest ISCAS [8] circuits show that after 32.2 hours on average, between

550,000 to 680,000 invariants are processed in the invariant evaluation part when 4

simultaneous threads are utilized for each circuit. The runtime reported in table 3.4

in section 3.3.3 for assessing the bit-flip detection potential of the discovered invari-

ants in a simulation-based approach for s38584 is 63 hours. Based on our empirical

observations, in this work on average more than 100 SAT queries are performed in

each second, which validates the efficiency of our incremental SAT formulation from

section 5.4, and its suitability to handle a very large number of invariants. Note, the

number of SAT queries is dependent on the number of flip-flops that need to be con-

sidered for bit-flip injection for each invariant, which is not influenced by the circuit

150

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Wire
Invariants from chapter 3 Invariants from this chapter
s35932 s38417 s38584 s35932 s38417 s38584

10% 22% 12% 19% 43% 31% 30%
15% 30% 25% 28% 56% 37% 38%
20% 42% 28% 34% 67% 42% 45%
30% 62% 39% 47% 79% 53% 56%
40% 77% 48% 59% 86% 64% 66%

Table 5.4: The percentage of flip-flops that are monitored for the three largest ISCAS
circuits for the selected invariants from [56] and this work.

size but rather by the invariant depth and the dimensions of the input/output logic

cones for the signals from the respective invariant (see Algorithm 2 and Figure 5.6).

To summarize, when compared to the simulation-based approach from chapter 3, we

can process approx 25 times more invariants in half the time. More importantly, due

to the exhaustive nature of the SAT-based approach, we are capable of discovering

relationships between invariants and flip-flops that will be missed by simulation, the

benefits of which are discussed next.

The advantages of the discovered invariants for post-silicon validation are assessed

based on the proportion of flip-flops that can be covered by them when they are em-

bedded on-chip. To select a subset of invariants for hardware implementation, we use

the ranking algorithm described in section 3.2.2, with the modifications summarized

in section 5.5. The wire usage, which is an important practical constraint for hard-

ware, has been varied from 10% to 40% of the total number of flip-flops. Table 5.4

shows the percentage of flip-flops that are monitored for bit-flips (flip-flop coverage)

under different wire constraints. The improvements of this work over the one from

chapters 3 and 4 are due to: (i) the initial pool of invariants is significantly larger for

this work; (ii) the incremental SAT approach discovers relationships between invari-

ants and bit-flips in flip-flops that cannot be identified through a simulation-based

151

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Wire
Invariants from [56] This work
s35932 s38417 s38584 s35932 s38417 s38584

10% 12% 6% 7% 5% 8% 6%
15% 16% 10% 18% 8% 11% 10%
20% 19% 14% 21% 12% 15% 14%
30% 27% 25% 35% 19% 20% 21%
40% 38% 37% 46% 26% 27% 28%

Table 5.5: Area overhead of the bit-flip detection unit for the three largest ISCAS
circuits for the selected invariants from [56] and this work.

approach. Capturing a stronger relationship between flip-flops and invariants trans-

lates into a more accurate selection of the invariants to be mapped to hardware. The

results for the area overhead are shown in Table 5.5. For the same underlying reasons

as above, in this work we can choose less invariants and/or invariants that can cover

more flip-flops.

5.7 Summary

In this chapter we have investigated a novel approach for the generation of invariants

and their evaluation for bit-flip detection. While the approach for generation of

invariants relies on a counter-intuitive usage of SAT solvers, it does build on the core

strengths of these solvers, in particular efficient analysis of the implication graphs for

learning new clauses. A large pool of invariants is subsequently evaluated for their

potential to detect bit-flips using an effective incremental SAT-based algorithm. The

results show a clear improvement over the simulation-based approaches.

152

Chapter 6

Conclusion

The constant growth in the complexity of SoCs as well as the demand for shorter time-

to-market windows have further aggravated the challenge of manufacturing error-free

products. Thus, the various steps in the implementation flow have to keep pace with

these rapid changes. Post-silicon validation, as the final proof of due diligence in

the flow is not an exception in this regard. Existing post-silicon validation practices

commonly rely on ad-hoc methods that are specific to the target design. There-

fore, automatic and systematic methods must be developed in order to minimize the

manual intervention in the debugging efforts.

Limited internal observability is one of the most difficult challenges amongst dif-

ferent phases of post-silicon validation. To address this challenge, scan-based debug

and embedded logic analysis have been introduced as two complementary approaches

as explained in chapter 2. The latter is of particular interest in post-silicon valida-

tion because it offers real-time data acquisition without the need to halt the circuit

operation. Event detection, as one of the core sub-blocks of the ELAs monitors the

circuit and controls trace acquisition when a particular event of interest occurs. One

153

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

of the directions in the design of state-of-the-art event detection blocks is to use hard-

ware assertion checkers. Hence, in this thesis, we have proposed systematic methods

for automated design of assertion-based event detectors. The rest of this chapter is

organized as follow. Section 6.1 summarizes the technical contributions of this thesis

and section 6.2 discusses possible future works based on the findings from this thesis.

6.1 Summary of thesis contributions

In chapter 3, we have introduced a systematic methodology for automatic generation

and selection of assertions based on their potential for finding bit-flips in flip-flops.

The proposed methodology generates assertions based on the structural model of

the circuit (netlist). Hence, it is fully generic and can be applied to logic blocks

of any kind. At first, a large pool of assertions are generated and their potential

in detecting bit-flips is found through simulation-based experiments from which the

relationship between assertions and flip-flops of the design is captured in a two dimen-

sional matrix. Since instrumenting all the discovered assertions on-chip is practically

infeasible, a subset of these assertions are selected through a ranking process which is

constrained by the total number of wires used by all the selected assertion and takes

into account the information from the two-dimensional matrix that captures the rela-

tionship between flip-flops and assertions as well as some attributes of the assertions

such as number of wires that comprise each assertion as well as their estimated area

overhead. Following to the selection of assertions, their quality is measured by two

coverage metrics; bit-flip coverage metric and flip-flop coverage metric as explained

in section 3.1.6.

In chapter 4, we improve our proposed methodology in chapter 3 by introducing

154

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

a fully automated tool flow for designing emulation-ready hardware architectures

to replace simulation-based experiments in the proposed methodology of chapter 3.

Since post-silicon validation sessions run at silicon speed, efforts should be made

to close the gap between simulation and silicon speed. FPGA-based emulators are

commonly used to close this gap. Hence, our proposed tool flow generates emulation-

ready architectures that can be used to run FPGA-based experiments to assess the

potential of assertions for bit-flip detection. This means that the process of assessment

and selection of assertions are done more accurately because of a significantly larger

number of stimuli that is applied in a much shorter time, hence capturing a more

realistic behavior of the circuit.

Finally in chapter 5, we propose our own automatic invariant generation tool

which is fundamentally different from the assertion generation tool used in the first

two contributions because there is no dependency on simulation traces. In fact,

since post-silicon validation is performed when the design has been implemented and

verified (netlist is ready), an efficient assertion generation tool should be developed in

such way that it relies on the structural relationships between signals without getting

feedback from simulation traces. Therefore, our tool reads the netlist, converts it to

the CNF formula readable by Boolean Satisfiablity solvers and through formation of

a sequential miter circuit, generates hardware invariants that can be used for bit-

flip detection. The generated invariants are essentially the learned clauses that are

generated as the SAT solver works towards proving that the miter structure is UNSAT.

By using the same framework, the assessment of the generated invariants can also

be evaluated using the incremental SAT solving approach of the modern SAT solvers

which eliminates the need for simulation-based or emulation-based experiments to

155

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

evaluate the potential of every single invariant to detect bit-flips. In addition, a

significantly larger number of invariants are generated and assessed in a significantly

shorter time period.

6.2 Future research direction

In this section, a few possible future research directions based on the work presented

in this thesis are outlined.

As shown in Figure 2.1, post-silicon validation can be divided into many sub-

areas from which controllability, observability and root-cause analysis were discussed

in chapter 2. The contributions from this thesis are categorized into the observability

sub-area where assertions are used as event-detectors to improve internal observabil-

ity. Nonetheless, once an error is detected, root-cause analysis is started where the

ultimate goal is to localize the error and determine why it has occurred. As discussed,

this is commonly achieved by analyzing the information recorded in the on-chip trace

buffers. Clearly, the success of this step depends on the choice of signals that are

selected for which traces are collected. Trace signal selection has been well studied

over the past few years [142, 141, 188, 189]. Therefore, an interesting direction of

research could be to create a bridge between observability and root-cause analysis by

combining the information from the violated assertions with the recorded data on the

embedded trace buffers. An assertion that has been violated will provide a specific

scenario for which a particular property was not hold. Since signals that comprise

each property can reside in different regions of the design, this extra information from

the violated assertion can aid further shrink the suspected regions that the error has

occurred in. In addition, a specific budget can be allocated to the signals that are

156

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

connected to the event-detector to be also connected to the trace memories in order

to collect their history. This will help identify if the assertion has been sensitized in

the clock cycles before the error occurs and if yes, in which iteration it has failed. All

these extra information should ideally help pinpointing the most probable regions of

the design in which the error could have occurred.

Another possible research direction, is based on the findings from the last con-

tribution of the thesis which was elaborated in chapter 5. As explained, one of the

key advantages of our proposed approach for generating hardware invariants is the

fact that the non-obvious relationships that span through multiple clock cycles in be-

tween signals are found based on the netlist structure. This in particular targets the

inherent difference between post-silicon validation and pre-silicon verification in that

the focus is on finding susceptible regions of the circuit that are affected by electrical

problems. Recall that the potential of the generated invariants based on the method

in chapter 5 is assessed based on a formal software-based approach. Therefore, since

the invariants are found based on the netlist structure, it is possible that certain in-

variants that are supposed to detect bit-flips in a particular flip-flop are only excited

following to a very particular sequence of stimuli that need to be applied. Therefore,

to ensure that the invariants are adequately exercised, the random stimuli need to be

constrained to produce stimuli that satisfy the trigerring condition for the invariants.

The problem of generating on-chip constrained random stimuli for post-silicon valida-

tion has been studied in [77, 78, 190]. Hence, the focus of this research direction must

be on analyzing the netlist as well as assertions to provide the necessary information

to the work of [77, 78, 190] in order to generate a comprehensive set of constrained

stimuli that exercise the silicon prototypes for very long periods of time (on the order

157

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

of hours or even days). Instead of applying unconstrained randomized patterns, a

large number of constrained random stimuli can be applied such that the the circuits

functionality is exercised in such way that the enabling conditions of the assertions

are adequately exercised.

Assertion-based verification has been used extensively during the pre-silicon veri-

fication stages for over a decade. In this dissertation we have studied the suitability of

using hardware assertion checkers for bit-flip detection during post-silicon validation.

We have proposed a new methodology whose aim is to assess a large pool of asser-

tions and select only a subset of them for post-silicon validation. This methodology,

together with all the algorithms and architectures that support it, are generic and

can be applied to any digital logic blocks.

158

Bibliography

[1] David Brock, editor. Understanding Moore’s Law: Four Decades of Innovation.

Chemical Heritage Foundation, 2006.

[2] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty. IODINE: a tool to

automatically infer dynamic invariants for hardware designs. In ACM/IEEE

Design Automation Conference, 2005. Proceedings. 42nd, pages 775–778, June

2005.

[3] S. Hertz, D. Sheridan, and S. Vasudevan. Mining hardware assertions with

guidance from static analysis. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 32(6):952–965, June 2013.

[4] H. F. Ko, A. B. Kinsman, and N. Nicolici. Design-for-debug architecture for

distributed embedded logic analysis. IEEE Transactions on Very Large Scale

Integrated (VLSI) Systems, 19(8):1380–1393, Aug 2011.

[5] T. Hong, Y Li, Sung-Boem Park, D. Mui, D. Lin, Z.A Kaleq, N. Hakim,

H. Naeimi, D.S. Gardner, and S Mitra. QED: Quick error detection tests for

effective post-silicon validation. In IEEE International Test Conference (ITC),

pages 1–10, Nov 2010.

159

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[6] Ming Gao and Kwang-Ting Cheng. A case study of time-multiplexed assertion

checking for post-silicon debugging. In IEEE International High Level Design

Validation and Test Workshop (HLDVT), pages 90–96, June 2010.

[7] J. Geuzebroek and B. Vermeulen. Integration of hardware assertions in systems-

on-chip. In IEEE International Test Conference (ITC), pages 1–10, Oct 2008.

[8] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential

benchmark circuits. In IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1929–1934 vol.3, May 1989.

[9] Sharad Malik. The quest for efficient boolean satisfiability solvers. http://

www.princeton.edu/~sharad/CMUSATSeminar.pdf. Accessed: 2017-01-20.

[10] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Inte-

grated Circuits. Pearson, 2nd edition, 2003.

[11] Paul E. Ceruzzi. A History of Modern Computing (History of Computing). The

MIT Press, second edition, 4 2003.

[12] J. Bardeen and W. H. Brattain. The transistor, a semi-conductor triode. Phys.

Rev., 74:230–231, Jul 1948.

[13] W. Shockley. The theory of p-n junctions in semiconductors and p-n junction

transistors. Bell System Technical Journal, 28(3):435–489, 1949.

[14] R. Norman, J. Last, and I. Haas. Solid-state micrologic elements. In IEEE

International Solid-State Circuits Conference (ISSCC), volume III, pages 82–

83, Feb 1960.

160

http://www.princeton.edu/~sharad/CMUSATSeminar.pdf
http://www.princeton.edu/~sharad/CMUSATSeminar.pdf

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[15] Gordon E. Moore. Readings in computer architecture. chapter Cramming

More Components Onto Integrated Circuits, pages 56–59. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2000.

[16] Zainalabedin Navabi. VHDL: Analysis and Modeling of Digital Systems.

McGraw-Hill Professional, 2nd edition, 12 1997.

[17] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill Science/Engineering/Math, 1nd edition, 1994.

[18] Thorsten Grtker, Stan Liao, Grant Martin, and Stuart Swan. System Design

with SystemC. Springer, 2002 edition, 2002.

[19] S. Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis. Number

v. 1 in Verilog HDL: A Guide to Digital Design and Synthesis. SunSoft Press,

2003.

[20] S. Sutherland, P. Moorby, S. Davidmann, and P. Flake. SystemVerilog for

Design Second Edition: A Guide to Using SystemVerilog for Hardware Design

and Modeling. Springer US, 2006.

[21] Malay Ganai and Aarti Gupta. SAT-Based Scalable Formal Verification Solu-

tions (Integrated Circuits and Systems). Springer, 2007 edition, 5 2007.

[22] William K. Lam. Hardware Design Verification: Simulation and Formal

Method-Based Approaches. Prentice Hall, 1st edition, 2005.

[23] Prakash Rashinkar, Peter Paterson, and Leena Singh. System-on-a-Chip Veri-

fication: Methodology and Techniques. Springer, 2002 edition, 2013.

161

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[24] S. Devadas, A. Ghosh, and K. Keutzer. An observability-based code coverage

metric for functional simulation. In ACM/IEEE International Conference on

Computer-Aided Design (ICCAD), pages 418–425, Nov 1996.

[25] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv. User defined coverage-

a tool supported methodology for design verification. In ACM/IEEE Design

Automation Conference (DAC), pages 158–163, June 1998.

[26] D. Moundanos, J. A. Abraham, and Y. V. Heskote. A unified framework for de-

sign validation and manufacturing test. In IEEE International Test Conference

(ITC), pages 875–884, Oct 1996.

[27] H.D. Foster, A.C. Krolnik, and D.J. Lacey. Assertion-Based Design. Informa-

tion Technology: Transmission, Processing and Storage. Springer, 2004.

[28] Lun Li and Mitchell Thornton. Digital System Verification: A Combined Formal

Methods and Simulation Framework (Synthesis Lectures on Digital Circuits and

Systems). Morgan and Claypool Publishers, 2010.

[29] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware

design: A survey. ACM Transactions in Design Automation of Electronic Sys-

tems., 4(2):123–193, April 1999.

[30] J. P. Marques-Silva and K. A. Sakallah. Boolean satisfiability in electronic de-

sign automation. In ACM/IEEE Design Automation Conference (DAC), pages

675–680, June 2000.

162

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[31] M. Bushnell and Vishwani Agrawal. Essentials of Electronic Testing for Digi-

tal, Memory and Mixed-Signal VLSI Circuits (Frontiers in Electronic Testing).

Springer, 2000.

[32] J. H. Patel. Stuck-at fault: a fault model for the next millennium. In IEEE

International Test Conference (ITC), pages 1166–, Oct 1998.

[33] S. Chakravarty and V. P. Dabholkar. Two techniques for minimizing power dis-

sipation in scan circuits during test application. In IEEE Asian Test Symposium

(ATS), pages 324–329, Nov 1994.

[34] A. S. Mudlapur, V. D. Agrawal, and A. D. Singh. A random access scans archi-

tecture to reduce hardware overhead. In IEEE International Test Conference

(ITC), pages 9 pp.–358, Nov 2005.

[35] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Kapur, and

T. W. Williams. A reconfigurable shared scan-in architecture. In IEEE VLSI

Test Symposium (VTS), pages 9–14, April 2003.

[36] J. Goodenough and R. Aitken. Post-silicon is too late avoiding the 50 million

paperweight starts with validated designs. In ACM/IEEE Design Automation

Conference (DAC), pages 8–11, June 2010.

[37] A Adir, A Nahir, G. Shurek, A Ziv, C. Meissner, and J. Schumann. Leverag-

ing pre-silicon verification resources for the post-silicon validation of the IBM

POWER7 processor. In ACM/IEEE Design Automation Conference (DAC),

pages 569–574, June 2011.

163

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[38] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller. A reconfigurable design-for-debug infrastructure for SoCs. In

ACM/IEEE Design Automation Conference, pages 7–12, 2006.

[39] Anand Shimpi. The source of Intel’s Cougar Point SATA bug, 2016.

[40] A.B.T. Hopkins and K.D. McDonald-Maier. Debug support for complex

Systems-on-Chip: a review. IEE Proceedings in Computers and Digital Tech-

niques, 153(4):197–207, July 2006.

[41] B. Vermeulen and S.K. Goel. Design for debug: catching design errors in digital

chips. IEEE Design Test of Computers, 19(3):35–43, May 2002.

[42] Intel Corp. Intel platform and component validation. http://download.

intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf, 2003. [On-

line; accessed 19-Dec-2016].

[43] A. Evans, A. Silburt, G. Vrckovnik, T. Brown, M. Dufresne, G. Hall, Tung Ho,

and Ying Liu. Functional verification of large ASICs. In ACM/IEEE Design

and Automation Conference (DAC), pages 650–655, June 1998.

[44] S. Mitra, S.A. Seshia, and N. Nicolici. Post-silicon validation opportunities,

challenges and recent advances. In ACM/IEEE Design Automation Conference

(DAC), pages 12–17, June 2010.

[45] R. McLaughlin, S. Venkataraman, and C. Lim. Automated debug of speed path

failures using functional tests. In IEEE VLSI Test Symposium (VTS), pages

91–96, May 2009.

164

http://download.intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf
http://download.intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[46] J. B. Dugan, S. J. Bavuso, and M. A. Boyd. Dynamic fault-tree models for fault-

tolerant computer systems. IEEE Transactions on Reliability, 41(3):363–377,

Sep 1992.

[47] Kai-Hui Chang, I.L. Markov, and V. Bertacco. Automating post-silicon de-

bugging and repair. In ACM/IEEE Computer-Aided Design, pages 91–98, Nov

2007.

[48] M. Fujita and H. Yoshida. Post-silicon patching for verification/debugging with

high-level models and programmable logic. In ACM/IEEE Asia and South

Pacific esign Automation Conference (ASP-DAC), pages 232–237, Jan 2012.

[49] S. B. Park, T. Hong, and S. Mitra. Post-silicon bug localization in proces-

sors using instruction footprint recording and analysis (IFRA). IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

28(10):1545–1558, Oct 2009.

[50] Sung-Boem Park and S. Mitra. IFRA: Instruction footprint recording and anal-

ysis for post-silicon bug localization in processors. In ACM/IEEE Design Au-

tomation Conference (DAC), pages 373–378, June 2008.

[51] B. Vermeulen and S.K. Goel. Design for debug: catching design errors in digital

chips. IEEE Design Test of Computers, 19(3):35–43, May 2002.

[52] Ping Yeung and K. Larsen. Practical assertion-based formal verification for

SoC designs. In International Symposium on System-on-Chip, pages 58–61,

Nov 2005.

165

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[53] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rulke. Advanced verifica-

tion by automatic property generation. IET transactions on Computers Digital

Techniques, 3(4):338–353, July 2009.

[54] M. Boule, J.-S. Chenard, and Z. Zilic. Assertion checkers in verification, silicon

debug and in-field diagnosis. In IEEE International Symposium on Quality

Electronic Design (ISQED), pages 613–620, March 2007.

[55] P. Taatizadeh and N. Nicolici. A methodology for automated design of embed-

ded bit-flips detectors in post-silicon validation. In ACM/IEEE Design, Au-

tomation Test in Europe Conference Exhibition (DATE), pages 73–78, March

2015.

[56] P. Taatizadeh and N. Nicolici. Automated selection of assertions for bit-flip

detection during post-silicon validation. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 35(12):2118–2130, 2016.

[57] Kwang-Ting Cheng, Shi-Yu Huang, and Wei-Jin Dai. Fault emulation: A new

methodology for fault grading. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), 18(10):1487–1495, Oct 1999.

[58] D. Jones and D. M. Lewis. A time-multiplexed FPGA architecture for logic

emulation. In IEEE Custom Integrated Circuits Conference, pages 495–498,

May 1995.

[59] R. Nyberg, J. Nolles, J. Heyszl, D. Rabe, and G. Sigl. Closing the gap between

speed and configurability of multi-bit fault emulation environments for security

166

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

and safety-critical designs. In Euromicro Conference on Digital System Design,

pages 114–121, Aug 2014.

[60] Pouya Taatizadeh and Nicola Nicolici. Emulation-based selection and assess-

ment of assertion checkers for post-silicon validation. In IEEE International

Conference on Computer Design (ICCD), pages 46–53, Oct 2015.

[61] P. Taatizadeh and N. Nicolici. Emulation infrastructure for the evaluation of

hardware assertions for post-silicon validation. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems (TVSLI), PP(99):1–15, 2017.

[62] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. Johnson.

GoldMine: Automatic assertion generation using data mining and static analy-

sis. In ACM/IEEE Design, Automation Test in Europe Conference Exhibition

(DATE), pages 626–629, March 2010.

[63] L. Liu, D. Sheridan, W. Tuohy, and S. Vasudevan. Towards coverage clo-

sure: Using GoldMine assertions for generating design validation stimulus. In

ACM/IEEE Design, Automation Test in Europe (DATE), pages 1–6, March

2011.

[64] M. Gopal. Modern Control System Theory. Wiley, 1993.

[65] M. G. Bartley, D. Galpin, and T. Blackmore. A comparison of three verification

techniques: directed testing, pseudo-random testing and property checking. In

ACM/IEEE Design Automation Conference DAC, pages 819–823, 2002.

[66] R. Dabic, S. Jednak, I. Adzic, D. Stanic, A. Mijatovic, and S. Vuckovic. Direct

167

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

test methodology for HDL verification. In International Symposium on Design

and Diagnostics of Electronic Circuits Systems, pages 115–118, April 2015.

[67] N. Kitchen and A. Kuehlmann. Stimulus generation for constrained random

simulation. In ACM/IEEE International Conference on Computer-Aided De-

sign (ICCAD), pages 258–265, Nov 2007.

[68] J. Yuan, C. Pixley, and A. Aziz. Constraint-Based Verification. Springer, 2006.

[69] S. Rayadurgam and M. P. E. Heimdahl. Coverage based test-case generation

using model checkers. In IEEE International Conference and Workshop On the

Engineering of Computer-Based Systems, pages 83–91, 2001.

[70] F. Fallah, S. Devadas, and K. Keutzer. OCCOM-efficient computation of

observability-based code coverage metrics for functional verification. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 20(8):1003–1015, Aug 2001.

[71] M. S. Abadir, J. Ferguson, and T. E. Kirkland. Logic design verification via

test generation. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 7(1):138–148, Jan 1988.

[72] I. Iliuta and C. Tepu. Constraint random stimuli and functional coverage on

mixed signal verification. In International Semiconductor Conference (CAS),

pages 237–240, Oct 2014.

[73] A. Nahir, A. Ziv, M. Abramovici, A. Camilleri, R. Galivanche, B. Bentley,

168

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

H. Foster, A. Hu, V. Bertacco, and S. Kapoor. Bridging pre-silicon verifica-

tion and post-silicon validation. In ACM/IEEE Design Automation Conference

(DAC), pages 94–95, June 2010.

[74] S. K. Sadasivam, S. Alapati, and V. Mallikarjunan. Test generation approach

for post-silicon validation of high end microprocessor. In Euromicro Conference

on Digital System Design, pages 830–836, Sept 2012.

[75] N. Nicolici. On-chip stimuli generation for post-silicon validation. In Inter-

national High Level Design Validation and Test Workshop (HLDVT), pages

108–109, Nov 2012.

[76] A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C. Meissner, and

J. Schumann. A unified methodology for pre-silicon verification and post-silicon

validation. In ACM/IEEE Design, Automation Test in Europe (DATE), pages

1–6, March 2011.

[77] X. Shi and N. Nicolici. On-chip cube-based constrained-random stimuli genera-

tion for post-silicon validation. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), 35(6):1012–1025, June 2016.

[78] X. Shi and N. Nicolici. Generating cyclic-random sequences in a constrained

space for in-system validation. IEEE Transactions on Computers (TCOMP),

65(12):3676–3686, Dec 2016.

[79] A. B. Kinsman, H. F. Ko, and N. Nicolici. In-system constrained-random stimuli

generation for post-silicon validation. In IEEE International Test Conference

(ITC), pages 1–10, Nov 2012.

169

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[80] L.T. Wang, Y.W. Chang, and K.T. Cheng. Electronic Design Automation:

Synthesis, Verification, and Test. Systems on Silicon. Elsevier Science, 2009.

[81] Claudionor Nunes Coelho and Harry D. Foster. Assertion-Based Verification,

pages 167–204. Springer US, Boston, MA, 2004.

[82] Assertion-Based Verification, pages 167–179. Springer US, Boston, MA, 2007.

[83] N. Nataraj, T. Lundquist, and Ketan Shah. Fault localization using time re-

solved photon emission and stil waveforms. In IEEE International Test Con-

ference (ITC), volume 1, pages 254–263, Sept 2003.

[84] J. M. Soden and R. E. Anderson. IC failure analysis: techniques and tools for

quality reliability improvement. Proceedings of the IEEE, 81(5):703–715, May

1993.

[85] M. Paniccia, T. Eiles, V. R. M. Rao, and Wai Mun Yee. Novel optical probing

technique for flip chip packaged microprocessors. In IEEE International Test

Conference (ITC), pages 740–747, Oct 1998.

[86] R. H. Livengood and D. Medeiros. Design for (physical) debug for silicon mi-

crosurgery and probing of flip-chip packaged integrated circuits. In IEEE In-

ternational Test Conference 1999, pages 877–882, 1999.

[87] D. P. Vallett. IC failure analysis: the importance of test and diagnostics. IEEE

Design Test of Computers, 14(3):76–82, Jul 1997.

[88] S. Tang and Q. Xu. In-band cross-trigger event transmission for transaction-

based debug. In ACM/IEEE Design, Automation and Test in Europe (DATE),

pages 414–419, March 2008.

170

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[89] Ilya Wagner. Post-Silicon and Runtime Verification for Modern Processors.

Springer Publishing Company, Incorporated, 2014.

[90] K. H. Chang, V. Bertacco, and I. L. Markov. Simulation-based bug trace min-

imization with bmc-based refinement. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 26(1):152–165, Jan 2007.

[91] A. M. Gharehbaghi and M. Fujita. Formal verification guided automatic design

error diagnosis and correction of complex processors. In IEEE International

High Level Design Validation and Test Workshop (HLDVT), pages 121–127,

Nov 2011.

[92] L. Xie, A. Davoodi, and K. K. Saluja. Post-silicon diagnosis of segments of

failing speedpaths due to manufacturing variations. In ACM/IEEE Design

Automation Conference, pages 274–279, June 2010.

[93] B. Le, D. Sengupta, A. Veneris, and Z. Poulos. Accelerating post silicon debug

of deep electrical faults. In IEEE International On-Line Testing Symposium

(IOLTS), pages 61–66, July 2013.

[94] Cadence. Assertion Writing Guide. Cadence Design Systems.

[95] M. Fujita. Automatic identification of assertions and invariants with small

numbers of test vectors. In IEEE International Conference on Computer Design

(ICCD), pages 463–466, Oct 2015.

[96] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rulke. Automatic generation of

complex properties for hardware designs. In ACM/IEEE Design, Automation

and Test Conference in Europe (DATE), pages 545–548, March 2008.

171

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[97] Lintao Zhang and S. Malik. Conflict driven learning in a quantified boolean sat-

isfiability solver. In ACM/IEEE International Conference on Computer Aided

Design (ICCAD), pages 442–449, Nov 2002.

[98] J. Whittemore, J. Kim, and K. Sakallah. Satire: A new incremental satisfiability

engine. In ACM/IEEE Design Automation Conference (DAC), pages 542–545,

June 2001.

[99] H. Mangassarian, H. Yoshida, A. Veneris, S. Yamashita, and M. Fujita. On

error tolerance and engineering change with partially programmable circuits.

In ACM/IEEE Asia and South Pacific Design Automation Conference (ASP-

DAC), pages 695–700, Jan 2012.

[100] Cadence Design Systems. http://www.cadence.com. 2015.

[101] Xinli Gu, Weili Wang, K. Li, Heon Kim, and S. S. Chung. Re-using DFT logic

for functional and silicon debugging test. In IEEE International Test Conference

(ITC), pages 648–656, 2002.

[102] R. Datta, A. Sebastine, and J. A. Abraham. Delay fault testing and silicon

debug using scan chains. In IEEE European Test Symposium (ETS), pages

46–51, May 2004.

[103] IEEE standard test access port and boundary scan architecture. IEEE Standard

1149.1-2001, pages 1–212, July 2001.

[104] B. Vermeulen and S. K. Goel. Design for debug: catching design errors in digital

chips. IEEE Design Test of Computers, 19(3):35–43, May 2002.

172

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[105] D. D. Josephson. The manic depression of microprocessor debug. In IEEE

International Test Conference (ITC), pages 657–663, 2002.

[106] D. Josephson and B. Gottlieb. The crazy mixed up world of silicon debug [IC

validation]. In IEEE Custom Integrated Circuits Conference, pages 665–670,

Oct 2004.

[107] H. F. Ko and N. Nicolici. Automated trace signals selection using the RTL

descriptions. In IEEE International Test Conference (ITC), pages 1–10, Nov

2010.

[108] C. MacNamee and D. Heffernan. Emerging on-ship debugging techniques for

real-time embedded systems. IEEE Journal of Computing Control Engineering,

11(6):295–303, Dec 2000.

[109] C. B. Stunkel, B. Janssens, and W. K. Fuchs. Address tracing for parallel

machines. IEEE Computers, 24(1):31–38, Jan 1991.

[110] E. E. Johnson, Jiheng Ha, and M. Baqar Zaidi. Lossless trace compression.

IEEE Transactions on Computers (TCOMP), 50(2):158–173, Feb 2001.

[111] A. B. T. Hopkins and K. D. McDonald-Maier. Debug support strategy for

systems-on-chips with multiple processor cores. IEEE Transactions on Com-

puters (TCOMP), 55(2):174–184, Feb 2006.

[112] L.B. Arimilli, M.S. Floyd, L.S. Leitner, K.F. Reick, and J.L. Vargus. Multi-

state logic analyzer integral to a microprocessor, October 14 2003. US Patent

6,633,838.

173

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[113] A.L. Herrmann and G.P. Nugent. Embedded logic analyzer for a programmable

logic device, January 30 2001. US Patent 6,182,247.

[114] Xilinx Verification Tool. ChipScope. http://www.xilinx.com. 2006.

[115] Altera Verification Tool. SignalTap II Embedded Logic Analyzer.

http://www.altera.com. 2006.

[116] Yu-Chin Hsu, Furshing Tsai, Wells Jong, and Ying-Tsai Chang. Visibility

enhancement for silicon debug. In ACM/IEEE Design Automation Conference

(DAC), pages 13–18, 2006.

[117] R. Leatherman and N. Stollon. An embedding debugging architecture for socs.

IEEE Potentials, 24(1):12–16, Feb 2005.

[118] H. F. Ko and N. Nicolici. Mapping trigger conditions onto trigger units dur-

ing post-silicon validation and debugging. IEEE Transactions on Computers

(TCOMP), 61(11):1563–1575, Nov 2012.

[119] D. Lin, E. Singh, C. Barrett, and S. Mitra. A structured approach to post-

silicon validation and debug using symbolic quick error detection. In IEEE

International Test Conference (ITC), pages 1–10, Oct 2015.

[120] D. Lin, S. Eswaran, S. Kumar, E. Rentschler, and S. Mitra. Quick error

detection tests with fast runtimes for effective post-silicon validation and de-

bug. In ACM/IEEE Design, Automation Test in Europe Conference Exhibition

(DATE), pages 1168–1173, March 2015.

[121] D. Lin, T. Hong, Y. Li, E. S, S. Kumar, F. Fallah, N. Hakim, D. S. Gardner,

and S. Mitra. Effective post-silicon validation of system-on-chips using quick

174

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

error detection. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 33(10):1573–1590, Oct 2014.

[122] D. Lin, T. Hong, Y. Li, F. Fallah, D. S. Gardner, N. Hakim, and S. Mitra.

Overcoming post-silicon validation challenges through quick error detection

(QED). In ACM/IEEE Design, Automation Test in Europe Conference Ex-

hibition (DATE), pages 320–325, March 2013.

[123] N. R. Saxena, S. Fernandez-Gomez, Wei-Je Huang, S. Mitra, Shu-Yi Yu, and

E. J. McCluskey. Dependable computing and online testing in adaptive and

configurable systems. IEEE Design Test of Computers, 17(1):29–41, Jan 2000.

[124] A. Mahmood and E. J. McCluskey. Concurrent error detection using watchdog

processors-a survey. IEEE Transactions on Computers (TCOMP), 37(2):160–

174, Feb 1988.

[125] D. J. Lu. Watchdog processors and structural integrity checking. IEEE Trans-

actions on Computers (TCOMP), C-31(7):681–685, July 1982.

[126] C. Wang, H. s. Kim, Y. Wu, and V. Ying. Compiler-managed software-based

redundant multi-threading for transient fault detection. In International Sym-

posium on Code Generation and Optimization (CGO), pages 244–258, March

2007.

[127] N. R. Saxena and E. J. McCluskey. Dependable adaptive computing systems-

the ROAR project. In IEEE International Conference on Systems, Man, and

Cybernetics, volume 3, pages 2172–2177 vol.3, Oct 1998.

175

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[128] B. Vermeulen, M. Z. Urfianto, and S. K. Goel. Automatic generation of break-

point hardware for silicon debug. In ACM/IEEE Design Automation Conference

(DAC), pages 514–517, July 2004.

[129] I. Syafalni, N. Surantha, D. K. Lam, N. Sutisna, Y. Nagao, K. Wakasugi,

Y. Tongxin, H. Ochi, and T. Tsuchiya. Assertion-based verification of indus-

trial WLAN system. In IEEE International Symposium on Circuits and Systems

(ISCAS), pages 982–985, May 2016.

[130] R. Sebastian, S. R. Mary, Gayathri M, and A. Thomas. Assertion based verifi-

cation of SGMII IP core incorporating AXI transaction verification model. In

International Conference on Control Communication Computing India (ICCC),

pages 585–588, Nov 2015.

[131] H. Sohofi and Z. Navabi. Assertion-based verification for system-level designs. In

IEEE International Symposium on Quality Electronic Design (ISQED), pages

582–588, March 2014.

[132] Yael Abarbanel, Ilan Beer, Leonid Gluhovsky, Sharon Keidar, and Yaron Wolf-

sthal. FoCs – Automatic Generation of Simulation Checkers from Formal Spec-

ifications, pages 538–542. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[133] M. Pellauer, M. Lis, D. Baltus, and R. Nikhil. Synthesis of synchronous asser-

tions with guarded atomic actions. In ACM/IEEE International Conference on

Formal Methods and Models for Co-Design, pages 15–24, July 2005.

[134] M. Boulé and Z. Zilic. Generating Hardware Assertion Checkers: For Hardware

176

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring.

Springer, 2008.

[135] M. Boule and Z. Zilic. Efficient automata-based assertion-checker synthesis of

PSL properties. In IEEE International High Level Design Validation and Test

Workshop (HLDVT), pages 69–76, Nov 2006.

[136] M. R. Kakoee, M. H. Neishaburi, M. Daneshtalab, S. Safari, and Z. Navabi. On-

chip verification of NoCs using assertion processors. In Euromicro Conference

on Digital System Design Architectures, Methods and Tools (DSD), pages 535–

538, Aug 2007.

[137] F. C. Sica, C. N. Coelho, J. A. M. Nacif, H. Foster, and A. O. Fernandes.

Exception handling in microprocessors using assertion libraries. In Symposium

on Integrated Circuits and Systems Design, pages 55–59, Sept 2004.

[138] K. Peterson and Y. Savaria. Assertion-based on-line verification and debug

environment for complex hardware systems. In IEEE International Symposium

on Circuits and Systems, volume 2, pages II–685–8 Vol.2, May 2004.

[139] M. H. Neishaburi and Z. Zilic. On a new mechanism of trigger genera-

tion for post-silicon debugging. IEEE Transactions on Computers (TCOMP),

63(9):2330–2342, Sept 2014.

[140] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault injection exper-

iments using FIAT. IEEE Transactions on Computers (TCOMP), 39(4):575–

582, Apr 1990.

177

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[141] D. Chatterjee, C. McCarter, and V. Bertacco. Simulation-based signal selection

for state restoration in silicon debug. In ACM/IEEE International Conference

on Computer-Aided Design (ICCAD), pages 595–601, Nov 2011.

[142] H.F. Ko and N. Nicolici. Automated trace signals identification and state

restoration for improving observability in post-silicon validation. In ACM/IEEE

Design, Automation and Test in Europe (DATE), pages 1298–1303, March 2008.

[143] Yu-Shen Yang, N. Nicolici, and A. Veneris. Automated data analysis solutions

to silicon debug. In ACM/IEEE Design, Automation Test in Europe Conference

Exhibition (DATE), pages 982–987, April 2009.

[144] A. Hekmatpour and A. Salehi. Block-based schema-driven assertion generation

for functional verification. In IEEE Asian Test Symposium (ATS), pages 34–39,

Dec 2005.

[145] G. Pinter and I. Majzik. Automatic generation of executable assertions for

runtime checking temporal requirements. In IEEE International Symposium on

High-Assurance Systems Engineering, pages 111–120, Oct 2005.

[146] Po-Hsien Chang and L.-C. Wang. Automatic assertion extraction via sequential

data mining of simulation traces. In (ACM/IEEE) Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 607–612, Jan 2010.

[147] O. Kupferman, Wenchao Li, and S.A. Seshia. A theory of mutations with

applications to vacuity, coverage, and fault tolerance. In Formal Methods in

Computer-Aided Design, pages 1–9, Nov 2008.

178

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[148] S. Das, A. Banerjee, P. Basu, P. Dasgupta, P.P. Chakrabarti, C.R. Mohan, and

L. Fix. Formal methods for analyzing the completeness of an assertion suite

against a high-level fault model. In IEEE International Conference on VLSI

Design, pages 201–206, Jan 2005.

[149] Shuo Sheng and M.S. Hsiao. Efficient sequential test generation based on logic

simulation. IEEE Design Test of Computers, 19(5):56–64, Sep 2002.

[150] A Parikh, Weixin Wu, and M.S. Hsiao. Mining-guided state justification with

partitioned navigation tracks. In IEEE International Test Conference (ITC),

pages 1–10, Oct 2007.

[151] M. Dusanapudi, S. Fields, M.S. Floyd, G.L. Guthrie, R. Kalla, S. Kapoor,

L.S. Leitner, C.F. Marino, J.J. McGill, A. Nahir, K. Reick, H. Shen, and K.L.

Wright. Debugging post-silicon fails in the IBM POWER8 bring-up lab. IBM

Journal of Research and Development, 59(1):12:1–12:10, Jan 2015.

[152] M. Gao, P. Lisherness, and K. T. Cheng. Post-silicon bug detection for vari-

ation induced electrical bugs. In ACM/IEEE Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 273–278, Jan 2011.

[153] A. Margulis, D. Akselrod, E. Rentschler, and M. Ricchetti. Evolution of graph-

ics northbridge test and debug architectures across four generations of AMD

ASICs. IEEE Design Test, 30(4):16–25, Aug 2013.

[154] B. Bentley. Validating the Intel Pentium 4 Microprocessor. In ACM/IEEE

Design Automation Conference (DAC), pages 244–248, 2001.

179

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[155] G. Stoler. Validation of complex designs through hardware prototyping. In

IEEE Computer Society Workshop on VLSI, pages 149–154, 2000.

[156] Chung-Yang Huang, Yu-Fan Yin, Chih-Jen Hsu, T.B. Huang, and Ting-Mao

Chang. SoC HW/SW verification and validation. In ACM/IEEE Asia and

South Pacific Design Automation Conference (ASP-DAC), pages 297–300, Jan

2011.

[157] K. Balston, A. J. Hu, S. J. E. Wilton, and A. Nahir. Emulation in post-silicon

validation: It’s not just for functionality anymore. In IEEE High Level Design

Validation and Test Workshop (HLDVT), pages 110–117, Nov 2012.

[158] R. O. Gallardo, A. J. Huy, A. Ivanov, and M. S. Mirian. Reducing post-silicon

coverage monitoring overhead with emulation and bayesian feature selection.

In ACM/IEEE International Conference on Computer-Aided Design (ICCAD),

pages 816–823, Nov 2015.

[159] Ben Cohen. Using PSL/Sugar with Verilog and VHDL, Guide to Property

Specification Language for ABV. VhdlCohen Publishing, 5 2003.

[160] Srikanth Vijayaraghavan and Meyyappan Ramanathan. A Practical Guide for

SystemVerilog Assertions. Springer, 2005 edition, 6 2005.

[161] S. Das, R. Mohanty, P. Dasgupta, and P. P. Chakrabarti. Synthesis of system

verilog assertions. In Proceedings of the ACM/IEEE Design Automation Test

in Europe Conference (DATE), volume 2, pages 1–6, March 2006.

[162] C. Fibich, M. Wenzl, and P. Rssler. On automated generation of checker units

180

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

from hardware assertion languages. In Microelectronic Systems Symposium

(MESS), 2014, pages 1–6, May 2014.

[163] M. Wenzl, C. Fibich, P. Rssler, H. Taucher, and M. Matschnig. Logic synthesis

of assertions for saftey-critical applications. In IEEE International Conference

on Industrial Technology (ICIT), pages 1581–1586, March 2015.

[164] Kwang-Ting Cheng, Shi-Yu Huang, and Wei-Jin Dai. Fault emulation: A new

methodology for fault grading. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), 18(10):1487–1495, Oct 1999.

[165] C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Garcia, and L. Entrena-

Arrontes. Techniques for fast transient fault grading based on autonomous

emulation. In ACM/IEEE Design, Automation and Test in Europe (DATE),

pages 308–309 Vol. 1, March 2005.

[166] IEEE standard for SystemVerilog–unified hardware design, specification, and

verification language. IEEE Std 1800-2012 (Revision of IEEE Std 1800-2009),

pages 1–1315, Feb 2013.

[167] Altera Corporation. http://www.altera.com. 2015.

[168] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-

ings of the Third Annual ACM Symposium on Theory of Computing, pages

151–158, New York, NY, USA, 1971. ACM.

[169] J. P. Marques Silva and K. A. Sakallah. GRASP-A new search algorithm for

satisfiability. In ACM/IEEE International Conference on Computer-Aided De-

sign, pages 220–227, Nov 1996.

181

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[170] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

engineering an efficient SAT solver. In ACM/IEEE Design Automation Con-

ference, pages 530–535, June 2001.

[171] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their

applications in model checking. Proceedings of the IEEE, 103(11):2021–2035,

Nov 2015.

[172] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust boolean

reasoning for equivalence checking and functional property verification. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 21(12):1377–1394, Dec 2002.

[173] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model

checking using sat procedures instead of bdds. In ACM/IEEE Design Automa-

tion Conference (DAC), pages 317–320, 1999.

[174] Y. Hu, V. Shih, R. Majumdar, and L. He. Exploiting symmetries to speed

up sat-based boolean matching for logic synthesis of fpgas. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

27(10):1751–1760, Oct 2008.

[175] S. Sapra, M. Theobald, and E. Clarke. SAT-based algorithms for logic min-

imization. In IEEE International Conference on Computer Design (ICCD),

pages 510–517, Oct 2003.

[176] V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asynchronous

182

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

circuits based on Petri net unfoldings and incremental SAT. In IEEE Inter-

national Conference on Application of Concurrency to System Design, pages

16–25, June 2004.

[177] Yung-Chieh Lin, Feng Lu, Kai Yang, and Kwang-Ting Cheng. Constraint ex-

traction for pseudo-functional scan-based delay testing. In ACM/IEEE Asia

and South Pacific Design Automation Conference (ASP-DAC), volume 1, pages

166–171 Vol. 1, Jan 2005.

[178] R. Drechsler, S. Eggergluss, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and

D. Tille. On acceleration of sat-based atpg for industrial designs. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

27(7):1329–1333, July 2008.

[179] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational

test generation using satisfiability. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems (TCAD), 15(9):1167–1176, Sep 1996.

[180] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem-proving. ACM Communications, 5(7):394–397, July 1962.

[181] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers (TCOMP), 35(8):677–691, August 1986.

[182] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving

hard satisfiability problems. In National Conference on Artificial Intelligence,

AAAI, pages 440–446. AAAI Press, 1992.

183

Ph.D. Thesis - Pouya Taatizadeh McMaster - Electrical Engineering

[183] Mary Sheeran and Gunnar St̊almarck. A tutorial on st̊almarck’s proof procedure

for propositional logic. Formal Methods in System Design, 16(1):23–58, 2000.

[184] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into

SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2:1–26,

2006.

[185] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in mod-

ern SAT solvers. IJCAI, pages 399–404, 2009.

[186] ABC: A system for sequential synthesis and verification. https://people.

eecs.berkeley.edu/~alanmi/abc/.

[187] IEEE standard for property specification language (PSL). IEEE Std 1850-2010

(Revision of IEEE Std 1850-2005), pages 1–182, April 2010.

[188] K. Rahmani, P. Mishra, and S. Ray. Efficient trace signal selection using aug-

mentation and ilp techniques. In IEEE International Symposium on Quality

Electronic Design (ISQED), pages 148–155, March 2014.

[189] A. Vali and N. Nicolici. Bit-flip detection-driven selection of trace signals. In

IEEE European Test Symposium (ETS), pages 1–6, May 2016.

[190] X. Shi and N. Nicolici. On-chip constrained random stimuli generation for post-

silicon validation using compact masks. In IEEE International Test Conference

(ITC), pages 1–10, Oct 2014.

184

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/

	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction
	History of Computing
	Design Flow of VLSI Circuits
	Pre-Silicon Verification
	Manufacturing Test
	Post-Silicon Validation
	Contribution and Organization of the Thesis

	Background and Related Work
	Controllability
	Stimuli generation in pre-silicon verification
	Stimuli generation in post-silicon validation

	Observability
	Observability in pre-silicon verification
	Observability in post-silicon validation
	Root-cause analysis

	Assertion-based verification
	DFD structures to improve observability
	Scan chain-based technique
	Trace-based technique

	Event detection
	Quick error detection tests
	Programmable trigger-units
	Assertion-based trigger units

	Summary

	Automated Design of Embedded Bit-flip Detectors
	Proposed Methodology
	Potentials of Assertions
	Automatic Assertion Generation
	Preparation Experiments
	Mapping Assertions to Hardware
	Assertion Ranking
	Confirmation Experiments

	Ranking Algorithm
	Bit-flip coverage estimate maximization
	Flip-flop coverage estimate maximization

	Experimental Results
	Bit-flip Coverage Estimate
	Flip-flop Coverage Estimate
	Running Times

	Summary

	Emulation Infrastructures for the Evaluation of Hardware Assertions
	Background
	Assertion Synthesis
	Architecture
	Benefits of Emulation for Assertion Assessment
	Hardware Architecture and Tool Flow

	Results and Discussion
	Preparation experiments
	Confirmation Experiments
	Run-times for different steps of our methodology

	Concluding remarks

	SAT-based Methodology for Designing Bit-flip Detectors
	SAT Fundamentals
	Generation of Hardware Invariants
	Converting Learned Clauses to SVA Assertions
	Evaluation of Hardware Invariants
	Selection of Hardware Invariants
	Results
	Summary

	Conclusion
	Summary of thesis contributions
	Future research direction

