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Abstract— An automated diagnosis procedure based on a sta-
tistical machine learning methodology using electroencephalo-
graph (EEG) data is proposed for diagnosis of psychiatric
illness. First, a large collection of candidate features, mostly
consisting of various statistical quantities, are calculated from
the subject’s EEG. This large set of candidate features is then
reduced into a much smaller set of most relevant features using
a feature selection procedure. The selected features are then
used to evaluate the class likelihoods, through the use of a
mixture of factor analysis(MFA) statistical model [7].

In a training set of 207 subjects, including 64 subjects with
major depressive disorder (MDD), 40 subjects with chronic
schizophrenia, 12 subjects with bipolar depression and 91
normal or healthy subjects, the average correct diagnosis rate
attained using the proposed method is over 85%, as determined
by various cross-validation experiments. The promise is that,
with further development, the proposed methodology could
serve as a valuable adjunctive tool for the medical practitioner.

I. I NTRODUCTION

An essential criterion for successful treatment of a mental
illness is a correct diagnosis. However, the diagnostic process
can be a more difficult task than it may first appear. Even
though clinical diagnostic guidelines are well established,
i.e., through theDiagnostic and Statistical Manual of Mental
Disorders of the American Psychiatric Association(DSM)
and designed to differentiate various psychiatric conditions,
often specific symptoms can appear in more than one diag-
nostic category, and diagnostic criteria can overlap to the
point where confident differentiation is often impossible.
Even the psychiatric expert can have difficulty distinguish-
ing certain psychiatric conditions, e.g. psychotic depression
from schizophrenia or, most notably, differentiating major
depressive disorder (MDD) from bipolar depression (BD).
This distinction is highly relevant as the antidepressant med-
ications that would be quite appropriate for MDD may, in
the patient with BD, induce mania, or rapid cycling between
depression and mania thus making the condition considerably
worse [1].

In summary, at best the consequence of a diagnostic
error is that an ineffective treatment would be prescribed.
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However, even this best scenario is highly undesirable,
since it adversely affects recovery of the patient. At worst,
a diagnostic error results in exacerbation rather than the
expected mitigation of symptoms. It is very important there-
fore that a correct psychiatric diagnosis be obtained before
treatment is initiated. To this end, in this paper we propose an
automated machine learning procedure based on the patient’s
resting electroencephalogram (EEG) that can diagnose spe-
cific forms of psychiatric illness. The classes of psychiatric
illness considered in this paper include schizophrenia (SCZ),
MDD and BD (also referred to as bipolar affective disorder–
depressed phase). A sample of healthy or ‘normal’ (N)
subjects is also included. The proposed methodology could
in principal be extended to other forms of illness; however,
in this study we consider only these classes, due to the
availability of training data.

There are previous studies based on the EEG for diagnosis.
For example, the study [2] (based on a sample of 11 subjects
with a history of depression and 11 normal control subjects)
reported that frontal brain asymmetry (FBA) is a potential
marker for depression. In [3], EEG data is analyzed to
compare normal subjects versus subjects suffering various
mental disorders. This group found that a decrease in delta
or theta band EEG power can be regarded as a specific sign
of brain dysfunction.

The machine leaning paradigm has also been used in this
context. For example, see [4]–[6]. Li and Fan [4] used an
artificial neural network (ANN) fed with EEG data to dif-
ferentiate three classes of subjects: those with schizophrenia,
those with depression, and healthy subjects. In a sample with
10 subjects in each of these three classes, the multi-layer
perceptron neural network (trained with the back-propagation
technique) obtained a correct diagnosis rate of 60%, 60%,
and 80% for each of the three respective classes.

In this study, we demonstrate the use of statistical machine
learning methodologies for psychiatric diagnosis. Specifi-
cally, we propose a maximum likelihood decision approach
based on the use ofmixture of factor analysis(MFA) models
[7] for distinguishing between the four classes of diagnostic
illness: SCZ, MDD, BD and N. On the basis of the available
data, we show that the proposed approach to automated
diagnosis offers a rather satisfactory level of performance.

II. M ETHODS

Resting or spontaneous EEG signals, denoted byEi, i =
1, . . . , Mt where Mt is the number of available training
epochs, are collected fromM subjects who suffer from one



of the J = 4 classes of psychiatric illness considered in this
study. The true diagnostic class (as determined below) of
the patient is denoted asyi. The possible values for theyi

are [SCZ, MDD, BD and N]. The set of EEG recordings
and the corresponding diagnostic class is referred to as a
training set, denoted byD =

{
(Ei, yi), i = 1, . . . ,Mt

}
.

These EEG signals from each subject are pre-processed to
extract a large numberNc of candidate features̃xi ∈ RNc

that might be relevant for diagnosis. These candidate fea-
tures consist of various statistical quantities such as spectral
coherence at all frequencies between 4Hz and 36Hz with
1Hz resolution and between all electrode pairs, as well as
mutual information between all electrode pairs. In addition,
the candidate features also include absolute and relative
power spectral density (PSD) levels, the log ratio of left-to-
right hemisphere powers, and anterior/posterior power ratios,
between relevant electrodes and at all relevant frequencies.
For the number of EEG electrodes and the frequency resolu-
tion values considered in this study, the number of candidate
features isNc = 6988. These candidate features are then
reduced to a set of most relevant featuresxi ∈ RNr , where
Nr ¿ Nc, to select only those features which are most
statistically indicative of the diagnostic class. For this study,
we chooseNr to be of the order of 10. We use the “greedy”
feature selection method proposed by [9]. These reduced-
dimensionality features are then fed into a classifier (in the
form of a maximum likelihood decision model) that outputs
the estimated diagnostic class.

A. Participants

Our study sample consists of a total of 207 adults, includ-
ing 64 MDD, 40 SCZ, 12 BD and 91 N subjects. All 116
subjects with psychiatric conditions were recruited from the
case load of the St Josephs Hospital, Center for Mountain
Health Services, Hamilton, Ontario. They were carefully
diagnosed using the appropriate DSM criteria by experienced
psychiatrists specializing in the management of either mood
disorders or schizophrenia. In most subjects with MDD,
the diagnosis was confirmed using the Structured Clinical
Interview for DSM (SCID). All subjects with schizophrenia
met both DSM-IV criteria for schizophrenia and the Kane et
al [10] criteria for treatment resistance.

B. EEG Recordings

In subjects with MDD or BD, resting EEG is mea-
sured after 10 days medication withdrawal. In subjects
with schizophrenia, the subjects maintain their prescribed
medication. Signals from sixteen EEG electrodes (configured
according to the standard 10-20 system referenced to linked
ears), consisting of Fp1, Fp2, F3, F4, F7, F8, T3, T4, C3,
C4, T5, T6, P3, P4, O1 and O2, are recorded using a QSI-
9500 EEG system, with a sampling frequency of 205Hz. For
each subject, 6 EEG files each of 3.5 minutes duration are
collected, consisting of 3 with eyes open and 3 with eyes
closed; however, some subjects had only 5 files available.
For de-artifacting, the data were partitioned into segments
of 1 second duration. If the input signal on any electrode

saturated the acquisition hardware, the entire segment was
rejected. The signals were then digitally bandpass filtered
after recording between 3 and 38 Hz to partially mitigate
the effects of eye movement and muscle artifacts. In each
EEG file, in an effort to conserve computational demands,
only the first 45 seconds of the de-artifacted portion of the
EEG data are considered. These segments are divided into
2 overlapping epochs of 30 sec. duration, to give a nominal
12 epochs of EEG data per subject.

C. Classification using MFA Modeling

The MFA approach to classification [7] is based on maxi-
mum likelihood principles. Let the probabilistic event that a
reduced feature vectorx belongs to thej-th class be denoted
by Ωj , wherej ∈ {1, . . . , J} andJ is the number of classes.
Assume that we have constructed the probability models
for all classes,

{
p(x|Ωj , Θ̂(j)), j = 1, . . . , J

}
, whereΘ̂(j)

denotes the estimated parameters for the probabilistic genera-
tive model corresponding to the probabilistic eventΩj . Based
on the maximum likelihood classification rule, the class of a
test feature vectorx is given by

ŷ = arg max
j

p(x|Ωj , Θ̂(j)). (1)

In this study, we separately estimate the statistical generative
model of each class with MFA modeling using the corre-
sponding training subset. MFA is based on ordinary factor
analysis, which is a method for modeling correlated high-
dimensional data with a low-dimensional oriented subspace.
For the training data set of each class indexed by superscript
j, the model assumes that eachNr-dimensional data vector
x(j)

i was generated by linearly transforming anm < Nr

dimensional vector of hidden independent zero-mean unit-
variance Gaussian sources (factors)zi = [zi1, . . . , zim], as
follows

x(j)
i = A(j) zi + µ(j) + ni, i = 1, . . . , Mtj (2)

where Mtj is the number of training samples in classj,
zi ∼ N (0; I), and ni ∼ N (0;Ψ(j)), where N (µ;Σ)
denotes a multi–variate Gaussian distribution with meanµ
and covarianceΣ. The matrixA(j) ∈ RNr×m, is a linear
transformation known as the ‘factor loading matrix’ for the
jth class, andµ(j) is the mean vector of the analyzer. The
factor analysis methodology discussed above invokes a linear
model, but in practice the data manifold generated by the set
of reduced feature vectors is generally nonlinear. To address
this issue, a mixture of factor analysis (MFA) model is used.
The MFA procedure models the density for a data pointxi

as a weighted average of factor analyzer densities. Let us
assume that for classj, the number of mixture components
is K, the factor loading matrix for componentk is denoted
by A(j,k), andµ(j,k) is the corresponding mean vector. The
distribution forx(j)

i is therefore modelled as

p(x(j)
i |Ωj , Θ(j)) =

K∑

k=1

α
(j)
k p

(
xi|s(j)

k , A(j,k),µ(j,k), Ψ(j)
)



whereα
(j)
k = p(s(j)

k |α(j)) is the mixing proportion,s(j)
k ∈

{1, 2, . . . , K} represents a discrete random variable indi-
cating the component from whichx(j)

i has been gener-
ated, α(j) = [α(j)

1 , . . . , α
(j)
K ]T such that

∑K
k=1 α

(j)
k = 1

and α
(j)
k > 0. Based on the MFA model, the parameter

set corresponding to thej-th class of data isΘ(j) ={
{A(j,k),µ(j,k)}K

k=1,α
(j), Ψ(j)

}
. These parameters are es-

timated, using the information in the training data, by an
expectation-maximization(EM) algorithm [7]. The number
of mixture components (K) and number of factors (m)
are assumed equal over all classes. The best vales for
these quantities are found using a nested cross-validation
procedure.

After the model is trained, the likelihood that a test data
vectorx belongs toj-th diagnostic class can be shown to be

p(x|Ωj , Θ̂(j)) =
K∑

k=1

α̂
(j)
k N

(
x|µ̂(j,k);A(j,k)A(j,k)T

+ Ψ̂(j)
)

(3)
The estimated class is then determined according to (1).

Finally, considering the fact that we have multiple epochs
(values ofxi) for each subject, the diagnosis result for each
subject is determined by averaging the MFA probabilities
from (3) over all corresponding epochs before quantization.

To evaluate the diagnosis performance, we used an itera-
tive ‘leave-n-out’ (LnO) cross-validation (CV) procedure, as
follows. First, subjects are divided into contiguous subsets,
each consisting ofn subjects. Then, in each fold (iteration)
of the cross-validation loop, all epochs associated with a spe-
cific subset are omitted from the training set. The remaining
data are used to train the diagnosis model. The model is
tested using the omitted subset. The process repeats, where
in each iteration each respective subset is omitted, until all
subjects have been tested once. In this study, the value ofn
varied with the number of training samples in the respective
experiment, so that the number of folds remains constant at
a value of approximately 10 iterations.

III. R ESULTS

Three diagnostic experiments are studied in this paper
and the results are shown in Tables I–III. We show results
from selected two-way diagnostic classifications in addition
to a multi–class diagnosis result. Experiment 1 is a two-
way diagnosis test between the classes SCZ and MDD. The
results of the experiment are contained in the contingency
table shown in Table I. The first row of this table represents
the 64 patients who have been assumed correctly diagnosed
by the psychiatrist to have MDD. The diagonal entry of this
row (first column) indicates the number of correct diagnoses
made by the proposed method, whereas the second entry
gives the number of cases incorrectly diagnosed as SCZ.
Row 2 represents the SCZ performance in a corresponding
manner. As may be seen, the overall correct diagnosis rate
is in excess of 88%.

Experiment 2 is an additional binary classification ex-
ample, this time between MDD and BD subjects. These

TABLE I

EXPERIMENT 1: BINARY DIAGNOSIS PERFORMANCE RESULTS FOR

MDD VS. SCHIZOPHRENIA WITHNr = 14.

Estimated Estimated Total
true as MDD as SCZ No.

57 7 64
MDD (89%)

5 35 40
SCZ (87.5%)

avg. = 88.3% 104

TABLE II

EXPERIMENT 2: BINARY DIAGNOSIS PERFORMANCE RESULTS FOR

MDD VS. BD WITH Nr = 8.

Estimated Estimated Total
true as MDD as BD No.

60 4 64
MDD (93.8%)

4 44 12× 4
BD (91.7%)

avg. = 92.7% 76

two conditions are very difficult to distinguish, and even
in the absence of a past history of an episode of mania or
hypomania, impossible to differentiate in a clinical setting.
Due to the imbalance in the number of training samples in the
BD and MDD groups (12 and 64 samples respectively), the
classification procedure becomes biased toward the majority
population, reducing the level of performance. To avoid this
difficulty we used the following procedure. We divided the 64
MDD subjects into 4 subsets each of size 16 subjects. Then 4
separate diagnosis experiments are performed where in each
experiment each of the MDD subsets are sequentially tested
against the 12 subjects with BD. The overall contingency
table is then constructed by adding the respective entries
from the individual tables obtained from each experiment,
as shown in Table II. Again, the combined performance
level of approximately 92% offers promising potential for the
proposed method. It is to be noted that this experiment was
repeated using the linear discriminant analyzer (LDA), the
nearest–neighbor (NN) and support vector machine (SVM)
classifiers [8]. The performance of the MFA classifier ex-
ceeded that of the others by a margin of at least 2.5%.

In experiments 1 and 2, the values forK and m of the
MFA model were determined in each fold of the cross-
validation procedure from the candidate sets[1, . . . , 5] and
[1, . . . , 4], respectively.

We now investigate the clustering behaviour of the feature
space for the MDD vs. BD classification example (Ex-
periment 2). In this vein, we construct a two-dimensional
representation of the feature space, compressed fromNr

dimensions to 2 dimensions using the Kernel PCA (KPCA)
method (with a Gaussian kernel) [11]. To balance the number
of subjects in each diagnostic group, as previously discussed,
we arbitrarily chose only the first subset of 16 MDD subjects
for this clustering analysis. Fig. 1 shows a scatter plot of
336 feature vectors corresponding to the 336 available EEG
epochs projected onto the first two major nonlinear principal
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Fig. 1. From experiment 2: Scatter plot of the projection of the selected
feature vectors onto the first 2 nonlinear principal components, obtained
using the KPCA method. Clustering between the BD versus MDD features
is evident, which suggests discrimination between these diagnostic classes
is possible.Nr = 8.

TABLE III

EXPERIMENT 3: THREE-CLASS DIAGNOSIS PERFORMANCE RESULTS:

MDD VS. SCZVS. N.

Est. as Est. as Est. as Total
(true) MDD SCZ N No.

55 6 3 64
MDD (85.9%)

3 35 2 40
SCZ (87.5%)

4 7 80 91
N (87.9%)

avg. = 87.1% 195

components. The patient index is written beside each data
sample. It may be observed that this figure shows a noticeable
clustering of the subjects into the MDD and BD groups.

Finally, in experiment 3, a three-class diagnosis problem
between the classes MDD, SCZ and N is studied. Table III
shows the results forNr = 42. Because the training set for
the BD case is imbalanced, and the diagnostic performance
for the BD class is consequently degraded, we have omitted
this class from this example. A diagnostic capability for the
BD case could nevertheless be obtained by combining e.g.,
the MDD and BD classes into one and then performing a
3-way classification with the remaining classes as shown
in this experiment. A subsequent binary classification as in
experiment 2 could then distinguish between the MDD and
BD classes. Note that the features are determined in this
multi–class case by finding separate lists of discriminating
features for all binary combinations of diagnosis class. These
features are then concatenated into a single larger list, to be
used in the multi–class classifier.

IV. D ISCUSSION ANDCONCLUSIONS

In conclusion, the proposed EEG–based methodology,
consisting of the feature selection method of Peng [9] and
the MFA classification procedure [7] is found to be very
efficient for diagnosis of psychiatric disorders. The superior
performance of the MFA method for this application, in
comparison to other forms of classifier, is very likely due
to its ability to model a low-dimensional nonlinear manifold
using a combination of linear components. Furthermore, the
proposed method outputs a soft decision in the form of a
likelihood statistic for each of the classes, as opposed to
a hard decision as in the case of other common forms of
classifier. This provides the clinician with the likelihood of
occurrence of each of the illnesses, for a given patient. This
can be of value e.g., in prescribing treatment in the case of
a co-morbid illness.

Findings such as these suggest that machine learning may
find an important place in the tool chest of the medical prac-
titioner, particularly when experienced psychiatric personnel
are not readily available. Confirmation of diagnosis may
permit the clinician to initiate appropriate treatment while
awaiting expert psychiatric assessment, which, even in urban
areas, may not be available for weeks or months.
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