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Abstract— The problem of identifying in advance the most
effective treatment agent for various psychiatric conditions
remains an elusive goal. To address this challenge, we propose
a machine learning (ML) methodology to predict the response
to a selective serotonin reuptake inhibitor (SSRI) medication in
subjects suffering from major depressive disorder (MDD), using
pre-treatment electroencephalograph (EEG) measurements.

The proposed feature selection technique is a modification
of the method of Peng et al [10] that is based on a Kullback–
Leibler (KL) distance measure. The classifier was realized as
a kernelized partial least squares regression procedure, whose
output is the predicted response. A low-dimensional kernelized
principal component representation of the feature space was
used for the purposes of visualization and clustering analysis.
The overall method was evaluated using an 11-fold nested cross-
validation procedure for which over 85% average prediction
performance is obtained. The results indicate that ML methods
hold considerable promise in predicting the efficacy of SSRI
antidepressant therapy for major depression.

I. I NTRODUCTION

Major depressive disorder (MDD) is a serious mental
disorder and is now the third largest cause of workplace
disability. By the year 2020, depression is expected to
account for about 15% of total global disease burden, second
only to ischemic heart disease. In industrialized countries
mental illnesses may account for about 16% of total health
care costs and for about 30% of disability claims [1].

Despite the significance of MDD, objective procedures
for selecting optimal treatments are lacking. The choice of
antidepressant therapy is currently based on personal prefer-
ence, weighted by clinical factors such as family history,
symptom clustering and previous medication history. An
effective algorithm for selecting the optimal antidepressant
treatment on the basis of symptomatic presentation and other
clinical data has proven to be an elusive objective, probably
because the same collection of depressive symptoms may be
produced by several different neurobiological pathologies.
Typically, 60 to 70% of subjects do not remit after the
first antidepressant medication trial [2]. Although 67% of
those treated for MDD will eventually reach remission, up
to 4 different antidepressant treatment trials may be required,
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each taking 6 weeks or longer. The personal and economic
cost of delayed or ineffective therapy is substantial. Clearly,
choosing an effective treatment during the initial trial would
be of immense clinical and economic value.

A methodology that can employ pre-treatment measures to
predict the response to an SSRI treatment, such as the one
proposed in this paper, would eliminate the inefficient trial-
and-error process that often characterizes the management of
MDD.

Several works analyzed resting electroencephalograph
(EEG) data for predicting treatment outcome in depressed
subjects, e.g. [4]–[9]. In this paper, we have extended the
state of the art to develop high performance machine learning
(ML) methods of analyzing pretreatment EEG to predict
response to SSRI treatment for MDD.

II. M ETHODS

Pre-treatment resting or spontaneous EEG signals, denoted
by Ei, i = 1, . . . ,Mt whereMt is the number of training
epochs, are collected fromM subjects who participated in
the study and suffer from MDD. They were then prescribed
an SSRI medication. The corresponding response outcome
yi of the patient to the treatment, after completion of a full
treatment plan, is recorded. The possible values for theyi are
either “R” (responder), or “NR” (non–responder). The set of
EEG recordings and the corresponding outcomes is referred
to as a training set, denoted byD =

{
(Ei, yi), i =

1, . . . , Mt

}
. These EEG signals from each subject are pre-

processed to extract a large numberNc of candidate features
x̃i ∈ RNc that might be relevant for prediction. These
are then reduced to a set of most relevant featuresxi ∈
RNr , whereNr ¿ Nc, to extract those features which are
most indicative of the response outcome. These reduced-
dimensionality features are then fed into a classifier which
outputs the predicted response to the treatment.

A. Subjects and Clinical Details of the Study

Twenty two subjects (9 males, 13 females, age 20.6 to
62.6, mean 48.9 years) diagnosed with MDD using the in-
ternationally recognized Diagnostic and Statistical Manual–
IV diagnostic criteria were treated with a 6 week course
of an SSRI antidepressant (particularly, the drug Sertraline
hydrochloride, with the trade name Zoloft).

The definition of a responder to the SSRI medication
in this case was taken to be at least a 25% improvement
between the pre– and post–treatment Hamilton depression



rating scales. This is a 17 item clinical procedure under-
taken by psychiatric interview with the patient and yields a
quantitative indication of the severity of depression.

The EEG recording procedure is described as follows.
Sixteen channels of EEG (standard 10–20 system referenced
to linked ears) were recorded at a sampling frequency of 205
Hz, after approximately 10 days of medication withdrawal
and before a 6-week trial of antidepressant treatment was
administered. The EEG electrodes used in this study are
Fp1, Fp2, F3, F4, F7, F8, T3, T4, C3, C4, T5, T6, P3,
P4, O1 and O2. For each patient, a maximum of 6 EEG
files of 3.5 minutes duration were collected, 3 with eyes
open (EO), and 3 with eyes closed (EC) conditions. For
de-artifacting, the data were partitioned into segments of
1 second duration. If the input signal on any electrode
saturated the acquisition hardware, the entire segment was
rejected. The signals were then digitally bandpass filtered
after recording between 3 and 32 Hz to partially mitigate the
effects of eye movement and muscle artifacts. All available
EO and EC EEG measurements were used in this study.

For each EEG file, only the first 45 seconds of de-
artifacted data are used, (with no apparent degradation in
performance) in an effort to reduce computational demands.
The selected data are divided into 2 epochs of 30 sec.
duration with 50% overlap. Each epoch is further divided
into 1 sec. windows with 50% overlap to calculate the
statistical quantities which become the candidate features
as described below. This makes a total of 12 epochs per
subject. However, for one particular subject, only 10 epochs
are available. Therefore, the total number of available epochs
is Mt = (12 epochs/subject× 22 subjects− 2) = 262.
All candidate features extracted from the training set are
normalized before further processing to lie within the interval
[−1, 1]. We note that similar response prediction performance
is obtained when az-score normalizationmethod was used
instead.

B. Feature Selection

The set ofNc candidate features extracted from each data
epoch consist of the following statistical quantities: spectral
coherence between all electrode/channel pairs1, the mutual
information between all electrode pairs, absolute and relative
power spectral density (PSD) levels, the log ratio of left-to-
right hemisphere powers, and anterior/posterior power ratios
at all frequencies between 4Hz and 23Hz with 1Hz resolution
and between all electrode pairs. Such quantities have been
used in previous related work; e.g., [8] used coherence. Also
[7], [8] have used inter and intra-hemispheric power ratios
as numerical indicators of treatment response. With a 1 Hz
frequency resolution and 16 electrodes, we haveNc = 4336
candidate features.

Before describing the method for feature selection, we
first define some required variables. LetX ∈ RMt×Nr be
the matrix of selected features. Its rowsxT

i ∈ RNr , i =

1The magnitude squared coherence estimate was calculated using the
Welch averaged periodogram method.

1, . . . , Mt contain all selected features for theith training
sample (i.e.,xi are the feature vectors). The column vectors
χ` ∈ RMt , ` = 1, . . . , Nc contain the values of thèth
feature extracted from all training samples.

We propose a sub–optimal approach for feature selection
which is a modification of the method of [10] (as well
as [11]) based on the Kullback-Leibler (KL) distance [12].
We consider the KL distance between thepdf of the `-
th candidate feature given that the subject is a responder,
and thepdf of the `-th feature given that the subject is
a non-responder. “Good” features are those for which this
KL distance is large. To form these distributions, we divide
the column vectorχ` ` = 1, . . . , Nc into two subsetsU (R)

`

and U
(N)
` (using the known responseyi corresponding to

each element as a response indicator). These subsets contain
the values of respective feature over the responder and non-
responder groups, respectively. Approximations to thepdf’s
of these subsets can be evaluated using histograms or Parzen
windows. The idea of the proposed method is to choose
the feature at thejth step, j = 1, . . . , Nr so that the
selected feature is a combination of maximum relevance and
minimum redundancy.

More precisely, the first column ofX is the vector whose
corresponding feature has maximum KL distance between
responders and non-responders. Then, at thejth step, we
already haveX(j−1) ∈ RMt×(j−1), the matrix correspond-
ing to the previously selected most relevant features. Let us
define setsL = {` | ` = 1, . . . , Nc}, J1 = {nq | q =
1, . . . , j − 1} (the set of indexes already chosen in previous
steps) andJ̄ = {L−J1}, the set of remaining indexes. The
task is to select thejth feature vector whose index isnj ∈ J̄
(i.e., thejth columnχ(nj) of X(j)). In a manner similar to
[10], this can be done by solving the following “regularized”
optimization problem which implements a tradeoff between
maximum relevance and minimum redundancy. The index
nopt corresponding to the optimal feature is then given by

nopt = arg max
n∈J̄

{
DKL

(
U (R)

n ‖U (N)
n

)
(1)

+ ξ
0.5

j − 1

∑

nq∈J1

[
DKL

(
U (R)

n ‖U (R)
nq

)

+ DKL

(
U (N)

n ‖U (N)
nq

) ]}

In the above,ξ > 0 is a regularization parameter (with
default value ofξ = 1) which controls the relative weighting
between the relevance and the redundancy of each feature,
the setsU (·)

n (indexed byn) represent the R and NR subsets
formed from the feature columnχ(n), n ∈ J̄ under test,
and subsetsU (·)

nq (indexed by nq ∈ J1) are the R and
NR subsets corresponding to the features already chosen
in previous iterations.DKL (·‖·) denotes the KL distance
between distributions of its two arguments. The resulting
column χ(nopt) from (1) is appended toX(j − 1), j is
incremented, and the process repeats until allNr features
are found. The firstDKL term in (1) expresses relevance of



the proposed feature; i.e., we desire discriminating features
for which there is a large KL distance between their R and
NR subsets. The second two terms express redundancy; here,
the objective is to encourage the choice of features whose
corresponding subsets have small statistical dependence with
those already chosen. The criterion of (1) is a compromise
between these two competing measures.

C. The Classification Method

The kernel partial least squares regression (KPLSR)
method [13], with a Gaussian Kernel, was employed for
the classification procedure. With the KPLSR method, a
regression functionf(x) is trained so thatf(x) = 1 if
x belongs to the non-responder group, andf(x) = 2 if
x corresponds to a responder. (The values 1 and 2 are
chosen arbitrarily). Since there areMp epochs per subject, a
single decision is produced by evaluatingŷp = f(xp), p =
1, . . . ,Mp, where thexp are all the feature vectors for the
subject under consideration. The mean over all theŷp values
is then quantized to the nearest integer[1, 2] from which the
NR or R prediction for that subject is made.

D. The Nested Cross-Validation Procedure

The performance of the proposed treatment-response pre-
diction process was evaluated using anested cross-validation
proceduredescribed as follows. The outer loop is a 11-fold
cross-validation, in which the 22 subjects available in our
study are divided into 11 contiguous subsets each of size of
2 subjects, so that each subject is tested once. In each fold,
the epochs corresponding to 2 subjects are considered as test
data and are removed from the training set. The remaining
epochs (belonging to the remaining 20 subjects) are used for
training, which includes feature selection and specifying the
classifier/regressor. This is equivalent to aleave-2–out(L2O)
testing procedure. The performance index used in this case
is the average correct prediction rate, which is evaluated as
the arithmetic mean of the sensitivity and specificity values
obtained using the result of the outer 11-fold cross-validation
procedure just described.

Optimal values for the two design parameters associated
with the KPLSR method (i.e., the number of major latent
vectors and the standard deviation value of the Gaussian
kernel function) are determined inside each fold (accord-
ing to [14]) using a simple two–dimensional grid search.
This is accomplished by further dividing the training subset
(including 20 subjects as described above) into contiguous
validation subsets of size 2 and using an inner 10-fold cross-
validation loop. This means 18 subjects are used for training
and 2 subjects for validation in each fold of the inner loop.
The average validation performance by this inner loop is
used as the optimality measure for selecting the best design
parameters. Note that with this cross-validation procedure,
the test subject is not used in feature selection or classifier
design.

III. R ESULTS

The performance of the proposed methodology for pre-
diction of response to SSRI medication is indicated by the

TABLE I

CONTINGENCY TABLE FOR THE PROPOSED PREDICTION PROCEDURE.

predicted predicted % correct
NR R

actual NR 12 2 85.7%
actual R 1 7 87.5%
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Fig. 1. Scatter plot of the projection of feature vectors from all available
training epochs onto the first 2 major principal components, using KPCA.
The numbers identify epochs belonging to each subject.

contingency table shown in Table I forNr = 8 using
an 11-fold nested cross-validation procedure. The average
correct prediction performance is 86.6% (specificity=85.7%,
sensitivity=87.5%).

Fig. 1 shows a scatter plot of theMt = 262 available
training samples (epochs) in theNr–dimensional feature
space, projected onto two major components which are
obtained using a kernelized principal component analysis
(KPCA) method [15] with a Gaussian kernel. The patient
index is written beside each data point. This figure shows
a noticeable clustering of the data samples into two classes,
although the clustering is not perfect.

A list of the most relevant discriminating features is shown
in Table II. Columns 2 and 3 reflect the means and standard
deviations of non-responder (NR) and responder (R) groups.
A feature is listed in this table if it is used at least once
throughout cross-validation procedure.

IV. D ISCUSSION ANDCONCLUSIONS

The performance of the proposed method suggests that
suitably–selected features extracted from the EEG cluster
according to how the patient responds to the treatment
under consideration. Thus, the pretreatment EEG appears
to contain information regarding brain functioning that is
relevant to, and predictive of, the therapeutic effect of the
SSRI antidepressant medication.

Our proposed feature selection process is novel in the
respect that we have considered a large number of features



TABLE II

A LIST OF MOST DISCRIMINATING FEATURES, SHOWING THE MEAN AND

STANDARD DEVIATION OF EACH FEATURE OVER THE NON-RESPONDER

(µN , σN ) AND RESPONDER GROUPS(µR , σR).

Selected Feature µN , (± σN ) µR, (± σR)
Mutual Info. T3&T5 0.59 (± 0.19) 0.37 (± 0.18)
Mutual Info. T3&P3 0.56 (± 0.19) 0.39 (± 0.13)
Mutual Info. F4&T4 0.51 (± 0.2) 0.33 (± 0.14)
Coherence f=9Hz T3&T5 0.68 (± 0.2) 0.42 (± 0.2)
Coherence f=10Hz F7&C3 0.57 (± 0.2) 0.38 (± 0.23)
Coherence f=10Hz T3&T5 0.69 (± 0.22) 0.40 (± 0.22)
Coherence f=10Hz T3&P3 0.60 (± 0.21) 0.37 (± 0.2)
Coherence f=10Hz C3&T5 0.47 (± 0.24) 0.29 (± 0.17)
Coherence f=12Hz T3&T5 0.67 (± 0.19) 0.40 (± 0.21)
Coherence f=12Hz T3&O1 0.37 (± 0.23) 0.20 (± 0.14)
Coherence f=13Hz T3&T5 0.68 (± 0.17) 0.42 (± 0.2)
Coherence f=14Hz T3&T5 0.67 (± 0.17) 0.41 (± 0.2)
PSD-ratio f=14Hz Fp1/F3 -0.19 (± 0.16) 0.01 (± 0.23)
Coherence f=14Hz C3&T5 0.47 (± 0.22) 0.28 (± 0.18)
PSD-ratio f=14Hz Fp1/C3 -0.25 (± 0.21) -0.04 (± 0.23)
Coherence f=15Hz T5&P3 0.68 (± 0.15) 0.50 (± 0.19)
Coherence f=16Hz T3&T5 0.67 (± 0.19) 0.43 (± 0.23)

including those, or similar ones, already cited in the litera-
ture, and reduced them, using the proposed feature selection
procedure, into a small, maximally discriminative set. This
is in contrast to the previous approaches, which hypothesize
that a feature may be discriminative. An experiment is then
required to verify or reject the hypothesis. Our method
automatically identifies salient features without the need for
experiment, thus saving considerable effort.

Our findings are consistent with the results of Cook et
al [4], who found that absolute and relative power in all
four EEG bands recorded pre-treatment over the regions
implicated in mood disorders; i.e., prefrontal Fp1-Fp2-Fpz
FC1-FC2-Cz, left temporal T3-T5; and right temporal T4-
T6 are not significant predictors of response.

Several research groups have only used alpha power, con-
sidering an increase indicative of less cognitive neural activ-
ity, and that depressed patients had greater inter-hemispheric
alpha asymmetries. They only considered inter-hemispheric
asymmetries and found significantly greater overall pre-
treatment alpha asymmetry with the right hemisphere more
active in non-responders to fluoxetine (a different SSRI
compared to this study) than responders and responders had
significantly greater alpha in the occipital regions than non-
responders and controls, and also greater right over left
alpha asymmetry with non-responders having the opposite
asymmetry [7].

It is interesting to note that our optimized feature selection
process chose 14 of the 17 features from the alpha or low
beta frequency bands. However, unlike other studies, e.g.,
[7], our method did not favour any inter-hemispheric power
asymmetries. Instead, our results show that responders have
more uniform alpha and low beta power anterior to posterior
in the left hemisphere than non-responders who showed
relatively greater posterior power.

As coherence and mutual information between several
electrode pairs appear to be among the most highly predictive
features (especially in the T3–T5 region), we might speculate

that neural interaction or connectivity between the regions
corresponding to the respective channels is highly relevant
to SSRI response.

Because some of the features have strong statistical de-
pendencies, the set of selected features in Table II is not
unique. Some of the features may be replaced with others,
with a small or no loss in performance. However, because of
the inter-dependence of these features, a replaced feature set
could be indicative of the same neurological information as
the original and therefore likely correspond to closely related
EEG electrodes and frequencies.
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