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a b s t r a c t

Objective: To investigate whether applying advanced machine learning (ML) methodologies to pre-treat-
ment electroencephalography (EEG) data can predict the response to clozapine therapy in adult subjects
suffering from chronic schizophrenia.
Methods: Pre-treatment EEG data are collected in 23 + 14 schizophrenic adults. Treatment outcome, after
at least one year follow-up, is determined using clinical ratings by a trained clinician blind to EEG results.
First, a feature selection scheme is employed to select a reduced subset of features extracted from the
subjects’ EEG that is most statistically relevant to our treatment-response prediction. These features
are then entered into a classifier, which is realized in the form of a kernel partial least squares regression
method that performs response prediction. Various scales, including the positive and negative syndrome
scale (PANSS) are used as treatment-response indicators.
Results: We determined that a set of discriminating EEG features do exist. A low-dimensional represen-
tation of the feature space showed significant clustering into clozapine responder and non-responder
groups. The minimum level of performance of the proposed prediction methodology, tested over a range
of conditions using the leave-one-out cross-validation method using the original 23 subjects, with further
testing in an independent sample of 14 subjects, was 85%.
Conclusions: These findings indicate that analysis of pre-treatment EEG data can predict the clinical
response to clozapine in treatment resistant schizophrenia.
Significance: If replicated in a larger population, this novel approach to EEG analysis may assist the clini-
cian in determining treatment-efficacy.
� 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Compared with other antipsychotic medications the atypical
antipsychotic medication clozapine is recognized to have superior
therapeutic effectiveness in the treatment of chronic medication-
resistant schizophrenia (e.g., Essali et al., 2009). However, cloza-
pine may produce serious side effects such as seizures, cardiac
arrhythmias or bone marrow suppression with neutropenia
(Young et al., 1998). According to a recent Cochrane review, about
34% of treatment-resistant patients respond to clozapine while
3.2% develop blood problems (Essali et al., 2009). As the hemato-

logical side effects can be life threatening, blood samples to mon-
itor the white blood cell count must be collected as long as the
drug is used, at weekly to monthly intervals. The logistic difficul-
ties for the patient and the treatment team are substantial. A meth-
od that could reliably determine, before the onset of therapy,
whether a given patient will or will not respond to clozapine would
greatly assist the clinician in determining whether the risks and lo-
gistic complexity of clozapine are outweighed by the potential
benefits.

Quantitative electroencephalography (QEEG or EEG) may offer
some promise in this regard. EEG abnormalities in schizophrenic
subjects and EEG changes due to clozapine therapy have been
the focus of a number of clinical studies (see e.g., Gunther et al.,
1993; Malow et al., 1994; Freudenreich et al., 1997; Hughes and
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John, 1999; Knott et al., 2001; Adler et al., 2002; Knott et al., 2002;
Birca et al., 2006; Coburn et al., 2006; Dunki and Dressel, 2006;
Oikonomou et al., 2006; Sakkalis et al., 2006; Boutros et al., 2008).

Based on findings in 17 schizophrenic subjects, Knott et al.
(2000) found that the clozapine-induced improvement of psycho-
pathology symptom ratings using the Positive and Negative Syn-
drome Scale (PANSS) was correlated with pre-treatment QEEG
inter and intra-hemispheric spectral power asymmetry. Greater
pre-treatment anterior to posterior asymmetry in the delta fre-
quency range was associated with greater improvement in nega-
tive symptoms while greater pre-treatment anterior to posterior
theta asymmetry predicted improvement of positive symptoms
and global improvement. Larger inter-hemispheric asymmetry in
the theta and beta frequencies in the central and anterior temporal
regions were, respectively, predictive of greater improvement in
positive and negative symptoms. Gross et al. (2004) also found that
changes in the theta frequency in QEEG with clozapine treatment,
particularly in the midline electrodes over the fronto-central scalp
area, were a more sensitive indicator for the evaluation of cloza-
pine treatment efficacy than the serum clozapine level. Though
these methods reveal important relationships between QEEG vari-
ables and clinical outcome, a series of simple correlational analyses
do not readily yield a ‘‘responder” or ‘‘non-responder” dichoto-
mous categorization for an individual patient.

The above analyses employed standard statistical methods. On
the other hand, a more mathematically sophisticated analysis
including pattern recognition and dimensionality reduction meth-
ods (which together may be categorized as machine learning tech-
niques) can perform a more comprehensive data analysis. Machine
learning techniques are finding increasing application in psychia-
try, particularly when multi-dimensional, noisy, highly complex
data or multi-modal data sets are analyzed together, (see e.g., Gal-
linat and Heinz, 2006). For example, support vector machine (SVM)
techniques that select spectro-temporal patterns from multichan-
nel magnetoencephalogram (MEG) data collected during a verbal
working memory task have been used to distinguish schizophrenic
from control subjects (Ince et al., 2008). Machine learning algo-
rithms using structural brain magnetic resonance (MRI) images
(Fan et al., 2007), functional MRI (fMRI) data (Guo et al., 2008;
Kim et al., 2008) and combined genomic and clinical data (Struyf
et al., 2008) have been employed to separate schizophrenic, bipolar
and healthy control subjects.

Machine learning approaches have also been applied to predic-
tion of clozapine treatment-efficacy. Lin et al. (2008) describes a
study in which a feed-forward multilayer perceptron network
(with a back-propagation error training technique) is employed
using clinical and pharmacogenetic data to predict clozapine re-
sponse in schizophrenic subjects. Five pharmacogenetic variables
and five clinical variables (including gender, age, height, baseline
body weight, and baseline body mass index) were collated from
93 schizophrenic subjects taking clozapine, including 26 respond-
ers. Using this method, they obtained an overall prediction accu-
racy rate of 83.3%.

Guo et al. (2008) describes a Bayesian hierarchical model using
pre-treatment fMRI and positron emission tomography (PET) infor-
mation coupled with patient characteristics (e.g. medical or family
history and genotype) as training data to predict changes in brain
activity in 16 schizophrenic subjects following treatment with two
atypical antipsychotics (risperidone or olanzapine). The authors
postulated that predicting drug-induced changes in brain activity
would assist the clinician in determining optimal drug choice.

However, the clinical utility of these previous approaches is
negatively impacted by the expense and unavailability of complex
methods such as fMRI, PET, genetic screening and MEG. In contrast,
electroencephalography (EEG) is an inexpensive, non-invasive
technique widely available in smaller hospitals and in community

laboratories. Therefore, predictive algorithms dependent on EEG
measurements are more practical. Furthermore, since the required
EEG data is acquired during the resting state, only minimal cooper-
ation is required from the patient. Thus, an EEG based method of
predicting treatment response would have many advantages over
imaging methods such as MRI, PET or MEG.

The goal of the present pilot study is to examine the utility of
machine learning (ML) methods for processing EEG signals to pre-
dict the response of schizophrenic subjects to clozapine.

2. Methods

2.1. Quantitative EEG recordings

We collected pre-clozapine resting EEG data from chronically
ill, treatment-resistant schizophrenic subjects prior to beginning
clozapine therapy. The data were collected without change to the
patient’s current medication regimen. EEG was recorded with the
patient in a semi-recumbent position in a sound attenuated, elec-
trically shielded room by an experienced technician who prompted
patients on signs of drowsiness. Sessions were arranged in the
mornings and patients were requested to avoid coffee, drugs, alco-
hol and smoking immediately prior to the recording. A maximum
of ten and a half minutes of eyes-closed (EC) and of eyes-open
(EO) data respectively were collected in up to three separate
3.5 min runs using a QSI-9500 system, giving a total of 3 EO and
3 EC files. Electrodes were placed in the 10/20 configuration refer-
enced to linked ears with impedances below 5 kX. The signals
were band pass filtered between [0.5 and 80 Hz] and notch filtered
at 60 Hz by the QSI system during the recording. Data were digi-
tized at a rate of 204.8 Hz. Since our selected features were either
intra- or inter-hemispherical, we discarded the data from the mid-
line electrodes (FZ, CZ, PZ, and OZ) in the interests of saving com-
putational resources. The 16 remaining EEG electrodes used in our
study were Fp1, Fp2, F3, F4, F7, F8, T3, T4, C3, C4, T5, T6, P3, P4, O1
and O2.

For de-artifacting, the data were partitioned into segments of 1
s duration. If the input signal on any electrode saturated the acqui-
sition hardware at approximately plus or minus 160 lv, the entire
segment was rejected. The signals were then digitally bandpass fil-
tered after recording between 4 and 42 Hz to partially mitigate the
effects of eye movement and muscle artifacts. For each EEG file, the
first 60 segments of the de-artifacted part of the 3.5 min of data
were used, since several segments were heavily artifacted, leaving
only this number of segments that were uncorrupted on all elec-
trodes. The selected data in each of the three files for both the
EO and EC cases were divided into 2 epochs of 40 s duration with
50% overlap, to give a nominal 12 epochs per subject. These epochs
were used to extract statistical quantities (such as absolute pow-
ers, power spectral densities, coherences, etc.) that became the
candidate features as described below. When estimating these sta-
tistical quantities, each epoch was divided into overlapping 1 s
windows with 60% overlap between adjacent windows. The
respective statistical quantity was then calculated over each win-
dow and the desired result obtained by averaging over all win-
dows. In the experimental results which follow, all EO and EC
epochs were combined, to make maximum use of the available
data.

2.2. Description of subjects and the clinical assessment procedures

Subjects, comprising both in-patients and out-patients, were re-
cruited from the schizophrenia program at St. Joseph’s Hospital,
Centre for Mountain Health Services, Hamilton, Ontario. All sub-
jects met both DSM-IV criteria for schizophrenia and the Kane
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et al. (1988) criteria for treatment resistance. Patients meeting
these criteria may be considered to be ‘‘severely symptomatic”,
i.e., as suffering acutely from schizophrenia. All subjects gave in-
formed consent.

Data from two groups of schizophrenic subjects were used in
this retrospective study. The first group (Group A) consists of 23
subjects. Group B is an independent sample of 14 subjects. Available
socio-demographic and clinical information for Groups A and B are
shown in Tables 1 and 2. Symptom severity after clozapine treat-
ment is measured in Group A using the positive and negative syn-
drome scale (PANSS) score (Kay et al., 1987). PANSS evaluations
are not available for Group B subjects. As PANSS scores were not
available for Group A subjects prior to clozapine treatment, pre-
treatment symptom severity was assessed through a quantitative
clinical assessment (QCA) conducted by review of the clinical record
guided by the structure of the PANSS. The QCA procedure is outlined
in Appendix A. As all QCA ratings were completed before initiation
of this study raters were blind to the machine learning outcome
predictions. QCA was used to assess psychopathology both pre
and post clozapine treatment in Group B.

We now discuss how we determine whether a patient is a re-
sponder (R) or non-responder (NR). In this retrospective pilot study
quantifying clinical response is complicated by the absence of pre-
treatment PANSS scores. We were therefore obliged to define re-
sponse on the basis of a single post-treatment PANSS score. To
do this we created post-treatment PANSS score1 thresholds d1 to as-
sess response: first we rank-ordered all subjects by post-treatment
PANSS score then chose a value of d1 (88.5) such that our 23 subjects
were divided into responder (R) and non-responder (NR) classes
with roughly equal number of subjects (R = 12, NR = 11).

Having R and NR groups of similar size has advantages with re-
spect to the machine learning process; however, this assumes that
clinically significant improvement is seen in about 50% of those
treated with clozapine. Others have reported that, on average, only
34% of treatment-resistant schizophrenic patients will respond to
clozapine. For this reason we also reanalyzed our data using a va-
lue d1 ¼ 83:5 which yields a 30% response rate (i.e. with 7 R and 16
NR subjects in group A).

We must confirm that the pre-treatment QCA means of the R
and NR subgroups of group A subjects are not significantly differ-
ent, so that the post-treatment PANSS rating alone accurately indi-
cates the effect of the treatment on the subject. To this end, we

conducted a hypothesis test on the means, assuming the QCA data
points are independent and normally distributed, and that the vari-
ances of the R and NR groups are identical. It is straightforward to
show that the respective likelihood ratio is F-distributed. In this
case, df = 10, 11 for the numerator and denominator, respectively,
with F = 1.1056 and p = 0.43. Thus, there is no evidence to suggest
the pre-treatment QCA means of the two groups are significantly
different.

Group B subjects are defined as responders to clozapine therapy
if there is an improvement of at least 25% between the pre- and
post-QCA scores. This level of relative change represents a clini-
cally significant improvement in symptom severity considering
the fact that all the subjects in our study were in the treatment-
resistant population (Leucht et al., 2005). See e.g., Kane et al.
(1988) who used a 20% relative change as response indicator.

2.3. Overview of the machine learning process

We now present a brief overview of the machine learning pro-
cess used for prediction of clozapine response. A necessary compo-
nent of this process is the collection of a training set. In our case,
the training set consists of Mp EEG epochs from each of M subjects,
for a total of Mt epochs altogether. In our experiments2, M = 23,
Mp = 12 and Mt = 270. The training set also includes the set of re-
sponse outcomes yi ,i = 1,. . .,Mt corresponding to each epoch; i.e., if
the subject corresponding to the ith EEG epoch is a responder
(non-responder), then the value of yi is R (NR), determined by the re-
sponse criterion discussed previously.

There are three phases in a machine learning procedure. These
are the design, operational and evaluation phases, as outlined in
Fig. 1. The design phase, which consists of the feature extraction,
feature selection and classification components, is now described.

The Design Process is depicted in Fig. 1(a). The first step is to ex-
tract candidate features from each epoch of pre-treatment EEG
data. In our study, these features are statistical quantities including
coherence3 between all electrode pairs at various frequencies, corre-
lation and cross-correlation coefficients, mutual information be-
tween all sensor pairs (Cover and Thomas, 2006), absolute and
relative power levels at various frequencies4, the left-to-right hemi-

Table 1
Demographic information of the 23 subjects (denoted Group A) who participated in the study. The lower 4 items in the table are scales related to the PANSS clinical rating score.

Information Range

Age at start of treatment [years] Average = 41.2, std = 8.4, min = 28.8, max = 57
Gender:

Male
Female

12 (52%)
11 (48%)

Educational Level1 Average = 3.1, std = 1.4, min = 2, max = 7
Age at symptom onset [years] Average = 21.2, std = 5, min = 14, max = 32
Total # of hospitalizations (Pre-clozapine) Average = 9.7, std = 13, min = 0, max = 63
Duration total of hospitalization (Pre-clozapine) [days] Average = 615.7, std = 928, min = 0, max = 3789
Chlorpromazine equivalents (Pre-clozapine) [mg/day] Average = 726.6, std = 636, min = 40, max = 2485
Clozapine dose [mg/day] Average = 344.6, std = 157, min = 50, max = 600
Post-treatment Positive Symptoms Scale Average = 17.8, std = 3.4, min = 11, max = 24
Post-treatment Negative Symptoms Scale Average = 23, std = 3.9, min = 12, max = 32
Post-treatment General Symptoms Rank (GR) Average = 46.3, std = 5.7, min = 32, max = 56
Post-treatment Total Rank (PSS + NSS + GR) Average = 87.2, std = 10.9, min = 58, max = 101

1 Education level rating: 1: grade 6 or less, 2: grade 7 to 12 without graduating, 3: graduated high school, 4: part college, 5: graduate 2 years college, 6: graduate 4 years
college, 7: part graduated/professional school, 8: completed graduated professional school.

1 Using the PANSS data, the ‘total rank’ (TR) score is used as the clinical assessment
in our experiments. TR is the sum of three scales in PANSS: 1. general rank, (GR), 2.
positive (or productive) symptoms scale, (PSS), 3. negative (or deficit) symptoms
scale, (NSS). This means that TR = GR + PSS + NSS.

2 The total number of epochs is nominally 12 x 23 = 276. However, there are only 8
and 10 available epochs for 2 of the subjects, leaving only 270 net epochs.

3 We calculated the magnitude squared coherence estimate using the averaged
periodogram method of Welch by the MathWorks MATLAB software, ver. 7.1. See
www.mathworks.com.

4 Using power spectral density (PSD) estimate via Welchs’ averaged modified
periodogram method in MATLAB.
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sphere power ratio5, the anterior/posterior power gradient across
many frequencies and between electrodes (calculated using loga-
rithm difference of power spectral density values). These quantities
can all be readily calculated from the measured EEG signal. The
number Nc of such candidate features can be quite large. In our
experiments, using 1 Hz frequency resolution and considering all
possible electrode pairs, in addition to various electrode combina-
tions used in the power ratio group of features, we have Nc = 8468.
The feature extraction process is applied over all epochs from all
subjects. The result of the feature extraction process is a set of Mt

vectors ~xi; i ¼ 1; . . . ; Mt , each of dimension Nc.
Notice that the majority of these candidate features are statisti-

cal characterizations of the measured EEG process and as such at
least partially describe the underlying statistical behaviour of the
EEG signal. Many of these quantities have been used as features
in previous related work; e.g., mutual information was used by
Kwak and Choi (2002), and coherences were used by Knott et al.
(2002).

After extracting candidate features, the second step in the de-
sign phase is feature reduction, or ‘feature selection’ which is critical
to the performance of the resulting classifier or predictor. Feature
selection is an ongoing topic of research in the machine learning
community. Typically, only a relatively small number of the above
candidate features bear any significant statistical relationship with
the post-treatment response. We therefore identify those features
which share the strongest statistical dependencies with the post-
treatment-response variable. The result of the feature selection
process is to reduce the number Nc of candidate features to a much
smaller number Nr of most-relevant features. Our proposed predic-
tion procedure uses the ‘‘regularized feature selection” method6 of
Peng et al. (2005). This procedure proceeds in a sequence of Nr steps,
where one feature is selected in each step. At each step, the feature
which is selected from the list of (remaining) candidate features is
the one which has the best combination of maximum statistical
dependence with the treatment-response variable, and minimal sta-
tistical dependence with respect to the set of features already chosen
in previous steps. In Peng’s method, statistical dependence is quan-
tified using mutual information. Further details are provided in the
reference. The output of the feature selection process is a set of indi-
ces that identify which of the Nc candidate features are to be in-
cluded in the set of Nr most relevant features. In this study, the
useful range for Nr is between 8 and 14.

The feature selection process yields a set of reduced Nr dimen-
sional vectors, xi; i ¼ 1; . . . ;Mt . Each of these vectors correspond
to a point in an Nr - dimensional feature space. Ideally, these points
should cluster into two distinct non-overlapping regions in the fea-
ture space, corresponding to the R and NR groups, respectively. A

feature vector xi maps into the R region if the subject correspond-
ing to the i-th epoch is a responder, and into the NR region other-
wise. In practice however, the clusters overlap somewhat, so that
feature vectors from a few epochs of the R subjects map into the
NR region, and vice versa. As we demonstrate in Section 3, these
miss-located points result in a prediction error for that subject.
An example of such clustering behaviour (shown in only two
dimensions) for the current prediction problem is shown in
Fig. 2, where it is seen that the feature vectors corresponding to
the R and NR subjects indeed lie in distinct (although slightly over-
lapping) regions of the feature space. The selection of ‘‘better” fea-
tures; i.e., features with greater statistical dependence on the
outcome variable, leads to the formation of tighter clusters with
smaller variances and with greater separation between the means
of the clusters of different classes, resulting in improved
performance.

We normalized feature values to improve performance. Certain
feature values, such as coherence and correlation, are inherently
limited to an interval [�1, 1] and so normalization is not required
in these cases. However, for other feature values, such as e.g., spec-
tral power levels, etc., normalization is desirable. In this study the
‘‘z-score” normalization method was used. The EEG data of 91 nor-
mal (or healthy) adult subjects were measured and the means ll

and standard deviations rl, l = 1,. . ., Nc for each feature are calcu-
lated over the healthy subject sample. Then for schizophrenic sub-
jects, the corresponding l-th feature value xl is replaced with its
normalized z-score value zl ¼ xl�ll

rl
before being fed to the feature

selection and classifier processes.
Because many of the candidate features are highly correlated,

there are many possible subsets of features that may be selected
by our proposed feature selection algorithm, resulting in approxi-
mately equivalent prediction performance. The set of selected fea-
tures is dependent on the normalization method used, the feature
selection process, the response criterion and the definition of the
target values y in the training data.

The next step in the design phase of the prediction process is
the specification of the classifier. The job of the classifier is to input
a reduced feature vector x and output the corresponding predicted
response value y, which has a discrete value corresponding to
either R or NR. In this way, the classifier output gives us the pre-
dicted response of the subject to the clozapine therapy.In this
study, the classification process was implemented using a kernel-
ized partial least squares regression (KPLSR) procedure (Rosipal
and Kramer, 2006). The kernel matrix required by the KPLSR meth-
od was chosen to have a Gaussian structure. The KPLSR method
determines a regression function using the available training data
that approximates the value 1 over the region of the feature space
corresponding to non-responders (i.e., the non-responder cluster),
and the value 2 over the responder cluster. (The numerical values 1
and 2 are chosen arbitrarily). In the proposed method, all available
Mp reduced feature vectors corresponding to the epochs available

Table 2
Available demographic information of the 14 subjects denoted by Group B.

Information Range

Age at start of treatment [years] Average = 35.7, std = 10, min = 22, max = 55.5
Gender:

Male
Female

8 (57%)
6 (43%)

Educational level1 Average = 3.3, std = 1.64, min = 2, max = 7
Age at symptom onset [years] Average = 21.3, std = 5.28, min = 15, max = 31
Total # of hospitalizations (Pre-clozapine) Average = 6.43, std = 6.9, min = 0, max = 18
Duration total of hospitalization (Pre-clozapine) [days] Average = 470.8, std = 627, min = 0, max = 1879
Chlorpromazine equivalents (Pre-clozapine) [mg/day] Average = 628, std = 404, min = 40, max = 1169
Clozapine dose [mg/day] Average = 396.4, std = 101, min = 200, max = 500

1 See Table 1 for definition.

5 The power ratio is calculated via the difference of natural logarithm of PSD values.
6 This method is also referred to as the ‘‘minimum-redundancy maximal relevance”

criterion.
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for a given subject are fed into the regression function, which out-
puts values ŷj; | ¼ 1; . . . ; Mp. Ideally, these quantities are exactly 1
or 2, but in practice, they only approximate these values. The mean
of these ŷ- values is evaluated and then quantized to the closest
integer 1 or 2, to yield the corresponding NR or R prediction value.

The operational phase is depicted in Fig. 1(b). Once the machine
learning prediction process is designed, it may be applied e.g., in an
operational mode in a clinical setting, or, in this context, on Group
B subjects. Here, EEG recordings are taken from the patient, and the
set of reduced features identified in the design phase are computed
from the EEG data, to give a sequence of feature vectors
xj; j ¼ 1; . . . ; Mp. These feature vectors are fed into the classifier
or regression function which is specified from the classifier param-
eters determined in the design phase. The classifier outputs the
predicted response of the subject to the proposed clozapine treat-
ment, in the manner described above.

In the current situation however, we are interested in evaluat-
ing the performance of the machine learning prediction proce-
dure resulting from the design phase, using the available
training data. This is the evaluation phase, depicted in Fig. 1(c).
In this respect, a leave-one-out (L1O) cross-validation procedure

is used, where the data from one subject at a time is sequentially
removed from the training set. The feature selection and classi-
fier design processes are then executed using all remaining data.
The resulting machine learning structure is then tested using the
omitted subject. The classifier output is then compared to the
known response of the subject, and a performance tally is re-
corded. The process repeats, each time omitting a different sub-
ject, until all subjects have been omitted once. The overall
performance figure for the prediction process is then the aggre-
gate performance over all iterations (or folds) of the L1O cross-
validation process. With this method, we test over all available
data and in each trial we use the largest possible training set.
Further, the method is ‘‘fair”, since the tested data is not part
of the training set used in the design phase. The number of latent
variables in the KPLSR approach and the variance parameter
associated with the Gaussian kernel are determined using a sim-
ple multi-dimensional grid search optimization within the cross-
validation loop, in a manner consistent with the methodology of
(Varma et al., 2006).

Since in effect a different training set is used in each L1O itera-
tion, the set of selected reduced features may vary from one

Fig. 1. A simplified schematic drawing of the data analysis steps: (a). The design phase, (b). The operational phase, (c). The L1O cross-validation procedure.
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iteration to another. In the operational phase discussed above, we
need a single set of Nr features that best represents the entire train-
ing set. We could identify a single set of reduced features simply by
applying the feature selection process once on the entire training
set. The difficulty with this approach however, is that it is possible
that the data from a subset of subjects can dominate the feature
selection process. A convenient method of avoiding this possibility
is, at each L1O iteration, to select a list of k Nr features, where k is a
constant greater than unity, typically greater than 3 in our exper-
iments. Then the desired single set of Nr features is chosen as those
which occur most frequently amongst the lists generated over all
L1O iterations. In this way, the features are selected on an equita-
ble basis from different combinations of the data. To find a proper
value for k, this procedure is repeated with increasing values of k,
until at least Nr common features (out of the available k Nr fea-
tures) can be found among all iterations of the L1O test.

For optimal performance of the proposed scheme, the classifier
must operate in an Nr - dimensional feature space, where in our
experiments the value of Nr is 8. However, if we wish to visualize
the feature space on a plane, it is necessary to compress the feature
space. It is readily verified that an optimal linear basis for dimen-
sionality compression is the set of principal components of the fea-
ture space, obtained by principal component analysis (PCA). Better
visualization performance can sometimes be obtained through a
nonlinear principal component method, in which case kernelization
techniques (Muller et al., 2001) are applied to PCA. We refer to the
nonlinearized version of PCA as kernel PCA (KPCA). In our study,
the KPCA method is used only for the purposes of displaying the
clustering results, as in Figs 2 and 3, and is not used in the predic-
tion process.

3. Results

3.1. Treatment-efficacy prediction performance

The first set of results uses data from Group A which consists of
23 subjects. The set of candidate features were extracted from the

pre-treatment EEG data and then reduced into a set of Nr = 8 most-
relevant features using the available training set data, as discussed
in Section 2.3. The prediction performance was then evaluated
using the leave-one-out cross-validation procedure discussed pre-
viously. The performance evaluation results using the combined
EO and EC EEG data sets together for the 23 subjects, for a response
threshold value d1 ¼ 88:5 and Nr ¼ 8 are summarized in Table 3(i),
where it is seen that the overall prediction performance is 87.12%.
When d1 is reduced to 83.5 corresponding to a 30% responder rate,
the overall performance becomes 89.7%. Two major latent vari-
ables are used for the kernel PLSR method. These results indicate
that it is indeed possible to predict the response to clozapine ther-
apy using the proposed methods. Further experiments were per-
formed using a range of d1 from 83.5 to 92.5; prediction
performance was above 85% in all cases.

We now present results using data from both subject groups A
and B. For this second experiment, we train the classifiers using
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Fig. 2. A demonstration of the clustering behaviour of the proposed ML procedure. The Nr ¼ 8 dimensional feature space compressed into 2 dimensions using the KPCA
method. There are nominally 12 data points corresponding to multiple EEG epochs from each subject. The subject index corresponding to each point is indicated on the plot.
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only Group A as training data, and then test the prediction perfor-
mance over Group B. A group B responder in this case is defined as
a subject having an improvement of at least 25% between the pre-
and post-QCA scores. The average treatment-efficacy prediction
performance for this experiment was 85.7% as reflected in Table 4.
This shows a satisfactory prediction performance under different
conditions when the classifier is trained on one set, and then tested
on another independent set.

We now show an example illustrating the clustering behaviour
for the proposed scheme, using Group A data. Fig. 2 shows a scatter
plot containing 270 points corresponding to the Mt ¼ 270 avail-
able epochs of EEG data from the Group A subjects. This figure
was generated using the kernel PCA method with a Gaussian ker-
nel. Filled circles correspond to responders and squares to non-
responders. In this figure, there are nominally 12 points associated
with each subject; however, there are 2 subjects that have only 10
or 8 points. The number written beside each point is the corre-
sponding subject index, which is assigned arbitrarily. Averaging
the location of all points corresponding to each subject results in
Fig. 3, in which each subject is shown with one point. The cluster-
ing between the R and NR groups is clearly evident in this figure.
The clustering performance shown in this figure is indicative that
the proposed machine learning procedure will perform well, as
the results of Table 3 suggest.

3.2. A list of discriminating features

We show a list of 20 most relevant EEG features of interest in
Table 5. These are the features that are most strongly discrimina-
tive of response to clozapine. Each of the features listed in the table
is selected at least once over all L1O iterations. Fig. 4 is a depiction
of the most-relevant features selected in Table 5. A connection be-
tween two electrode sites in the figure corresponds to a selected
feature which involves those two locations. It roughly indicates
any relations between EEG sensors that convey relevant informa-
tion for our prediction problem. This figure depicts how the se-
lected features could give clues about the locality and
interconnection of neurological mechanisms associated with a po-
sitive response to clozapine. Further investigation of this matter re-
mains a promising topic for future work.

4. Discussion

Our findings support the potential utility of machine learning
methods in clinical psychiatry. In the current example we have
been able to predict, in advance of the first dose, whether a treat-
ment–resistant patient will or will not respond to a powerful but
potentially toxic medication. In various experiments, we evaluated
the performance of advanced prediction models in conjunction
with kernelization methods to analyze pre-treatment EEG to pre-
dict the responsiveness to clozapine. These results support the idea
that resting EEG data contains embedded salient information re-
lated to clozapine treatment-outcome that can be extracted using
machine learning techniques.

We can provide some further evidence of the validity of the pro-
posed prediction method, as follows. First, the clustering behaviour
shown in Fig. 3 shows clean separation of the clusters, which is a
strong indication that the reduced features can indeed discrimi-
nate long-term response. Also, with the L1O cross-validation pro-
cedure, different test and training samples are used in each
iteration, and yet overall, a reasonable performance level is at-
tained. This suggests the proposed machine learning procedure is
consistent across variations of the input data. A final argument to
suggest validity of the proposed method is with regard to the re-
sults of Table 4. Here, the prediction procedure is trained on Group
A data and tested on a completely independent set of Group B data.
Even though performance degrades somewhat, the resulting per-
formance of 85.7% is still quite satisfactory.

We can further examine the integrity of the proposed prediction
procedure by evaluating the probability that our demonstrated
prediction performance would have been due to chance alone.

Table 3
Performance results predicting the response to clozapine therapy in Group A subjects using Nr ¼ 8. Subjects with a post-treatment PANSS score of less than or more than d1 are
considered responders (R) and non-responders (NR), respectively.

(i). d1 ¼ 88:5 (corresponds to 52% response rate) Predicted R Predicted NR % Correct

Actual R 10 2 83.33% = Sensitivity
Actual NR 1 10 90.91% = Specificity

Average = 87.12%
(ii). d1 ¼ 83:5 (corresponds to 30% response rate) Predicted R Predicted NR % Correct
Actual R 6 1 85.7% = Sensitivity
Actual NR 1 15 93.75% = Specificity

Average = 89.7%

Table 4
Independent test performance using subjects in group A as training data (with
d1 ¼ 88:5 and Nr ¼ 8), and group B as test subjects. Response to clozapine therapy is
defined as more than a 25% improvement in the QCA score. Subjects with a post-
treatment QCA score of less than or more than d1 are considered responders (R) and
non-responders (NR), respectively.

Predicted R Predicted NR % Correct

Actual R 6 1 85.7% = Sensitivity
Actual NR 1 6 85.7% = Specificity

Average = 85.7%

Table 5
A list of discriminating features for treatment-efficacy prediction using pre-treatment
EEG information. Note that the discriminative feature subset is not unique and there
is statistical dependence among them. d1 ¼ 88:5.

# Selected EEG-driven Feature

1 Mutual Information between T3 & P3
2 Mutual Information between T3 & O1
3 Mutual Information between C3 & P3
4 Correlation between F8 & T4
5 Coherence at f = 6 Hz between T3 & O1
6 Coherence at f = 6 Hz between T3 & P3
7 Coherence at f = 6 Hz between C3 & O1
8 Coherence at f = 7 Hz between F3 & P3
9 Coherence at f = 8 Hz between T6 & P3
10 Coherence at f = 9 Hz between T3 & O1
11 Coherence at f = 10 Hz between T3 & T5
12 Coherence at f = 10 Hz between T3 & P3
13 Left to right PSD-ratio at f = 10 Hz, T5/T6
14 Left to right PSD-ratio at f = 11 Hz, T5/T6
15 Coherence at f = 11 Hz between C3 & P3
16 Coherence at f = 11 Hz between T3 & P3
17 Left to right PSD-ratio at f = 12 Hz, T5/T6
18 Coherence at f = 12 Hz between T3 & T5
19 Coherence at f = 13 Hz between F7 & F3
20 Left to right PSD-ratio at f = 16 Hz, T5/T6
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With reference to Table 3(i), there are 12 responders and 11 non-
responders, so the probability p of a responder may be taken as
12/23 = 0.5212. Assuming all subjects are independent, the proba-
bility of a prediction error is governed by a binomial distribution,
which is parameterized by N, the number of samples, and p, in this
case the probability of a responder. Therefore, the probability of
this level of performance (10 classifications as R and 2 as NR out
of N = 12 true responders) occurring due to chance alone is evalu-
ated from the binomial distribution as 0.0226. Similarly, the value
of p for the non-responder case is 0.4783, so the probability of esti-
mating 10 NR and 1 R out of 11 non-responders due to chance
alone is 0.0036. Similarly, for the case of Table 3(ii), the corre-
sponding figures are 0.0039 and 0.0211 for the R and NR groups,
respectively. Thus we see that these figures are negligibly small
and we can conclude the prediction results are almost certainly a
consequence of the distinguishing characteristics of the EEG mea-
surements obtained from the two groups.

By employing more advanced analytical models, the present
study was designed to extend and improve upon the utility of
the EEG in predicting the responsiveness to clozapine as investi-
gated in other studies. Although Gross et al. (2004) found that
changes in EEG features correlated with outcome, post-treatment
EEG data was required. Our methodology is more potentially useful
to the clinician as prediction is possible using EEG data collected
before this potentially toxic treatment is initiated. Further, even
though Knott et al. (2000) were successful at identifying features
which were indicative of response, they did not incorporate their
findings into a quantitative prediction algorithm. We have there-
fore been able to extend their work by accomplishing this purpose.

Our proposed feature selection method is novel in the respect
that a small number of maximally discriminative features are auto-
matically identified from a very large list of candidate features. This
is in contrast to the previous approaches, which inherently require
a trial-and-error procedure. The previous approach consists of
hypothesizing that a single feature may be discriminative, and then
verifying or rejecting the hypothesis by experiment. Thus our
method can identify salient features that could easily be missed
using previous methods.

It is gratifying to note that our proposed feature selection pro-
cedure did select some features that were identified from previous
studies. This serves as a verification of our method and provides a
useful connection with the previous research. Nevertheless, the
mathematical structure produced by our ML methods was created
from the training data alone without an a priori model or previous
research findings (e.g. regarding QEEG differences between
responders and non-responders). As such it has the advantage of

not being constrained by the theoretical constructs derived from
previous studies. Without devaluing previous work, or discounting
the importance of replication, limiting feature selection to only a
group made up of those reported to be useful in previous studies
decreases the probability that new and highly salient features will
be discovered. Also we have not employed traditional EEG fre-
quency bands and instead used frequency components individually
within a 1 Hz resolution window. This maximizes the possibility of
detecting potentially important EEG features that might otherwise
be obscured when power is integrated over a broad range of fre-
quencies in a given band, e.g. a 10 Hz signal might be lost in the
8–12 Hz alpha band.

The goal of this paper is to propose a new clinical data analysis
method and derive an empirical set of EEG features predictive of
response to clozapine, not to derive neurological information
regarding the pathophysiology of schizophrenia. Nevertheless the
clustering of relevant EEG features in the temporo-parietal area
of the dominant hemisphere, as seen in Table 5 and in Fig. 4,
may be of some interest to those studying regional brain activity
patterns in patients with schizophrenia. Others have described
bilateral reduced grey matter volume in the temporal lobes (e.g.,
Okugawa et al., 2002) and electrophysiological abnormalities in
the left temporo-parietal region on EEG (e.g., Faux et al., 1987) in
schizophrenic patients.

This retrospective study suffers from some weaknesses. Most
notably our QCA clinical rating is based on chart review and there-
fore likely to be less accurate than a standardized PANSS. However,
our raters were clinicians expert in the treatment of schizophrenia
and familiar with the subjects being evaluated. The QCA would
therefore have reasonable clinical validity. The high predictive
accuracy of our algorithm in both Group A and B subjects even in
the face of this source of outcome variance may speak to the
robustness of this methodology. As QCA and PANSS ratings were
completed years before this project they could not have been influ-
enced by the machine learning assignment into responder and
non-responder groups.

It must be noted the results of this pilot study are derived using
a relatively small quantity of data. Our findings must be replicated
in a much larger sample of training and test subjects before they
can be accepted with confidence. Notwithstanding these issues,
our data suggest that machine learning methods of analyzing
EEG signal may be employed to create a useful psychiatric manage-
ment tool. Furthermore, the methodology described in this paper
could be extended to construct models that predict the response
to various other treatments available for patients with schizophre-
nia or with other psychiatric conditions. Finally, it may be possible
to incorporate a range of other clinical and laboratory data beyond
EEG measurements, such as personality inventory scores, personal
and demographic information and treatment history to improve
clustering behaviour and prediction performance.

An additional topic for future consideration is to investigate the
minimum number of channels needed to yield adequate prediction
performance. It may be that a reduced configuration of electrodes
concentrated over the left side (as suggested by Fig. 4), will still
yield an acceptable level of performance, but at a reduced cost.

5. Appendix A. The QCA clinical rating procedure

The QCA clinical rating procedure was devised in the context of
an un-related earlier naturalistic retrospective un-published clini-
cal study of treatment-resistant schizophrenic patients being con-
sidered for clozapine treatment. The subjects in the present study
were included in this previous study. An experienced clinician re-
viewed all the available clinical descriptive information of the pa-
tient’s symptomatology prior to beginning a course of clozapine.

Fig. 4. A rough schematic drawing which shows a list of some relevant features by
connections, as reflected in Table 5. Connections are shown by solid thick lines.
Electrodes A1 and A2 represent the linked ears reference.
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Reported symptoms, corresponding to those described in the
PANSS, were rated as: present, moderate or severe on a one to
six point scale. Only explicitly described symptoms were scored
and the clinical rater was instructed not to infer the presence of po-
tential symptoms. The same rating was repeated, based on case re-
cords describing current symptoms at the time (usually after
approximately six months) when the decision was made to either
discontinue or continue with on-going maintenance clozapine
therapy.

Acknowledgements

The authors would like to thank Margarita Criollo, Joy Fournier,
and Eleanor Bard for their help in clinical experiments. This work
was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

Adler G, Grieshaber S, Faude V, Thebaldi B, Dressing H. Clozapine in patients with
chronic schizophrenia: serum level, EEG and memory performance.
Pharmacopsychiatry 2002;35:190–4.

Birca A, Carmant L, Lortie A, Lassonde M. Interaction between the flash evoked
SSVEPs and the spontaneous EEG activity in children and adults. Clin.
Neurophysiol. 2006;117:279–88.

Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W. The status of spectral
EEG abnormality as a diagnostic test for schizophrenia. Schizophr. Res.
2008;99:225–37.

Coburn KL, Lauterbach EC, Boutros NN, Black KJ, Arciniegas DB, Coffey CE. The Value
of Quantitative Electroencephalography in Clinical Psychiatry: A Report by the
Committee on Research of the American Neuropsychiatric Association. J.
Neuropsychiatry Clin. Neurosci. 2006;18:460–500.

Cover TM, Thomas, JA. Elements of Information Theory, 2nd Ed. John Wiley & Sons,
2006.

Dunki RM, Dressel M. Statistics of biophysical signal characteristics and state
specificity of the human EEG. Physica A 2006;370:632–50.

Essali A, Haj-Hasan NA, Li C, Rathbone J. Clozapine versus typical neuroleptic
medication for schizophrenia. Cochrane Database of Systematic Reviews 2009;
John Wiley and Sons Ltd, Art No.CD000059.

Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C. COMPARE: classification of
morphological patterns using adaptive regional elements. IEEE Trans. Medi.
Imaging 2007;26:93–105.

Faux SF, Shenton ME, McCarley RW, Torello MW, Duffy FH. P200 topographic
alterations in schizophrenia: evidence for left temporal-centroparietal region
deficits. Electroencephalogr. Clin. Neurophysiol. Suppl. 1987;40:681–7.

Freudenreich O, Weiner RD, McEvoy JP. Clozapine-induced electroencephalogram
changes as a function of clozapine serum levels. Biol. Psychiatry
1997;42:132–7.

Gallinat J, Heinz A. Combination of multimodal imaging and molecular genetic
information to investigate complex psychiatric disorders. Pharmacopsychiatry
2006;39:S76–9.

Gross A, Joutsiniemi SL, Rimon R, Appelberg B. Clozapine-induced QEEG changes
correlate with clinical response in schizophrenic patients: a prospective,
longitudinal study. Pharmacopsychiatry 2004;37:119–22.

Gunther W, Baghai T, Naber D, Spatz R, Hippius H. EEG alterations and seizures
during treatment with clozapine: a retrospective study of 283 patients.
Pharmacopsychiatry 1993;26:69–74.

Guo Y, Bowman FD, Kilts C. Predicting the brain response to treatment using a
Bayesian hierarchical model with application to a study of schizophrenia. Hum.
Brain Mapp. 2008;29:1092–109.

Hughes JR, John ER. Conventional and Quantitative Electroencephalography in
Psychiatry. J. Neuropsychiatry Clin. Neurosc. 1999;11:190–208.

Ince N F, Goksu F, Pellizzer G, Tewfik A, Stephane M. Selection of spectro-temporal
patterns in multichannel MEG with support vector machines for schizophrenia
classification. Proc. Annual Int. Conf. IEEE Eng. in Medicine and Biology Society
2008; 3554–3557.

Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for
schizophrenia. Schizophr. Bull. 1987;13:261–76.

Kane J, Honigfeld G, Singer J. Meltzer H and the Clozaril Collaborative Study Group.
Clozapine for the treatment-resistant schizophrenic: A double-blind
comparison with chlorpromazine. Archives of General Psychiatry
1988;45:789–96.

Kim D, Burge J, Lane T, Pearlson GD, Kiehl KA, Calhoun VD. Hybrid ICA-Bayesian
network approach reveals distinct effective connectivity differences in
schizophrenia. Neuroimage 2008;42:1560–8.

Knott V, Labelle A, Jones B, Mahoney C. EEG hemispheric asymmetry as a predictor
and correlate of short-term response to clozapine treatment in schizophrenia.
Clin. Electroencephalogr. 2000;31:145–52.

Knott V, Labelle A, Jones B, Mahoney C. Quantitative EEG in schizophrenia and in
response to acute and chronic clozapine treatment. Schizophr. Res.
2001;50:41–53.

Knott VJ, LaBelle A, Jones B, Mahoney C. EEG coherence following acute and chronic
clozapine in treatment-resistant schizophrenics. Experiment. Clin.
Psychopharmacolo. 2002;10:435–44.

Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen
window. IEEE Trans Pattern Analysis and Machine Intelligence
2002;24:1667–71.

Leucht S, Kane JM, Kissling W, Hamann J, Etschel E, Engel RR. What does the PANSS
mean? Schizophr. Res. 2005;79:231–8.

Lin C, Wang Y, Chen J, Liou Y, Bai Y, Lai I, Chen T, Chiu H, Li Y. Artificial neural
network prediction of clozapine response with combined pharmacogenetic and
clinical data. Comput. Methods Programs Biomed. 2008;91:91–9.

Malow BA, Reese KB, Sato S, Bogard PJ, Malhotra AK, Tung-Ping S, Pickar D.
Spectrum of EEG abnormalities during clozapine treatment. Electroencephalogr.
Clin. Neurophysiol. 1994;91:205–11.

Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B. An introduction to kernel-based
learning algorithms. IEEE Trans Neural Networks 2001;12:181–201.

Oikonomou T, Sakkalis V, Tollis IG, Micheloyannis S. Searching and visualizing brain
networks in Schizophrenia. Springer Lecture Notes in Computer Science.
Biological and Medical Data Analysis 2006;4345:172–82.

Okugawa G, Sedvall GC, Agartz I. Reduced grey and white matter volumes in the
temporal lobe of male patients with chronic schizophrenia. Eur. Arch.
Psychiatry Clin. Neurosci. 2002;252:120–3.

Peng H, Long F, Ding C. Feature selection based on mutual information: Criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern
Analysis and Machine Intelligence 2005;27:1226–38.

Rosipal R, Kramer N. Overview and recent advances in partial least squares. In:
Saunders C, Grobelnik M, Gunn S, Shawe-Taylor J, editors. Subspace, latent
structure and feature selection techniques. Lecture Notes in Computer
Science: Springer; 2006. p. 34–51.

Sakkalis V, Oikonomou T, Pachou E, Tollis I, Micheloyannis S, Zervakis M. Time-
significant wavelet coherence for the evaluation of Schizophrenic brain activity
using a graph theory approach. Proceedings Int Conference of the IEEE
Engineering in Medicine and Biology 2006:4265–8.

Struyf J, Dobrin S, Page D. Combining gene expression, demographic and clinical
data in modeling disease: a case study of bipolar disorder and schizophrenia.
BMC Genomics 2008; 9:(531).

Varma, S, R. Simon, Bias in error estimation when using cross-validation for model
selection, BMC Bioinformatics, 2006; 7:(91).

Young CR. Bowers Jr. MB, Mazure CM. Management of the adverse effects of
clozapine. Schizophrenia Bulletin 1998;24:381–90.

2006 A. Khodayari-Rostamabad et al. / Clinical Neurophysiology 121 (2010) 1998–2006


