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Abstract

In this paper, we show that an NPR M -channel filter bank with a diagonal system inserted
between the analysis and synthesis filter banks may be used to decompose an FIR system of order
L into M complex subband components each of order L

K , where K is the downsampling rate.
This decomposition is at the expense of using complex arithmetic for the subband processing.

The theory surrounding the proposed filter bank structure leads to a new understanding of
subbanded adaptive filtering implementations. It also leads naturally to a delayless subbanded
adaptive filter scheme.

Using conditions on the analysis and synthesis filters, the formulas for the subband com-
ponents and their respective properties are developed. Simulation results for an acoustic echo
cancellation example are given to support the developed theory.
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1 Introduction

Filter bank theory [1] is by now a mature topic. The classical approach to this subject has con-
centrated on the development of perfect reconstruction (PR) or near perfect reconstruction (NPR)
filter bank systems, salient features of which are that the overall frequency response of the filter
bank is distortionless, and that the aliasing error introduced from downsampling in the subbands
is cancelled at the output. This theory requires that there be no processing in the subbands. This
requirement has limited the application of filter bank theory to such areas as data compression and
related topics.

In this paper, we show that a diagonal M ×M system C(z) can indeed be inserted between the
analysis and synthesis filters of an M–channel filter bank in a meaningful way. By this, we mean
that an arbitrary FIR system S(z) of order L (which may be large) can be decimated by a filter
bank structure shown in Figure 1 where the subband components Cm(z) of C(z) are each of order
O( L

K ), where K is the downsampling rate of the filter bank. In the approach adopted in this paper,
the analysis and synthesis filters have single-sided frequency responses.

This decimation can render computationally intractable problems feasible, and is useful in applica-
tions such as audio and acoustics, which typically involve determination of a very large number of
parameters describing an acoustic channel. Examples include blind identification of room impulse
responses [2], adaptive beamforming [3], and active noise control [4]. In this paper however, we con-
centrate on the acoustic echo cancellation (AEC) problem in telephony. This problem is associated
with the hands–free telephone, which requires an acoustic echo canceller to eliminate the acoustic
feedback from the loudspeaker, through the room, and back to the microphone. This device is
an adaptive filter which estimates the acoustic impulse response (AIR) of the room and uses this
estimate to suppress the echo signal which is picked up by the microphone and sent back to the far
end. The difficulty with this particular application is that the AIR is very long (typically on the
order of several thousand samples) and the required adaptation rate is very fast, due to the rate
at which the acoustic properties of the room can change. The implementation must also be very
inexpensive. This later requirement stipulates the use of the LMS algorithm, but its performance
is typically not adequate in these adverse circumstances.

The classical filter bank theory has recently been extended through the use of subbanded adaptive
filters [5] – [11], which have proven very successful in the AEC application. Subbanding using
the single–sided filter bank approach proposed here has been used previously for adaptive filtering
[10] and for transmultiplexing [12][13]. However, the concept of subbanded adaptive filtering has
generally evolved from an ad hoc motivation, despite the fact it has been well researched. In this
paper, we present new theoretical results using single–sided filter banks which rigorously justify
subband adaptive filtering.

One of the difficulties associated with a subbanded approach to the AEC problem is filter bank
delay. Excessive delay in the speech path leads to difficulty in conducting a natural, full-duplex
conversation. Thus there have been delayless subbanded methods proposed [14][15][16]. The theo-
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retical development presented in this paper leads naturally to a delayless adaptive filter structure,
which is similar to that presented in [14]. The proposed method is briefly discussed in this paper.

In Section 2, we show that aliasing in the subbands can be (approximately) eliminated through the
use of filter banks with single–sided1 frequency responses. We then show this property permits the
system C(z) to be diagonal. In contrast, for the general case, the system C(z) must be considered
a dense M ×M matrix in order to completely suppress aliasing errors [5][6]. We then show that
a sequence of M subband components Cm(z) can approximate an arbitrary LTI system S(z) of
interest. A straightforward method of identifying the subband components is then presented and it
is shown that the subband components are indeed of order L

K . We show there exists a many–to–one
correspondence between the subband components and the model response S(z). We also show that
convolution inside the subbands of the subband components representing two signals of interest, is
approximately equivalent to the convolution outside the subbands of the signals themselves. The
delayless adaptive filter implementation is briefly discussed. These theoretical insights offer new
approaches and flexibility for implementation of adaptive filtering problems.

In Section 3, we briefly discuss procedures for the design of the analysis and synthesis filters. Veri-
fication of the theory and simulations of the AEC problem are presented in Section 4. Conclusions
are then presented in Section 5.

Notation: We use non–bold upper–case characters to denote a polynomial in z: e.g. X(z). The
lower–case version of the symbol, e.g., x[n] represents the corresponding sequence in time. A bold
lower–case character, e.g., x(z) and a bold upper–case upper case character, e.g., H(z) represent a
vector and a matrix respectively, whose elements are polynomials in z. A bold lower–case character
without a z–argument (x) represents a vector whose elements define a sequence in time. The
superscript T represents the transpose operation. The notation [·]↓K means the argument has been
downsampled by a factor of K.

2 The Complex Subband Decomposition

In this section, we develop the complex subband decomposition of an arbitrary LTI system S(z)
shown in Figure 1a, using the oversampled M–channel filter bank shown in Figure 1b.

1This term follows from the term “single sideband modulation”. Here, we retain e.g., the positive frequency

components corresponding to a real signal, and suppress the negative components.
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Figure 1: (a) An arbitary FIR system S(z). (b) A subband approximation of the system S(z).

2.1 Complex Filter banks

To begin, we define a set of M overlapping frequency bands Ωm
M over the range 0 ≤ ω ≤ 2π such

that
Ωm

M =
{

ω :
2πm

M
− ε ≤ ω <

2π(m + 1)
M

+ ε

}
, m = 0, 1, . . . , M − 1, (1)

where ε is a transition bandwidth corresponding to a practical analysis filter response. The integer
M is taken to be even.

Consider a set of FIR analysis filters of Figure 1b, each of length N , having single-sided frequency
responses Hm(z),m = 0 . . . ,M − 1, with the response specification

∣∣∣∣Hm(z)
∣∣∣∣
z=ejω

≈
{

finite magnitude, ω ∈ Ωm
M

0, otherwise,
(2)

as shown in Figure 2a. These filters are related in the time domain to a real low pass prototype
with cutoff frequency π

M as shown in Figure 2b, by

hm[n] = hpr[n]ej 2π
M

(m+m0)(n+n0). (3)
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For the filter bank under discussion, we make the following set of assumptions: a) fpr[n] = hpr[N −
n], b) fm[n] = fpr[n]ej 2π

M
(m−m0)(n+n0), and c) m0 = 1

2 and n0 = 0. Under these assumptions, the
z-domain version of (3) is

Hm(z) = Hpr(zW
−(m+ 1

2
)

M ) (4)

where Wm
M = e−j2π m

M . Similarly, for the synthesis filters we have

Fm(z) = Fpr(zW
−(m+ 1

2
)

M ). (5)

We further assume the input signal x[n] and the model response s[n] are real.
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Figure 2: (a) Example of the magnitude response of H1(z). (b) Corresponding prototype filter
Hp(ejω)

The analysis and synthesis filters are designed so that the filter bank satisfies the following prop-
erties, which we show later to be sufficient for the subband structure of Figure 1b to represent the
system S(z), for appropriately chosen C(z):

1.

Fm(z)Hm(zW k
K)|z=ejω ≈ 0





k = 1, . . . ,K − 1
m = 0, . . . , M

2 − 1
0 ≤ ω < 2π,

(6)

2.

1
2




M
2
−1∑

m=0

Fm(z)Hm(z) + F ∗
m(z)H∗

m(z)


 ≈ dz−k0 (7)
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where ∗ denotes complex conjugation, d is a constant and k0 is a delay introduced for causal-
ity2. The inclusion of the second term above is equivalent to taking the real part in the time
domain as shown at the output of Figure 1b.

Equation (6) can be satisfied by making K not too large with respect to M . Eq. (7) can be satisfied
by making Hpr(z) a root-Nyquist filter.

Figure 3 shows an example of H0(z) resulting from downsampling then upsampling by a factor of
K. From this figure, it is clear that (6) can only be satisfied if the shift 2π

K is greater than the
bandwidth occupied by Ωm

M ; i.e.,
2π

M
+ 2ε ≤ 2π

K
. (8)

or
K <

M

1 + εM
π

. (9)
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Figure 3: The magnitude spectrum H0(ejω) after downsampling and upsampling by a factor of K.

In the sequel, we shall refer to an “ideal” prototype filter. By this, we mean that the prototype
Hpr(z) is such that (6) and (7) are satisfied with equality.

Note that a necessary condition for (6) is that the frequency responses Hm(z) and Fm(z) be single-
sided. For double–sided responses, K − 1 copies of Hm(z), each translated by 2πk

K radians, cannot
exist without overlapping with Fm(z) in their passbands for some values of m, regardless of the
value of K.

It is straightforward to show that this filter bank corresponds to a M
K -times oversampled generalized

DFT (GDFT) filter bank [17] with only the first M/2 subband signals retained. For real input
signals, the remaining M/2 subband signals are complex conjugates of the first M/2 signals and
are therefore redundant. Thus, without loss of generality, we ignore the subbands M

2 ≤ m ≤ M−1.

Since the analysis and synthesis filters have single–sided frequency responses, the time–domain
signals after the analysis filters are complex. This necessitates the use of complex arithmetic with
any algorithm operating in the subbands.

We now use our conditions on the analysis and synthesis filters to specify the subband components
Cm(z) in Figure 1 so that the output of the filter bank Y2R(z) approximates the output Y1(z) of

2With reference to (7), the quantity A∗(z) =
∑∞

n=−∞ a∗[n]z−1 for a given sequence a[n].
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our model system S(z) of interest. In this vein, the signals Um(z
1
K ) defined in Figure 1b are given

as [1]

Um(z
1
K ) =

1
K

K−1∑

k=0

Hm(z
1
K W k

K)X(z
1
K W k

K). (10)

We can combine the Um(z
1
K ) into vector form and write

u(z
1
K ) =

1
K

HT (z
1
K )x(z

1
K ) (11)

where u(z) = [Uo(z), . . . , UM
2
−1(z)]T , H(z) is the alias component matrix given by

H(z) =




H0(z) . . . . . . HM
2
−1(z)

H0(zWK) . . . . . . HM
2
−1(zWK)

...
...

H0(zWK−1
K ) . . . . . . HM

2
−1(zWK−1

K )




(12)

and the input vector x(z) = [X(z), X(zWK), . . . , X(zWK−1
K )]T . The signals Vm(z) after the up-

sampler, arranged into the vector v(z), can then be expressed as

v(z) =
1
K

C(zK)HT (z)x(z). (13)

where
C(zK) = diag[C0(zK), . . . , CM

2
−1(z

K)]. (14)

Thus, the filter bank output Y2(z) can be expressed as

Y2(z) =
1
K

aT (z)x(z) (15)

where
a(z) = H(z)C(zK)f(z), (16)

and
f(z) = [F0(z), . . . , FM

2
−1(z)]T . (17)

Let us now consider the kth element ak(z) of a(z) in (16). It is given as

ak(z) =

M
2
−1∑

m=0

Fm(z)Cm(zK)Hm(zW k
K), k = 0, . . . , K − 1. (18)

From (6), each set of frequency responses Hm(zW k
K) and Fm(z) overlap only in their stopbands,

for k 6= 0. For the time being, we assume an ideal prototype filter. Therefore

ak(z) = 0, k = 1, . . . ,K − 1. (19)
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Equation (19) is a statement that aliasing error is suppressed in the subbands. From (15) (18) and
(19) we then have

Y2(z) = X(z)
1
K

M
2
−1∑

m=0

Hm(z)Cm(zK)Fm(z). (20)

We now show that if the Cm(zK) are chosen to satisfy

Hm(z)Cm(zK) = Hm(z)S(z), m = 0, . . . ,
M

2
− 1, (21)

then Y2R(z) in Figure 1b is equivalent to Y1(z) in Figure 1a. Accordingly, we substitute (21) into
(20) to obtain

Y2(z) = S(z)X(z)
1
K

M
2
−1∑

m=0

Hm(z)Fm(z) (22)

By taking the real part of the time-domain equivalent y2[n] of Y2(z), and recalling that x[n] and
s[n] are both pure real, and using (7), we have

Y2R(z) = X(z)S(z)
dz−k0

K
. (23)

Thus Y2R(z) is within a scale and a delay of Y1(z) as required.

In summary, as a consequence of (6) and (7), with an ideal prototype filter, we see that the
filterbank system of Figure 1b with an appropriately chosen diagonal system C(z) inserted between
the analysis and synthesis filter banks is indeed equivalent to an arbitrary FIR system S(z). The
Cm(z) satisfying (21) are referred to as the subband components of S(z).

In the case where the prototype is a non-ideal practical filter whose stopband attenuation is finite,
(6) holds only approximately, with the result that (19) to (23) also hold only approximately. The
approximations become arbitrarily good as the prototype filter response Hpr(z) approaches an ideal
characteristic.

We now interpret (21). Since Cm(ejKω) is periodic with period 2π
K , there are K images in the

range ω ∈ [0, 2π] each of which can have a bandwidth of at most 2π
K . By definition, Cm(ejKω)

is completely specified by one of its periodic images. From (8) the width of Ωm
M is smaller than

(or at most as wide as) the bandwidth of one period of C(ejKω). This allows us to define the
complement of Ωm

M , Ωm
M , such that Ωm

M

⋃
Ωm

M is a continuous (i.e. non-disjoint) frequency band 2π
K

radians wide and such that |Hm(ejω)| is negligible for ω ∈ Ωm
M . Therefore, Ωm

M

⋃
Ωm

M contains one
period of C(ejKω). Equation (21) restricts the response of C(ejKω) over Ωm

M , leaving the response
of C(ejKω) over Ωm

M arbitrary. The result is that, in general, the subband components Cm(z)
corresponding to a full-band response are not unique. Note that Ωm

M corresponds to the stopband
region of the downsampled version of Hm(z). Since Hm(z) and Fm(z) have the same magnitude
responses, components of Cm(ejKω) in Ωm

M are suppressed by the synthesis filters.

Thus we have the following: in the context of Figure 1 where (6) and (7) are satisfied, then given any
FIR scalar system S(z), for each m ∈

{
0, . . . , M

2 − 1
}

we can find many systems Cm(z) satisfying
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Hm(z)Cm(zK) = Hm(z)S(z). Conversely, if we find many Cm(z) for each m ∈
{
0, . . . , M

2 − 1
}

whose frequency responses differ only for ω ∈ Ωm
M , then each of the Cm(z) (m fixed) will correspond

to the same S(z).

We now discuss the computation of the subband components for the case of a practical prototype

filter. In this case, it is possible to find FIR subband components {Cm(z)}
M
2
−1

m=0 such that the system
in Figure 1(b) approximates S(z) in a least-squares sense for z = ejω, when S(z) is FIR. Starting
with the approximation (21), downsampling on both sides gives

1
K

K−1∑

k=0

Hm(z
1
K W k

K)Cm(z) ≈ 1
K

K−1∑

k=0

Hm(z
1
K W k

K)S(z
1
K W k

K). (24)

If aliasing in the subbands is kept small, then a good choice of Cm(z) in this equation will be a
good choice of Cm(z) in (21). Define the error in the approximation (24) as

E(z) ∆=
1
K

K−1∑

k=0

[
Hm(z

1
K W k

K)Cm(z)−Hm(z
1
K W k

K)S(z
1
K W k

K)
]
, (25)

so that we may find the least-squares approximation for Cm(z) on the unit circle as

Cm,LS(ejω) = arg min
Cm(ejω)

1
2π

∫ π

−π

∣∣∣E(ejω)
∣∣∣
2
dω. (26)

Using Parseval’s equality, this is equivalent in the time-domain to

cm,LS [n] = arg min
cm[n]

1
K

∑

n∈Z

∣∣∣hm[n]↓K ∗ cm[n]− (hm[n] ∗ s[n])↓K
∣∣∣
2
. (27)

We define the quantity ūm[n]↓K
∆=

(
hm[n] ∗ s[n]

)

↓K
in (27) (where ∗ denotes the convolution

operation). This quantity is the time-domain version of Um(z
1
K ) in Figure 1b, when the input

x[n] = s[n]. Likewise, we define v̄m[n]↓K
∆= hm[n]↓K ∗ cm[n]. This is the time-domain version of

Vm(z
1
K ) when x[n] = δ[n]. Thus, the least-squares solution cm,LS [n] given by (27) is the cm[n] which

forces the corresponding v̄m[n]↓K to be closest in the least-squares sense to the signal ūm[n]↓K .

Before solving (27), we consider the length of the subband components cm[n]. We denote La to
be the length of an associated sequence a[n].3 (Exceptions are L and N which have already been
defined). Then Lūm , is given by

Lūm =
⌈
L + N − 1

K

⌉
, (28)

where d·e denotes the ceiling operator, L is the length of s[n] and N is the length of hm[n]. Since
we require that Lūm = Lv̄m , then Lcm is constrained to be

Lcm = Lūm − Lh↓K
+ 1

=
⌈
L + N − 1

K

⌉
−

⌈
N

K

⌉
+ 1. (29)

3For ease of notation, we drop any associated characters “↓” and “[n]”(unless ambiguity arises).
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It is important to notice that the length of the subband components is of order L
K , which may be

significantly smaller than L for large K. Given that the lengths are now established, the coefficients
cm[n] may now be found in a minimum least squares sense of (27) by solving

cm,LS = arg min
cm

‖Hmcm − ūm↓‖2
2 , (30)

where cm =
[
cm[0], cm[1], . . . , cm[Lcm − 1]

]T

, ūm↓ =
[
ūm[0]↓K , ūm[1]↓K , . . . , ūm[Lūm − 1]↓K

]T

and

Hm is the Toeplitz convolution matrix

Hm =




hm[0] 0 0 · · · 0
hm[K]
hm[2K]
... Toeplitz
hm[Lh↓K

− 1]
0
...
0




. (31)

Thus, the least-squares subband components of an FIR impulse response s[n] are given by

cm,LS = H#
mūm↓, m = 0, . . . ,

M

2
− 1, (32)

where H#
m is the Moore-Penrose pseudo-inverse of the matrix Hm. Since the Moore-Penrose pseudo-

inverse is unique for a given full column rank matrix, we can conclude this discussion as follows.
Given a full-band system s[n] of length L, a set of M

2 FIR analysis filters and synthesis filters of
length L satisfying (6) and (7) and downsampling factor satisfying (9), a full-band LTI FIR system

S(z) may be approximated in a least-squares sense by a sequence of M in-band filters, {Cm(z)}
M
2
−1

m=0

of length
⌈

N+L−1
K

⌉
−

⌈
N
K

⌉
+ 1.

From (32), we see that the subband component cm[n] is the deconvolution of the quantity (s[n] ∗
hm[n])↓K with hm[n]↓K . The overall system response ŝ[n] corresponding to a set of subband com-
ponents cm,s[n] 4 may be computed as

ŝ[n] = <




M
2
−1∑

m=0

(
hm[n]↓K ∗ cm,s[n]

)

↑K
∗ fm[n]


 , (33)

which corresponds to the impulse response of Figure 1b.

Even though the development of this section has treated only the case where S(z) is a single–input
single–output system, we can extend the development to the multiple–input multiple–output case
in a straightforward way. This can be done by incorporating a separate analysis filterbank for each
required input, and a separate synthesis filterbank for each required output.

4Here, we denote cm,a[n] as the least-squares subband component of some sequence a[n] in the mth subband.
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2.2 Properties of the Complex Subband Decomposition

In the following, we assume an ideal prototype filter.

Property 1 The filter bank structure of Figure 1b is LTI.

Proof: Using (20), the transfer function SR(z) = Y2R(z)
X(z) of the filter bank is given by

SR(z) =
1
K

M
2
−1∑

m=0

[
Hm(z)Cm(zK)Fm(z) + H∗

m(z)C∗
m(zK)F ∗

m(z)
]
. (34)

From [18], a system is LTI if and only if it has a transfer function. In the case of a practical prototype
filter, extraneous terms appear in (20) which prohibit the definition of a transfer function. However,
for a sufficiently good prototype filter, these terms may be considered negligible.

. 2

Property 2 Let A(z) and B(z) be the z-transforms of arbitrary discrete-time signals, and let
Ca(z), Cb(z) be the z-transforms of the least-squares subband components of A(z) and B(z) respec-
tively. Furthermore, define C(z) = A(z)B(z) whose least-squares subband components are Cc(z).
If for each subband m,

Ĉc(z) ∆= Ca(z)Cb(z), (35)

then
Hm(z)Ĉc(zK) = Hm(z)Cc(zK). (36)

Proof: Since we assume that the stopband attenuation of the analysis filters is perfect, then there
exist subband components Cc(z), Ca(z) and Cb(z) for the m-th subband satisfying

Hm(z)Cc(zK) = Hm(z)C(z) (37)

Hm(z)Ca(zK) = Hm(z)A(z) (38)

Hm(z)Cb(zK) = Hm(z)B(z). (39)

Since C(z) = A(z)B(z), from (37) we have

Hm(z)Cc(zK) = Hm(z)C(z) = Hm(z)A(z)B(z)

= Hm(z)Ca(zK)B(z) = Ca(zK)Hm(z)B(z)

= Ca(zK)Hm(z)Cb(zK)

= Hm(z)Ca(zK)Cb(zK)

= Hm(z)Ĉc(zK).

11



When there is perfect stopband attenuation, the last equation shows that Cc(zK) must be equal to
Ĉc(zK) for z = ejω only over the frequency range Ωm

M . For practical filters, these equalities (except
for the last one) must be replaced with approximations, giving Hm(z)Cc(zK) ≈ Hm(z)Ĉc(zK).

. 2

This property indicates that we can approximate subband components for a composite system
C(z) = A(z)B(z) by convolving the subband components of A(z) and B(z). In general, these
subband components are not the least-squares subband components of C(z), but in practice they
allow us to approximate the system shown in Figure 4 with that in Figure 5.
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Figure 4: Approximation of C(z) using subband components Cm,c(z)
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Figure 5: Approximation of C(z) using Cm,a(z)Cm,b(z).

2.3 Applications to the adaptive filtering problem

We now apply the complex subband decomposition to the adaptive filter problem [21]. The objective
is to determine a filter response g[n] to minimize the quantity

J
∆= E(e2[n]) = E

[
(x[n] ∗ g[n]− d[n])2

]
, (40)

(or an approximation of J), where x[n], d[n] and e[n] are the input, the desired, and the output
error signals respectively. Because any signal can be decomposed into subband components we can
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write (40) as

Jm ≈ E

[
(cm,x∗g[n]− cm,d[n])2

]
, m = 0, . . . ,

M

2
− 1. (41)

Using Property 2, we can now write

Jm ≈ E

[
(cm,e[n])2

]
(42)

where
cm,e[n] = cm,x[n] ∗ cm,g[n]− cm,d[n]. (43)

Equation (42) can be implemented by an adaptive filter algorithm operating inside each subband.
(This is the open loop configuration referred to by various authors). Thus, this analysis implies
that a subbanded configuration which has an adaptive filter algorithm in each subband yielding a
set of subband coefficients cm,g[n] which minimize each Jm in (42) can replace a fullband adaptive
filter algorithm whose coefficients g[n] minimize J in (40).

Further, with the commonly-used LMS algorithm, the convergence rate is inversely proportional to
the number of taps, L [21]. For a subbanded implementation, the length of the subband compo-
nents is given from (29) to be O(L/K). Thus, we expect the convergence rate of the subbanded
implementation to improve roughly by a factor of K for this choice of adaptive filter. This is in
addition to computational gains which are discussed in Section 4.

In the limit as the filter bank prototype Hpr(z) becomes ideal, the subband components given
by (43) represent the full band response e[n] exactly. Thus, the error introduced by the subband
adaptive filter implementation can become negligible for a good enough specification on Hpr(z).

Delayless subband adaptive filtering: The complex subband decomposition leads to a straight-
forward method of eliminating this filter bank delay. An implementation is shown in Figure 6.
Subband components cm,g[n] corresponding to the adaptive filter coefficients are determined by
an adaptive filter algorithm operating inside the subbands, as discussed previously. However, the
desired output e[n] is computed outside the subbands by convolving the input x[n] with the filter
ĝ[n], which are the filter coefficients corresponding to the set of subband coefficients cm,g[n], given
by (33). The through signal path thus does not experience any delay induced by the analysis or
synthesis filter banks. Note that a synthesis filter bank is not required in Figure 6 since the desired
output signal e[n] is not computed in the subbands.

This proposed delayless implementation is similar to the open loop configuration of [14], except
that our proposed technique uses (33) to update the coefficients, whereas the method of [14] uses
a sequence of FFT operations. The development of this technique using the concept of subband
components gives the method theoretical rigor and gives new understanding of the approach. The
proposed delayless configuration exhibits the same improved convergence performance as the con-
ventional subbanded adaptive filter implementation. However, in the basic form of Figure 6 the de-
layless structure requires substantially more computations than the conventional subbanded adap-
tive filter. This is due to the cost of the operation ĝ[n] ∗ x[n], which requires L real multiply/adds
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Figure 6: A delayless subbband adaptive filter implementation.

per sample, a figure which can dominate the complexity of the entire configuration. However, in
[14], it is shown that the computational cost of this convolution can be reduced by a factor of
approximately P , and remain delayless, using a blocked FFT approach. Here, the sequence ĝ[n] is
partitioned into P segments of equal length. Then the first segment can process by direct convolu-
tion (thus giving the delayless property), while the remaining segments process by fast convolutions
using FFT’s and inverse FFT’s, sequentially, for each segment.

Also, additional computational overhead is involved in updating the coefficients ĝ[n] according
to (33). To save computations, this must be done at periodic intervals, with the effect that the
adaptation of the coefficients ˆg[n] will lag behind by one period. The expense of this update can
be significantly reduced by using a polyphase realization [1] for the filter banks.

3 Filter Design

The design of the filters Hm(z) and Fm(z) for the proposed complex filterbank technique involves
fewer constraints than for conventional subbanding systems, since no consideration need be given
to cancellation of unwanted aliasing components. There are many design possibilities, since the
only requirement is that the Hm(z) and Fm(z) satisfy (6) and (7).

We briefly present two such filter design techniques. The first is based on a spectral factorization
of a Nyquist filter. Let N be the length of analysis and synthesis time domain responses hm(n)
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and fm(n) respectively. Let r(n) be a Nyquist response of length 2N + 1. (Any windowed sinc(·)
function is a Nyquist response [1]). We interpret the Fourier transform R(ejω) of r(n) as the
magnitude–squared response of the desired prototype filter Hp(ejω). We can then assign Hp(ejω)
to the minimum–phase spectral factor of R(ejω). This spectral factorization can be achieved using
the complex cepstrum, as outlined in [1], Appendix D. The synthesis filter prototype Fp(ejω) is
assigned to be the paraconjugate of Hp(ejω). We note in this case, because R(ejω) is Nyquist, (7)
is satisfied with the equality, whereas (6) holds only approximately.

Another approach is a least-squares procedure for designing Hp(ejω). Here again, we treat R(ejω),
where the corresponding time domain quantity r(n) is of length 2N + 1, as the magnitude-squared
response of Hp(ejω). Consider the objective function Ψ, which involves a criterion on the stop and
pass bands, respectively, as follows:

Ψ = λ

∫ π

2π
K

R(ejω)dω + (1− λ)
∫ π

M

0

[
1−

M−1∑

m=0

R(ejω− 2πm
M )

]
dω (44)

where λ controls the weighting between the stopband and the passband regions. Figure 7 may aid in
visualizing the limits on the integral in (44). The sequence r(n) is chosen so that the corresponding
Ropt(ejω) is the solution to

Ropt(ejω) = arg min
R(ejω)≥0

|Ψ| (45)

In practice, since the stopband has small magnitude, only the first few terms of the sum in (44)
need be considered. By virtue of the constraint in (45), the prototypes Hp(ejω) and Fp(ejω) can
be calculated by spectral factorization of Ropt(ejω) in the same manner as above.
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Figure 7: Pertinent frequency values useful for filter design.

An alternative design procedure based on convex optimization of the prototype filter is given in
[20].

4 Results

In this section, we present some examples demonstrating the performance of the proposed sub-
banding technique. First, we present simulations which verify the theoretical development of the
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previous sections. We then discuss a subbanded implementation of an acoustic echo canceller
(AEC). Next we demonstrate the performance of the delayless subbanded AEC technique. For the
following examples, we use a GDFT filter bank with m0 = 1

2 , M = 16 subbands with the upper
8 ignored. The analysis and synthesis filters have N = 128 coefficients and are designed to satisfy
(6) and (7) well. The magnitude spectra of the analysis filters are shown in Figure 8.
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Figure 8: Magnitude Response of 16-Channel GDFT Analysis Filters

4.1 Calculation of the Subband Coefficients

For this example, we decompose an FIR system s[n] with length L = 100 into 8 subband com-
ponents, for variable K. In this example s[n] is a white, zero mean, unit variance Gaussian noise
sequence. This experiment demonstrates how well the output signal y2R[n] approximates y1[n] in
Figure 1 versus K when the subband components are calculated using (32), for the given filter bank
configuration. The error is calculated as

∑
n

∣∣∣∣y2R[n]− y1[n]
∣∣∣∣
2

∑
n

∣∣∣∣y1[n]
∣∣∣∣
2 , (46)

expressed in dB. The results are given in Table 1. As can be seen, for only modestly long filters,
the approximation can be considered quite accurate.

For the next example, we decompose the same FIR system s[n] above for a fixed K = 12, into
subband components of length

⌈
L + N − 1

K

⌉
−

⌈
N

K

⌉
+ 1

=
⌈
100 + 127− 1

12

⌉
−

⌈
127
12

⌉
+ 1 = 9.
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K error (dB)

8 -55.97
10 -51.81
12 -42.04
14 -25.51
15 -20.08

Table 1: Approximation error vs. K.

using the the least-squares (LS) approximation given in (32).

Figure 9 shows further results for the fifth subband, which was arbitrarily chosen. The plot in
the upper left-hand corner shows the magnitude spectrum of the fifth subband component of s[n],
c5,s[n]. In the upper right-hand corner, the magnitude spectrum for the downsampled analysis filter
(multiplied by K for the sake of appearance) is shown. The lower left-hand plot gives the magnitude
spectrum of v̄5[n]↓K = (h5[n] ∗ s[n])↓K . Finally, the amplitude spectrum of h5[n]↓K ∗c5,s[n] is shown
in the lower right-hand plot. For comparison, magnitude spectrum of v̄5[n]↓K is superimposed. As
can be seen, the LS subband component allows a good approximation of v5[n]↓K , and the normalized
squared error is approximately −43.05 dB.
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Figure 9: Illustration of LS subband decomposition for m = 5.

Now we wish to demonstrate the accuracy of Property 2. For this purpose we use two random
sequences s0[n] and s1[n], each of length L = 100 samples, both similar to that used in the previous
section. The real parts of the time domain representation of the signals, corresponding to the
Vm(ejω) in each of Figures 4 and 5 respectively, are shown superimposed in Figure 10, where we
have arbitrarily set m = 5. The imaginary parts show similar characteristics.

The error due to using c5,s0 [n] ∗ c5,s1 [n] as the subband component of s0[n] ∗ s1[n] instead of the
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least-squares subband component c5,s0∗s1 [n] is approximately -30.12 dB for this subband. Note
that this is the difference in the respective signals v5[n] in Figures 4 and 5, not the difference in
the subband components themselves.

The norm of the difference between the subband component c5,s0∗s1 [n] and its approximation
c5,s0 [n] ∗ c5,s1 [n] (normalized to the norm of c5,s0∗s1 [n]) is -6.76 dB, which is a significant increase
over that shown in Figure 10. We see from Figure 11, which shows the two subband components
in the frequency domain, that most of this error is concentrated in the region where the magnitude
response of (h5[n])↓K is less significant. This is a direct consequence of the fact that the frequency
domain components of any subband component is not specified over Ωm

M , as discussed in Section 2.
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Figure 11: Frequency response of subband component approximations. Solid: Magnitude of the
Fourier transform of c5,s0∗s1 [n], Dot-dashed: Magnitude of the Fourier transform of the approxima-
tion c5,s0 [n] ∗ c5,s1 [n]. Dashed: Magnitude response of the downsampled analysis filter.
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The result is that, when convolving the downsampled analysis filter response with the approximation
to the least-squares subband component of s0[n] ∗ s1[n], most of the error is suppressed. Since the
downsampled synthesis filters have the same magnitude response as the downsampled analysis
filters, errors in the subband component approximations are suppressed at the filter bank output
as well.

4.2 Application to the AEC problem

We now illustrate the proposed subband decomposition procedure with the acoustic echo cancella-
tion (AEC) problem in telephony [5]–[11], [19]. The AEC problem is depicted in Figure 12, where
the objective is to cancel the far-end input speech component which appears at point A in the fig-
ure. In this discussion, we do not address the associated double–talk detection problem [22], which
has to do with detecting the presence of the near–end speech signal. This example is intended to
demonstrate the effectiveness of the proposed complex subbanding scheme in decimating a large
adaptive filtering problem into many smaller problems.
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Figure 12: Depiction of the AEC problem.

We demonstrate three cases, each using an acoustic impulse response (AIR), measured in a real
room, of 2000 samples in duration at a sampling rate of 8 kHz. The AIR waveform is shown in
Figure 13. The input in each case is real speech, approximately 9 seconds in duration. In each
case, the echoed speech (that received by the microphone) was generated by convolving the AIR
with the input speech signal and is shown in Figure 14. The three test cases correspond to a) the
fullband case where no subbanding is used, b) the subbanding method proposed in [5], and c) AEC
using the proposed complex subband decomposition. In each case, echo cancellation is achieved
using the normalized LMS (NLMS) adaptive filtering algorithm [21], with a value of the NLMS step
size parameter µ = 0.9. (For the latter two cases, the NLMS algorithm is applied in each subband
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with the error signal being generated in the respective subband). The near–end talker in Figure 12
was silent, and the AIR was assumed stationary over the entire interval. In each case, background
noise at an SNR of 25 dB was added to the echo signal.
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Figure 13: Acoustic impulse response used for AEC example.
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Figure 14: Echoed speech signal for all three echo cancellation experiments.

Results showing echo canceller performance for the fullband echo cancellation case are shown in
Figure 15. The top part shows the canceller output vs. time, whereas the bottom part shows echo
return loss enhancement (ERLE) in dB. The ERLE is defined as the ratio of the averaged powers
after and before cancellation. Lower ERLE implies improved echo cancellation. In each of Figures
15 - 17, power levels have been obtained by averaging the respective signals over a sliding window
of 200 samples in duration. It is seen from Figure 15 that the convergence rate for the fullband
case is not as fast as desired- just under 6 seconds are required to achieve an ERLE level of -30dB.
Further, the computational load is heavier than necessary. It is shown [19] that this configuration
requires 32 MIPS5 at an 8 kHz sampling rate to implement.

5MIPS = Millions of Instructions per Second. An instruction includes one real multiply plus one real add.
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Figure 15: Echo canceller results for the fullband case. Top: residual echo signal vs. time at the
canceller output, Bottom: ERLE in dB vs. time.

Simulation results for the method proposed by [5] are shown in Figure 16. This method requires a
critically downsampled PR or NPR filterbank with analysis and synthesis filters having conventional
double–sided frequency responses. In principle, such a configuration requires a densely–connected
M ×M matrix of adaptive filters in the subbands, to completely eliminate aliasing errors at the
output. However, in practice, the authors have shown that ideal performance may be closely
approximated using only a tridiagonal structure. This implies the adaptive filtering process in
each subband requires cross–filters from its adjacent subbands, as well as the adaptive filter in the
subband of interest (except of course for the end subbands, which require only one adaptive filter).

The analysis and synthesis filters were generated by cosine modulation of a low–pass quadrature
mirror filter prototype, designed according to the method of [1], to yield a PR filterbank. Here,
the filter bank coefficients are real, so we define M ′ = M/2. We have used M ′ = 8 and L = 128.
The results of Figure 16 show that the convergence behaviour of this technique is not significantly
improved over the fullband case. This is due to the additional parameters in the cross–filters
which must be estimated, thus slowing convergence. Further, the ERLE level obtained using this
method is degraded over that obtained with the fullband approach (approximately 22db versus 36dB
respectively, over the final one–second epoch). However, this structure does show a significantly
improved MIP count over the fullband implementation. It is shown in [19] that this configuration
requires 11.7 MIPS for the adaptive filtering operation, and an additional 0.3 MIPS for the filterbank
overhead (using a discrete cosine transform implementation), to give a total of 12.0 MIPS. Thus, this
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subband configuration offers a substantial saving in computational requirements over the original
fullband implementation.
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Figure 16: Echo canceller results for the method of [5].

The results using the proposed complex subband decomposition are shown in Figure 17. In this
case, we have used a downsampling rate of K = 0.75M = 12. Here, we use the same filter bank
configuration as in Section 4.1. Because of the diagonal property of the decomposition, we require
only one adaptive filter per subband. The significant improvement in convergence speed offered
by this approach in comparison to the other two methods is apparent from the figure. A 30dB
cancellation level is achieved in just over 3 seconds. However, the point to be emphasized is the
reduction in MIP count afforded by the proposed method. Here, the total MIP count is 7.9 [19],
including filter bank overhead.

This attractive MIP count figure is achieved despite the penalty of complex arithmetic. This penalty
is abated by the use of the higher downsampling rate, and to the fact that only one adaptive filter
is required per subband, as opposed to nearly three for the method of [5].

The simulation scenario for the method of [7] is similar to that presented here. The simulation
results of [7] indicate roughly equivalent performance as is achieved with the proposed single-sided
subbanding scheme.

We therefore observe that proposed single-sided subbanding approach to acoustic echo cancellation
offers a competitive alternative to this problem, both in terms of performance and computation.
Further, it offers the designer improved flexibility in filter bank design and in the choice of down-
sampling rates K, an option which is not available with many other methods.
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Figure 17: Echo canceller results for the complex subbanding case.

We now demonstrate the performance of the delayless subbanded adaptive filter implementation.
The following experiment is identical to the subbanded AEC implementation described above, ex-
cept the filter coefficients ĝ[n] of Figure 6 are computed and updated using (33) from the coefficients
inside the subbands every T = 200 samples, in the downsampled time scale. Results showing ERLE
for both the subbanded and delayless implementations in dB, are shown in Figure 18. Power levels
at each time interval are determined by averaging over the previous 200 samples as before. As
can be seen, the delayless configuration experiences approximately 5db degradation in suppression
performance relative to the subbanded configuration, but nevertheless has a more-than-acceptable
level for practical applications. The overall echo suppression level relative to the remote signal
level over the entire epoch from 4 to 9 seconds for the subbanded configuration is approximately
-30.36dB, and -25.52dB for the delayless configuration.

Implementation Issues: Since we have used uniform DFT filter banks, they can be implemented
very efficiently using the polyphase representation, which is discussed at length in [1]. The compu-
tational cost for one polyphase filter bank for our purposes is 4

K (L+ M
4 log2 M) real multiply/adds

per sample (MAPS). Here, we assume that the proposed scheme is to be implemented on a machine
which can perform a multiply/add operation in one instruction. In this case, a complex multiply
can be configured as four real multiply/add operations. Note that by “sample”, we refer to the
time scale outside the subbands.

The conventional NLMS algorithm can be implemented in approximately 2` real MAPS, where `

is the length of the filter. On this basis, we can compose Table 2 which gives the approximate
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Figure 18: ERLE vs. time. Solid: delayless method, Dashed: subbanded configuration.

Method Real MAPS

Fullband NLMS 2L
Method of [5] L

M ′ (6− 1
M ′ ) + 2

M ′ (N + M ′
2 log2(M ′))

Complex Subband 4LM
K2 + 8

K (N + M
4 log2 M)

Delayless 4LM
K2 + 8

K (T+1
T )(N + M

4 log2 M) + 3 log2(Q + 1)

Table 2: Computational complexity of the various implementations.

computational complexity of the various AEC implementations in MAPS, using NLMS in the
subbands, including the filter bank overhead (if appropriate).

In Table 2, N is the prototype filter length. Recall the quantity M ′ in the second row is M/2.
The last term in the “delayless” expression results from evaluation the fast convolution of ĝ[n] with
x[n]. Here, the filter length L is divided into P blocks of length Q, such that L = PQ. FFT’s
are then performed on each block as discussed in [14]. The filter ĝ[n] is updated from its subband
coefficients periodically every T samples. To convert the entries in Table 2 to MIPS, we multiply
the respective figure by the quantity fs/(1 × 106), where fs is the sampling rate at the input (8
kHz for our experiments).

From Table 2, the computational expense and as we have seen earlier the convergence rate, both
improve with increasing K. Thus, ideally, we would like to see K as large as possible. However, M

must also increase with increasing K, in order to satisfy (9). Since the bandwidth of the prototype
filter must then decrease, L also increases so that (6) is satisfied well. This implies more memory
for the filter coefficients. This can become a critical issue in applications where cost is important.
Thus, K is chosen as a tradeoff between performance and cost. In AEC applications, the choice
M = 8 appears typical, with the corresponding K set as large as possible.
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5 Conclusions

In this paper we have shown that the use of single–sided filter banks leads to near elimination of
aliasing error, which in turn permits a diagonal decomposition of a broad class of large problems
into smaller, more tractable pieces. The application of filter bank theory is therefore significantly
expanded. We have shown there exists a many–to–one correspondence between the set of subband
components and the model response of interest, and that there exists an equivalence between
convolution outside the subbands and convolution inside the subbands. The filter bank design
process is simplified over conventional methods since the filters are not constrained by the need to
cancel aliasing errors. The downsampling rate for a fixed filterbank is variable, up to the number of
subbands for ideal filter responses. These results lead to new insights into the way signal processing
algorithms can be implemented.

The method has been verified using the acoustic echo cancellation (AEC) problem. Performance
of the single–sided subbanding technique has been shown to exceed or meet that of previous AEC
methods, both with respect to convergence and with respect to computational requirements. The
complex subband decomposition leads naturally to a delayless AEC implementation, whose perfor-
mance has been verified to be almost equivalent to the conventional subbanded implementation.
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