
Rank Modulation for Flash Memories
Anxiao (Andrew) Jiang∗ Robert Mateescu† Moshe Schwartz‡ Jehoshua Bruck†

∗Department of Computer Science †California Institute of Technology ‡Electrical and Computer Engineering
Texas A&M University 1200 E California Blvd., Mail Code 136-93 Ben-Gurion University

College Station, TX 77843, U.S.A. Pasadena, CA 91125, U.S.A. Beer Sheva 84105, Israel
ajiang@cs.tamu.edu {mateescu,bruck}@paradise.caltech.edu schwartz@ee.bgu.ac.il

Abstract—We explore a novel data representation scheme for
multi-level flash memory cells, in which a set of n cells stores
information in the permutation induced by the different charge
levels of the individual cells. The only allowed charge-placement
mechanism is a “push-to-the-top” operation which takes a single
cell of the set and makes it the top-charged cell. The resulting
scheme eliminates the need for discrete cell levels, as well as
overshoot errors, when programming cells.
We present unrestricted Gray codes spanning all possible n-cell

states and using only “push-to-the-top” operations, and also con-
struct balanced Gray codes. We also investigate optimal rewriting
schemes for translating arbitrary input alphabet into n-cell states
which minimize the number of programming operations.

I. INTRODUCTION
Flash memory is a non-volatile memory technology that

is both electrically programmable and electrically erasable.
Its reliability, high storage density, and relatively low cost
have made flash memory a dominant non-volatile memory
technology and a prominent candidate to replace the well-
established magnetic recording technology in the near future.
The most conspicuous property of flash storage is its inher-

ent asymmetry between cell programming (charge placement)
and cell erasing (charge removal). While adding charge to a
single cell is a fast and simple operation, removing charge
from a single cell is very difficult. In fact, current flash
memories do not allow a single cell to be erased but rather
only a large block of cells. Thus, a single-cell erase operation
requires the cumbersome process of copying an entire block
to a temporary location, erasing it, and then programming all
the cells except for the single cell to be erased.
To keep up with the ever-growing demand for denser

storage, the multi-level flash cell concept is used to increase
the number of stored bits in a cell [3]. Instead of the usual
single-bit flash memories, where each cell is in one of two
states (erased/programmed), each multi-level flash cell stores
one of q levels and can be regarded as a symbol over a discrete
alphabet of size q. This is done by designing an appropriate
set of threshold levels which are used to quantize the charge
level readings to symbols from the discrete alphabet.
Fast and accurate programming schemes for multi-level

flash memories are a topic of significant research and design
efforts [9], [5], [1]. All these and other works share the attempt
to iteratively program a cell to an exact prescribed charge level
in a minimal number of programming cycles. As mentioned

This work was supported in part by the Caltech Lee Center for Advanced
Networking.

above, flash memory technology does not support charge
removal from individual cells. As a result, the programming
cycle sequence is designed to cautiously approach the target
charge level from below so as to avoid undesired global
erases in case of overshoots. Consequently, these attempts still
require many programming cycles, and they work only up to
a moderate number of levels per cell.
In addition to the need for accurate programming, the

move to multi-level flash cells also aggravates reliability. The
same reliability aspects that have been successfully handled
in single-level flash memories may become more pronounced
and translate into higher error rates in stored data. One such
relevant example is errors that originate from low memory
endurance [2], by which a drift of threshold levels in aging
devices may cause programming and read errors.
We therefore propose the rank modulation scheme, whose

aim is to eliminate both the problem of overshooting while
programming cells, and the problem of memory endurance in
aging devices. In this scheme, an ordered set of n multi-level
cells stores the information in the permutation induced by the
charge levels of the cells. In this way, no discrete levels are
needed (i.e., no need for threshold levels) and only a basic
charge-comparing operation (which is easy to implement) is
required to read the permutation. If we further assume that
the only programming operation allowed is raising the charge
level of one of the cells above the current highest one (push-
to-the-top), then the overshoot problem is no longer relevant.
Additionally, the technology may allow in the near future the
decrease of all the charge levels in a block of cells by a
constant amount smaller than the lowest charge level (block
deflation), which would maintain their relative values, and
thus leave the information unchanged. This can eliminate a
designated erase step, by deflating the entire block whenever
the memory is not in use.
Once a new data representation is defined, several tools are

required to make it useful. In this paper we present Gray codes
that exploit the full representational power of rank modulation,
and data rewriting schemes. Error-correcting codes for rank
modulation are presented in a companion paper [8].
The original Gray code [4] has been generalized in countless

ways, and has been used in a wide range of applications. Some
of the Gray code constructions we describe induce a simple
algorithm for generating the list of permutations. Efficient
generation of permutations has been the subject of much
research as described in the general survey [10], and the more

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1731978-1-4244-2571-6/08/$25.00 ©2008 IEEE

specific [11] (and references therein). In [11] the transitions we
use in this paper are called “nested cycling” and the algorithms
cited there produce lists which are not Gray codes since
some of the permutations repeat, which makes the algorithms
inefficient. We present a balanced construction, which is a new
permutation generation algorithm, that optimizes the transition
step size and is suitable for block deflation.
We also investigate rewriting schemes for rank modulation.

Since erasing/reprogramming cells is expensive, it is very im-
portant to maximize the number of times data can be rewritten
between two erasure operations [6]. For rank modulation, the
key is to minimize the highest charge level of cells. We present
two rewriting schemes that are, respectively, optimized for the
worst-case and average-case performance.

II. DEFINITIONS AND BASIC CONSTRUCTION
Let S be a state space, and let T be a set of transition

functions, where every t∈ T is a function t : S → S. A Gray
code is an ordered list s1, s2, . . . , sm of distinct elements from
S such that for every 1 � i � m − 1, si+1 = t(si) for some
t∈ T. If s1 = t(sm) for some t∈ T, then the code is cyclic.
If the code spans the entire space S we call it complete.
Let [n] denote the set of integers {1, 2, . . . , n}. An ordered

set of n flash memory cells named 1, 2, . . . , n, each containing
a distinct charge level, induces a permutation of [n] by writing
the cell names in descending charge level [a1, a2, . . . , an], i.e.,
the cell a1 has the highest charge level while an has the lowest.
The state space for the rank modulation scheme is therefore
the set of all permutations over [n], denoted by Sn.
We consider the basic minimal-cost operation on a given

state to be a “push-to-the-top”, by which a single cell has its
charge level increased to become the highest of the set. Thus,
the set T of minimal-cost transitions between states consists
of n − 1 functions ti , 2 � i � n:
ti([a1, . . . , ai−1, ai , ai+1, . . . , an]) = [ai , a1, . . . , ai−1, ai+1, . . . , an].
Throughout this work, our state space S will be the set of

permutations over [n], and our set of transition functions will
be the set T of “push-to-the-top” functions. We call such codes
length n Rank Modulation Gray Codes (n-RMGC).
Example 1. An example of a cyclic and complete 3-RMGC is
given below. The permutations are the columns being read from
left to right. The sequence of transitions is: t2, t3, t3, t2, t3, t3.

1 2 3 1 3 2
2 1 2 3 1 3
3 3 1 2 2 1

We will now show a basic recursive construction for n-
RMGCs. The resulting codes are cyclic and complete, in the
sense that they span the entire state space. Our recursion basis
is the simple 2-RMGC: [1, 2], [2, 1].
Now let us assume we have a cyclic and complete (n −

1)-RMGC, which we call Cn−1, defined by the sequence of
transitions t(1), t(2), . . . , t((n−1)!) and where t((n−1)!) = t2,
i.e., a “push-to-the-top” operation on the second element in the
permutation1. We further assume that the transition t2 appears
1This last requirement merely restricts us to have t2 used somewhere since

we can always rotate the set of transitions to make t2 be the last one used.

at least twice. We will now show how to construct Cn, a cyclic
and complete n-RMGC with the same property.
We set the first permutation of the code to be [1, 2, . . . , n],

and then use the transitions t(1), t(2), . . . , t((n−1)!−1) to get
a list of (n − 1)! permutations we call the first block of the
construction. By our assumption, the permutations in this list
are all distinct, and they all share the property that their last
element is n (since all the transitions use just the first n − 1
elements). Furthermore, since t((n−1)!) = t2, we know that
the last permutation generated so far is [2, 1, 3, . . . , n − 1, n].
We now use tn to create the first permutation of the

second block, and then use t(1), t(2), . . . , t((n−1)!−1) again
to create the entire second block. We repeat this pro-
cess n − 1 times, i.e., use the sequence of transitions
t(1), t(2), . . . , t((n−1)!−1), tn a total of n− 1 times to construct
n − 1 blocks, each containing (n − 1)! permutations.
The following two simple lemmas are given without proof.

Lemma 2. In any block, the last element of all the permutations
is constant. The list of last elements in the blocks constructed is
n, n − 1, . . . , 3, 1. The element 2 is never a last element.
Lemma 3. The second element in the first permutation in every
block is 2. The first element in the last permutation in every
block is also 2.
Combining the two lemmas above, the n − 1 blocks con-

structed so far form a cyclic but not complete n-RMGC, that
we call C′, which may be schematically described as follows
(where each box represents a single block, and � denotes the
sequence of transitions t(1), . . . , t((n−1)!−1)):

1 2
2 1
... �

...
n − 1 n − 1

n n

tn−→

n 2
2 n
... �

...
n − 2 n − 2
n − 1 n − 1

tn−→ · · · tn−→

3 2
2 3
... �

...
n n
1 1

It is now obvious that C′ is not complete because it is
missing exactly the (n − 1)! permutations containing 2 as
their last element. We build a block C′′ containing these
permutations in the following way: we start by rotating the
list of transitions t(1), . . . , t((n−1)!) such that its last transition
is tn−1

2. For convenience we denote the rotated sequence by
τ (1), . . . , τ (n−1)!, where τ (n−1)! = tn−1. The first permuta-
tion in the block is [a1, a2, . . . , an−1, 2], and the last one is
[a2, . . . , an−1, a1, 2]. In C′ we find a transition of the following
form: [a2, . . . , an−1, 2, a1]

tn−1−−→ [2, a2, . . . , an−1, a1]. Such a
transition must surely exist since C′ is cyclic, it contains
permutations in which 2 is next to last and some in which
it is not, it does not contain permutations in which 2 is last,
and so it follows that at some point in C′, the element 2 is
next to last and is then pushed by tn−1 to the front. At this
transition we split C′ and insert C′′ as follows bellow, where
it is easy to see that all transitions are valid. Thus we have
created Cn and to complete the recursion we have to make sure
t2 appears at least twice, but that is obvious since the sequence

2The transition tn−1 must be present somewhere in the sequence or else
the last element would remain constant, thus contradicting the assumption that
the sequence generates a cyclic and complete (n − 1)-RMGC.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1732

a2
a3
...

an−1
2
a1

tn−→

a1 a2
a2 a3
... �

...
an−2 an−1
an−1 a1

2 2

tn−→

2
a2
...

an−2
an−1

a1

t(1), . . . , t((n−1)!−1) contains at least one occurrence of t2, and
is replicated n − 1 times, n � 3. Therefore, we conclude that:

Corollary 4. For every n � 2 there exists a cyclic and complete
n-RMGC.

The 3-RMGC shown in Example 1 is the result of this
construction for n = 3.

III. BALANCED n-RMGCS

It is sometimes the case that due to precision constraints in
the charge placement mechanism, the actual possible charge
levels in flash memory cells are discrete. Thus, we define the
function ci : N → N, where ci(p) is the charge level of the i-th
cell after the p-th programming cycle. It follows that if we use
transition t j in the p-th programming cycle and the i-th cell is,
at the time, j-th from the top, then ci(p) > maxk {ck(p − 1)},
and for k �= i, ck(p) = ck(p − 1). In an optimal setting with
no overshoots, ci(p) = maxk {ck(p − 1)} + 1.
The jump in the p-th round is defined as ci(p)− ci(p − 1),

assuming the i-th cell was the affected one. It is desirable,
when programming cells, to make the jumps as small as
possible. We define the jump cost of an n-RMGC as the
maximal jump during the transitions dictated by the code. It
is easy to see that the lowest possible jump cost in a complete
n-RMGC is at least n + 1, for n � 3.
We call an n-RMGC with jump cost n + 1 a balanced n-

RMGC. A balanced code is especially suitable if block defla-
tion is possible (Section I). We show a construction that turns
any (n − 1)-RMGC into a balanced n-RMGC while retaining
properties such as being cyclic or complete. The resulting
recursive scheme is a new permutation generation algorithm,
that obeys the geometric constraints of flash memories.
Theorem 5. Given a cyclic and complete (n − 1)-RMGC
Cn−1, defined by the transitions ti1 , . . . , ti(n−1)!

, then the fol-
lowing transitions define an n-RMGC, denoted by Cn, that is
cyclic, complete and balanced:

For k ∈ {1, . . . , n!} , tk =

{
tn−i�k/n�+1 , if k ≡ 1(mod n)
tn , otherwise.

Proof: Let us define the abstract transition −→
ti , 2 �

i � n, that pushes to the bottom the i-th element from
the bottom: −→

ti ([a1, . . . , an−i , an−i+1, an−i+2, . . . , an]) =
[a1, . . . , an−i , an−i+2, . . . , an, an−i+1].
Because Cn−1 is cyclic and complete, using

−→
ti1 , . . . ,

−−−→
ti(n−1)!

starting with [a1, . . . , an−1] produces a complete cycle through
Sn−1, and using them starting with [a1, . . . , an] creates a cycle
through all the (n − 1)! permutations of [n] where a1 is fixed
on the first position.

1 2 3 4 4 1 2 3 3 4 1 2 2 3 4 1

2 1 3 4 4 2 1 3 1 3 4 2 3 4 2 1

1 3 2 4 2 4 1 3 4 1 3 2 3 2 4 1

3 1 2 4 1 2 4 3 4 3 1 2 2 4 3 1

3 2 1 4 2 1 4 3 1 4 3 2 4 3 2 1

2 3 1 4 1 4 2 3 3 1 4 2 4 2 3 1

Figure 1. Recursive construction of the balanced 4-RMGC.

The (n − 1)! permutations of [n] produced by−→
ti1 , . . . ,

−−−→
ti(n−1)!

are also representatives of the (n − 1)!
distinct orbits of the permutations of [n] under the operation
tn. This means that there are no two permutations which are
cyclic shifts of each other, since tn represents a simple cyclic
shift when operated on a permutation of [n].
Taking a permutation of [n], then using the transition tn−i+1

once, 2 � i � n − 1, followed by n − 1 times using
tn, is equivalent to using

−→
ti . Every transition of the form

tn−i+1, i �= n, moves us to a different orbit, while the n − 1
consecutive executions of tn generate all the elements of the
orbit. It follows that the resulting permutations are distinct.
Schematically, the construction of Cn based on Cn−1 is:

tn−i1+1,

n − 1 times︷ ︸︸ ︷
tn , . . . , tn︸ ︷︷ ︸
−→
ti1

, tn−i2+1,

n − 1 times︷ ︸︸ ︷
tn , . . . , tn︸ ︷︷ ︸
−→
ti2

, . . . , tn−i(n−1)!+1,

n − 1 times︷ ︸︸ ︷
tn , . . . , tn︸ ︷︷ ︸

−−−→
ti(n−1)!

.

The code Cn is balanced, because in every block of n
transitions starting with a tn−i+1, 2 � i � n − 1, we have:
the transition tn−i+1 has a jump of n − i + 1; the following
i − 1 transitions tn have a jump of n + 1, and the rest a jump
of n. In addition, because Cn−1 is cyclic and complete, it
follows that Cn is also cyclic and complete.
We can use Theorem 5 to recursively construct all the

supporting j-RMGCs, j∈ {n − 1, . . . , 2}, with the basis of
the recursion being the 2-RMGC: [1, 2], [2, 1].

Corollary 6. For any n � 2, there exists a cyclic, complete and
balanced n-RMGC.

Example 7. Fig. 1 shows the recursive balanced 4-RMGC.
The permutations are represented as an n by (n − 1)! ma-
trix. Each row is an orbit generated by tn. Each column
has the last element fixed. The transitions between rows
occur when 1 is the top (leftmost) element. These transi-
tions are defined recursively, by a balanced 3-RMGC over
the set {2, 3, 4} (where the top element is now the right-
most one): [2,3,4],[3,4,2],[3,2,4],[2,4,3],[4,3,2],[4,2,3]. They
are −→t3 ,

−→
t2 ,

−→
t3 ,

−→
t3 ,

−→
t2 ,

−→
t3 . This is the cycle from Example 1,

with relabeled cells, and starting with the third column.

The recursive balanced n-RMGC of Theorem 5 is optimal
with respect to the following asymptotic measure. In practice,
it is important to optimize the cost of deciding the transition
that generates the next permutation. We define a step to be
a single query of the form “what is the i-th highest charged

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1733

cell?”. If we start with [a1, . . . , an], then a fraction of n−1
n of

the transitions are tn, and they occur whenever the cell a1 is
not the highest charged one. Of the cases where a1 is highest
charged, by recursion, a fraction n−2

n−1 of the transitions are
determined by just one more query, and so on. At the basis
of the recursion, permutations over two elements require zero
additional queries. Thus, the total number of queries is ∑n

i=3 i!.
Since limn→∞

∑n
i=3 i!
n! = 1, the asymptotic average number of

steps to generate the next permutation is just 1.

IV. REWRITING WITH RANK MODULATION CODES
In this section, we study rewriting data using the rank modu-

lation scheme. The objective is to minimize the expensive cell
erasure operations, which, in turn, requires us to maximize
the number of times the data can be modified before a cell
erasure becomes necessary (i.e., when the highest cell charge
level reaches the highest allowed value). We first need to define
a decoding scheme. It is often the case that the alphabet size
used by the user to input data and read stored information
differs from the internal representation alphabet size. In our
case, data is stored internally in one of n! different permuta-
tions. Let us assume the user alphabet is Q = {1, 2, . . . , q}.
A decoding scheme is a function D : S → Q mapping internal
states to symbols from the user alphabet.
Suppose the current internal state is s1 ∈ S and the user

inputs a new symbol α ∈ Q. A rewriting operation for α is
now defined as moving from state s1 ∈ S to state s2 ∈ S such
that D(s2) = α. It should be noted that if D(s1) = α then s2
may be equal to s1, i.e., the rewriting operation is degenerate
and does nothing. The cost of the rewriting operation is the
minimal number of atomic transitions from T (i.e., the number
of “push-to-the-top” operations) required to move from state
s1 to state s2. In the following sections, we first present a
decoding scheme that strictly optimizes the rewriting cost for
the worst case. Then, we extend the construction to optimize
the average rewriting cost with constant approximation ratios.

A. Optimal Decoding Scheme for Rewriting
We start by presenting a lower bound on the cost of a single

rewriting operation. First, we define a few terms. Define the
transition graph G = (V, E) as a directed graph with V = Sn,
i.e., with n! vertices representing the permutations in Sn. There
is a directed edge u → v if v = t(u) for some t∈ T, i.e., we
can obtain v from u by a single “push-to-the-top” operation.
We can see that G is a regular digraph: every vertex has n− 1
incoming edges and n − 1 outgoing edges.
For two vertices u, v∈V, define the directed distance

d(u, v) as the number of edges in the shortest directed path
from u to v. Clearly, 0 � d(u, v) � n − 1. Given a vertex
u∈V and an integer r (here 0 � r � n − 1), we define the
ball Br(u) as Br(u) = {v∈V | d(u, v) � r}, and define
the sphere Sr(u) as Sr(u) = {v∈V | d(u, v) = r}. Clearly,
Br(u) =

⋃
0�i�r Sr(u). We skip the proof of Lemma 8 due

to space constraint. Interested readers please see [7].
Lemma 8. ∀ u∈V and 0 � r � n − 1, |Br(u)| = n!

(n−r)! . For
1 � r � n − 1, |Sr(u)| = n!

(n−r)! − n!
(n−r+1)! .

Let ρ denote the smallest integer such that |Bρ(u)| � q.
Note that ρ is independent of u. The following lemma presents
a bound on the rewriting cost. (Please see [7] for proof.)

Lemma 9. For any decoding scheme and any current cell state,
there existsα ∈ Q such that the cost of a rewriting operation for
α is at least ρ. (ρ is as defined above.)

Next, we present an optimal code construction.

Construction 10. Divide the n! states Sn into n!
(n−ρ)! sets,

where two states are in the same set if and only if their ρ

top-charged cells are the same. Among the sets, choose q sets
and map them to the q symbols of Q arbitrarily. The other

n!
(n−ρ)! − q sets need not represent any symbol.

Example 11. Let n = 3 and q = 3. Since |B1(u)| = 3,
ρ = 1. We divide the n! = 6 states into n!

(n−ρ)! = 3 sets
which induce the decoding function: {[1, 2, 3], [1, 3, 2]} �→ 1,
{[2, 1, 3], [2, 3, 1]} �→ 2, and {[3, 1, 2], [3, 2, 1]} �→ 3. The
two states in the set are decoded to the same symbol from Q.
The cost of any rewrite operation is at most 1.

Since the top ρ cells of a state uniquely determine the
decoded symbol, any rewriting operation costs at most ρ

transitions to replace the top ρ cells. Thus we have:

Theorem 12. The coding scheme in Construction 10 is optimal
in terms of minimizing the worst-case rewriting cost.

B. Optimizing the Average Cost of Rewriting
If the probabilities with which the input symbol takes values

from its alphabet are known, it is also important to study
schemes that optimize the average cost of rewriting. Let us
assume that for each rewrite, the input symbol is drawn i.i.d.
from Q = {1, 2, . . . , q} with probability pi to get symbol
i ∈ Q. We study decoding schemes that optimize the average
cost of rewriting. Depending on the probabilities {pi}, the
optimal code may be quite complex.
we present below a prefix code that is optimal in terms of its

own design objective. Furthermore, we will prove that when
q � n!/2, the prefix code is a 3-approximation of any optimal
rank-modulation solution. We will also show that when n � 4
and q � n!/6, the prefix code is a 2-approximation.
The prefix code consists of q codewords of variable lengths,

which represent the q values in Q. Each codeword is a prefix
of a permutation from Sn. No codeword is allowed to be
the prefix of another codeword. Let a = [a1, a2, . . . , ai] be a
generic codeword that represents the value α ∈ Q. For a state
s∈ Sn, if a is a prefix of s then we set D(s) = α. Due to the
prefix-free property, the decoding function is well-defined.
A prefix code can be represented by a tree. First, let us

define a full permutation tree T where the labels on the n!
paths from its root to leaves are all the n! permutations. An
example is shown in Fig. 2(a). The vertices are in n layers,
with the root in layer 0 and leaves in layer n. A prefix code
corresponds to a subtree C of T (see Fig. 2(b) for an example).
Every codeword is mapped to a leaf, and the codeword is the
same as the labels on the path from the root to the leaf.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1734

422434

4

1321414

3

3

3

132312421314

2

32

4
32

1

1

3443344

2142143

2

21

4
32

1(b)

(a)

4

(4,3,2)(4,3,1)

(4,2)(4,1)(3,4)(3,2)(3,1)

(2)(1)

1 2

321

3 4 1 12

2132112

Figure 2. Prefix rank modulation code for n = 4 and q = 9. (a) The full
permutation tree T. (b) A prefix code represented by a subtree C of T. The
leaves represent the codewords, which are the labels beside the leaves.

For i ∈ Q, let ci denote the codeword representing i, and
let |ci| denote its length. (The codewords in Fig. 2(b) have
minimum length of 1 and maximum length of 3.) Our objective
is to minimize the average codeword length, ∑q

i=1 pi |ci|,
which upper bounds the expected cost of each rewrite.
The optimal prefix code cannot be constructed with a greedy

algorithm like the Huffman code and its extensions, because
the vertex degrees in the code tree C are unknown initially. We
present a dynamic programming algorithm of time complexity
O(nq4) to construct the optimal code.
The algorithm computes a set of functions opti(�, m),

for i = 1, 2, . . . , n − 1, � = 0, 1, . . . , q, and m =
0, 1, . . . , min{q, n!/(n − i)!}. We interpret the meaning of
opti(�, m) as follows. We take a subtree of T that contains
the root. The subtree has exactly � leaves in the layers
i, i + 1, . . . , n− 1. It also has at most m vertices in the layer i.
We let the � leaves represent the � input values from Q with the
lowest probabilities pj: the further the leaf is from the root, the
lower the corresponding probability is. Those leaves are also �
codewords, and we call their weighted average length (where
the probabilities pj are weights) the value of the subtree. The
minimum value of such a subtree (among all such subtrees)
is defined to be opti(�, m). Clearly, the minimum average
codeword length of a prefix code equals opt1(q, n).
Without loss of generality, let us assume that p1 � p2 �

· · · � pq. It is easily seen that the following recursion
holds: (1) optn−1(�, m) = (n − 1) ∑�

k=1 pk for m � � >
0; (2) opti(0, m) = 0 for i > 1; (3) opti(�, m) =
min0� j�min{�,m}{opti+1(� − j, min{q, (m − j)(n − i)}) +
∑�

k=�− j+1 ipk} for i < n − 1, � > 0, m > 0. The last
recursion holds because a subtree with � leaves in layers
i, i + 1, . . . , n − 1 and at most m vertices in layer i can have
0, 1, . . . , min{�, m} leaves in layer i.
The algorithm computes optn−1(�, m), optn−2(�, m), · · · ,

opt1(q, n) using the above recursions. Given their values,
it is straightforward to determine in the optimal code, how
many codewords are in each layer, and therefore determine
the optimal code itself. For rewriting based on the code, to
change the stored value to i ∈ Q, we simply push the |ci| cells
in its codeword ci to the top sequentially.

Theorem 13. When q � n!/2, for every rewrite, the expected
rewriting cost of an optimal prefix code is at most three times

that of any rank modulation code. When n � 4 and q � n!/6,
this ratio is at most two.

Proof: We present the sketch of the proof for the case
q � n!/2. (The case n � 4 and q � n!/6 can be analyzed
similarly.) For the detailed proof, please refer to [7]. Let i ∈ Q
(resp., si ∈ Sn) denote the stored data (resp., cell state) at
a given moment. Let s1, · · · , si−1, si+1, · · · , sq denote the
q − 1 cell states whose distance from si in the transition
graph, d(si , s j), are the smallest ones. WLOG, assume that
p1 � · · · � pi−1 � pi+1 � · · · � pq, and that
d(si , s1) � · · · � d(si , si−1) � d(si , si+1) � · · · � d(si , sq).
To minimize the expected rewriting cost, the ideal solution is a
code that decodes s j as j for j∈ Q. Denote by α the expected
rewriting cost of this ideal solution. Next, we design a prefix
code B with this property: ∀ j∈ Q, if j �= i, its corresponding
codeword length, yj, is at most 3d(si , s j); if j = i, then
yj = 1. It can be proved that such a prefix code B exists.
Next, let A be an optimal prefix code, and for j∈ Q, let xj
denote the corresponding codeword length. Let β denote the
expected rewriting cost of A. By definition, ∑1� j�q p jx j �
∑1� j�q p j y j. Since xi � 1 = yi, β � ∑1� j�q, j �=i p jx j �
∑1� j�q, j �=i p j y j � ∑1� j�q, j �=i 3pjd(si , s j) = 3α. So the
expected rewriting cost of an optimal prefix code is at most
three times that of an ideal rank modulation code.

V. CONCLUSION
In this paper, we present a novel data storage scheme, rank

modulation, for flash memories. We present several Gray code
constructions for rank modulation, as well as its data rewriting
schemes. The presented coding schemes are optimized for cell
programming cost in several different aspects.

REFERENCES
[1] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Programming analog

computational memory elements to 0.2% accuracy over 3.5 decades
using a predictive method,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, 2005, pp. 2148–2151.

[2] P. Cappelletti and A. Modelli, “Flash memory reliability,” in Flash
Memories, P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds.
Kluwer, 1999, pp. 399–441.

[3] B. Eitan and A. Roy, “Binary and multilevel flash cells,” in Flash
Memories, P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds.
Kluwer, 1999, pp. 91–152.

[4] F. Gray, “Pulse code communication,” U.S. Patent 2632058, March 1953.
[5] M. Grossi, M. Lanzoni, and B. Riccò, “Program schemes for multilevel

flash memories,” Proceedings of the IEEE, vol. 91, no. 4, pp. 594–601,
2003.

[6] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,” in Proc. IEEE ISIT, 2007,
pp. 1166–1170.

[7] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,” California Institute of Technology, Tech. Rep.,
2008. [Online]. Available: http://www.paradise.caltech.edu/etr.html

[8] A. Jiang, M. Schwartz, and J. Bruck, “Error-correcting codes for rank
modulation,” in Proc. IEEE ISIT, 2008.

[9] H. Nobukata et al., “A 144-Mb, eight-level NAND flash memory
with optimized pulsewidth programming,” IEEE J. Solid-State Circuits,
vol. 35, no. 5, pp. 682–690, 2000.

[10] C. D. Savage, “A survey of combinatorial Gray codes,” SIAM Rev.,
vol. 39, no. 4, pp. 605–629, 1997.

[11] R. Sedgewick, “Permutation generation methods,” Computing Surveys,
vol. 9, no. 2, pp. 137–164, 1977.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1735

